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Abstract

Continuous DR-submodular maximization is an
important machine learning problem, which cov-
ers numerous popular applications. With the
emergence of large-scale distributed data, devel-
oping efficient algorithms for the continuous DR-
submodular maximization, such as the decentral-
ized Frank-Wolfe method, became an important
challenge. However, existing decentralized Frank-
Wolfe methods for this kind of problem have the
sample complexity of O(1/€?), incurring a large
computational overhead. In this paper, we propose
two novel sample efficient decentralized Frank-
Wolfe methods to address this challenge. Our the-
oretical results demonstrate that the sample com-
plexity of the two proposed methods is O(1/¢€?),
which is better than O(1/e3) of the existing meth-
ods. As far as we know, this is the first published
result achieving such a favorable sample complex-
ity. Extensive experimental results confirm the ef-
fectiveness of the proposed methods.

1 Introduction

Continuous DR-submodular maximization, which general-
izes the diminishing returns property to the continuous do-
main, has attracted increasing attention in recent years due
to its superior performance on various applications, such
as resource allocation [Eghbali and Fazel, 2016; Staib and
Jegelka, 2017], learning assignments [Eghbali and Fazel,
2016], and recommendation system [Mokhtari et al., 2018;
Xie et al., 2019]. To optimize continuous DR-submodular
functions for large-scale data, several stochastic Frank-Wolfe
methods [Hassani et al., 2019; Mokhtari et al., 2020; Zhang et
al., 2020; Hassani et al., 2017] have been proposed. However,
with the emergence of large-scale distributed data, maximiz-
ing continuous DR-submodular functions with good compu-
tational time guarantees becomes a practically relevant open
challenge. For example, for the data generated on mobile de-
vices or monitoring sensors, it is prohibitive to upload the
data to a central server to conduct centralized optimization
due to communication and privacy concerns. Therefore, in

*Corresponding author

3501

this paper we study the continuous DR-submodular maxi-
mization in the decentralized scenario. Specifically, we are
interested in optimizing the following function:

R
max f(x) £ 2 > fM(x), (1)
k=1

where k is the index for workers, x € () denotes
the model parameters in the compact convex set (2,
f®(x) = ]E£ND<;4-,>F(’“) (x;¢) is the monotone continuous
DR-submodular function on the k-th worker where F'(*) is
the local cost and D*) is the local data distribution. The goal
of Eq. (1) is to collaboratively learn the model parameters
x € () using the data from K workers. In this process, data
are kept on each worker and only the model parameters (or
gradients) are communicated across different workers.

Decentralized optimization methods, such as decentralized
stochastic gradient descent (D-SGD), have been commonly
used for training machine learning models when data are
distributed on different devices. For instance, [Lian et al.,
2017] studied the convergence rate of D-SGD for optimizing
non-convex problems. [Koloskova et al., 2019] developed a
communication-efficient D-SGD method to reduce the com-
munication cost. [Pu and Nedi¢, 2020] proposed a gradient
tracking technique to improve the convergence performance
of D-SGD. However, all of these methods focus on the reg-
ular unconstrained machine learning problems. They are not
applicable to solve the constrained optimization problems de-
fined in Eq. (1).

To facilitate continuous DR-submodular maximization,
several papers [Mokhtari et al., 2018; Xie et al., 2019;
Wai et al., 2017] propose decentralized variants of Frank-
Wolfe method. In those variants, each worker computes the
stochastic gradient based on its local data and then communi-
cates the gradient with its neighbors. Based on the received
stochastic gradients from its neighbors, each worker opti-
mizes its local cost function with Frank-Wolfe method. For
instance, based on the gossip mechanism, [Mokhtari ef al.,
2018] proposed a decentralized stochastic Frank-Wolfe (De-
SCG) method for optimizing Eq. (1). To achieve e-accuracy
tight approximation ratio, it requires O(1/e®) sample com-
plexity and O(1/€*) communication complexity. Based on
the gradient tracking technique, [Xie et al., 2019] proposed
the decentralized stochastic gradient tracking Frank-Wolfe
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(DeSGTFW) method, improving the communication com-
plexity to O(1/¢). However, DeSGTFW still has the same
sample complexity as DeSCG because it has to use O(1/€?)
samples to compute the stochastic gradient at each iteration.
It can be seen that both DeSCG and DeSGTFW have a large
sample complexity O(1/€), resulting in a large computation
overhead. Then, a natural question follows: Is it possible to
develop a new decentralized optimization method for contin-
uous DR-submodular maximization defined in Eq. (1), with
sample complexity comparable to the centralized scenario?

To answer the aforementioned question, in this paper,
we first propose a gossip-based decentralized stochastic
variance-reduced Frank-Wolfe (DeSVRFW-gp) method. In
contrast to the existing methods [Xie e al., 2019], which
have large sample complexity caused by the stochastic gra-
dient application at each iteration, DeSVRFW-gp employs a
variance-reduced stochastic gradient to improve the sample
complexity. Our theoretical results show that DeSVRFW-gp
achieves O(1/¢?) sample complexity, which is better than
the previous work. However, DeSVRFW-gp can only con-
verge to the neighborhood of the approximated solution. The
reason is that the gossip communication strategy leads to a
loose consensus error bound for the gradient. Therefore, to
address this issue, we further propose a gradient-tracking-
based decentralized stochastic variance-reduced Frank-Wolfe
(DeSVRFW-gt) method where we combine the variance re-
duction technique and gradient tracking strategy. As a result,
DeSVRFW-gt can get a tighter consensus error bound for the
gradient than DeSVRFW-gp, and then it can asymptotically
converge to the approximated solution. Moreover, the the-
oretical result demonstrates that DeSVRFW-gt also achieves
O(1/€?) sample complexity and enjoys the same communi-
cation complexity O(1/€) as DeSVRFW-gp. The comparison
between our methods and the existing methods is summarized
in Table 1. In addition to the theoretical considerations, we
perform extensive experimental evaluation to confirm the ef-
fectiveness of our proposed methods.

To the best of our knowledge, this is the first work apply-
ing the variance-reduced stochastic gradient to decentralized
Frank-Wolfe methods. The variance reduction technique in-
troduces several challenges when bounding the consensus er-
ror by the convergence analysis of the decentralized Frank-
Wolfe method. Additionally, the consensus error among dif-
ferent workers brings another challenge when bounding the
gradient variance. Our work is the first attempt we are famil-
iar with at providing the convergence rate under this setting.
The contributions of this paper are summarized as follows:

* We propose two novel decentralized stochastic variance-
reduced Frank-Wolfe methods, namely, DeSVRFW-gp
and DeSVRFW-gt. Both of them achieve O(1/¢?) sam-
ple complexity and O(1/¢) communication complexity.

* We provide novel theoretical analysis for the proposed
methods. Especially, we demonstrate how to bound the
gradient consensus error for the decentralized stochastic
variance-reduced Frank-Wolfe method.

* The extensive empirical results confirm the effectiveness
of the proposed DeSVRFW-gp and DeSVRFW-gt.
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Methods Sample Communication
DeSCG O(1/€3) O(1/€3)
DeSGTFW O(1/e3) O(1/e)
DeSVRFW-gp (Ours) | O(1/€?) O(1/e)
DeSVRFW-gt (Ours) | O(1/€?) O(1/e)

Table 1: Sample and communication complexities of different meth-
ods.

2 Related Work

In this section, we give an overview of the existing work on
the continuous DR-submodular maximization.

Continuous DR-submodular maximization. Submodular
functions have a diminishing return property. They have been
applied to a wide variety of machine learning applications,
such as sensor placement [Krause et al., 2006] and human
brain network analysis [Salehi er al., 2017]. The continu-
ous DR-submodular function tailors the diminishing return to
the continuous domain for addressing some new challenges
in machine learning, such as budget allocation [Staib and
Jegelka, 2017] and experimental design [Chen ez al., 2018].
In this process, optimizing the continuous DR-submodular
functions becomes a practically important problem. A num-
ber of novel optimization models for this problem were pro-
posed during the last decade. For instance, [Bian et al., 2017,
Hassani et al., 2017] showed that the first-order methods can
be used for optimizing it approximately. In particular, [Bian
etal., 2017] maximized the continuous DR-submodular func-
tion with a full conditional gradient descent method approxi-
mately and achieves (1 — 1/e)OPT — ¢! approximation ratio
with the sample complexity of O(1/¢). Under the stochas-
tic setting, [Hassani et al., 2017] applied the stochastic prox-
imal gradient method to optimize this problem, but it can
only achieve (1/2)OPT — e approximation ratio and the sam-
ple complexity is O(1/e?). [Mokhtari et al., 2020] fur-
ther proposed a variant of stochastic Frank-Wolfe method,
which can achieve (1 — 1/e)OPT — e approximation ratio
as the full-gradient based method, but it needs the O(1/€3)
sample complexity. Recently, inspired by the development
of the variance reduction techniques [Fang er al., 2018;
Cutkosky and Orabona, 2019] for stochastic gradients, two
variance-reduced stochastic Frank-Wolfe methods [Hassani
et al., 2019; Zhang et al., 2020] were proposed. Both of
them enjoy (1 — 1/¢)OPT — € approximation ratio with only
O(1/€?) sample complexity. However, all of these methods
only focus on the single machine scenario. It is not clear
whether they can retain their favorable complexity when be-
ing applied to distributed data.

Decentralized optimization. Decentralized optimization
[Lian et al., 2017; Pu and Nedi¢, 2020; Sun et al., 2019;
Yu et al., 2019; Lu et al., 2019; Koloskova et al., 2020;
Gao and Huang, 2020] has attracted increasing attention in
recent years due to the emergence of decentralized data pro-
duced by a variety of smart devices and sensors. Unlike the
centralized optimization scenario, there is no central server in

'OPT means the optimal function value, e is the natural number.
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a decentralized scenario. Each worker only communicates the
model parameters or gradients with its neighbors. Thus, there
is no communication bottleneck issue associated with the
central server. Recently, [Lian et al., 2017] studied the con-
vergence rate of the decentralized stochastic gradient descent
(D-SGD) method. They showed that D-SGD enjoys the same
convergence rate as the centralized distributed SGD method
and the topology of the decentralized system only affects
the high-order term of the convergence rate. [Pu and Nedi¢,
2020] further developed the gradient tracking technique to ac-
celerate the convergence of SGD. In particular, each worker
introduces an auxiliary variable to track the average gradients.
Recently, [Sun et al., 2019] and [Xin e al., 2020] proposed a
new variant based on the variance-reduced gradient, achiev-
ing a better communication complexity. However, all these
methods only focus on the unconstrained problem and cannot
be applied to the constrained optimization problem in Eq. (1).

To facilitate the optimization of Eq. (1) in the decentral-
ized manner, [Mokhtari et al., 2018] developed a gossip-like
stochastic Frank-Wolfe method. Specifically, each worker
uses the stochastic Frank-Wolfe method to update the local
model parameter and then communicates the model param-
eter and gradient with its neighboring workers. However,
this method can only achieve O(1/¢®) sample complexity
and O(1/€3) communication complexity. To improve it, [Xie
et al., 2019] proposed a new decentralized stochastic Frank-
Wolfe method based on the gradient tracking technique. The
communication complexity is improved to O(1/¢). However,
this method still has a worse sample complexity than that of
the single machine methods. Thus, there might still be space
to further improve the complexity.

3 Preliminaries

In this section, we introduce the necessary background re-
garding the decentralized continuous DR-submodular maxi-
mization problem.

Definition 1. (Continuous submodular function) Given
X = H;i=1 X; € Rff_ where X; denotes a compact subset
of R, for the continuous function F' : X — R, if for all
X,y € X, we have

F(x)+ F(y) > F(xVy)+ F(xAy), (2)

F'is submodular. Here, X \V'y denotes the element-wise maxi-
mization and X \'y represents the element-wise minimization.

Definition 2. (Continuous DR-submodular function)
The differentiable submodular function F is called DR-
submodular; if for all X,y € X and x < y?, it satisfies

VF(x)>VF(y). 3)

Additionally, a submodular function is called monotone if
F(x) > F(y) forx <y € X. In this work, we will consider
the decentralized optimization of the monotone continuous
DR-submodular maximization problem which has a convex
constraint {2, just as shown in Eq. (1).

21t means that each coordinate of x is less than that of y. So does
Eq. (3).

In the decentralized optimization system, each worker con-
nects with its neighbors, composing a communication net-
work. Here, we use graph G = (V, W) to represent this com-
munication network. V' = [K]] denotes all the workers in this
system and W = [w;;] € Rf *K represents the connections
among the workers. If the ¢-th worker and the j-th worker are
connected, w;; > 0. Otherwise, w;; = 0. In addition, the
connection matrix W satisfies the following assumption.

Assumption 1. W € RE*X is symmetric (WT = W) and
doubly stochastic (W1 = 1 and 1TW = 17). Regarding the
eigenvalues |M,| < -+ < |X2| < |A1| =1 of W, they satisfy

1
W——117|,<1-p, 4
| K [2<1-0p “)
where 1—p = |A2| < 1. Here, p € (0,1] is called the spectral

gap of W.
Assumption 2. For the compact convex set ), its diameter

SUPy yeq [X—Y|| is bounded by D and its radius sup,cg, |||
is bounded by R.

Assumption 3. The local objective function on each worker
f®)(x) is L-smooth, i.e.,

IV P ) -V B )l < Lix-yl, VaeXvyex, vk
®)

where L > 0 is a constant.

Assumption 4. The stochastic gradient of the local objective

function on each worker is bounded, i.e.,

E[[VF® (x;6)|] <G, Vxe X,Vk, (6)

where £ denotes the randomly selected sample and G > 0 is
a constant.

Assumption 5. The variance of stochastic gradients on each

worker is bounded, i.e.
E[|VF® (x;¢) = VP ()] <0® VxeX,VEk, (1)

where £ denotes the randomly selected sample and o > 0 is
a constant.

Algorithm 1 DeSVRFW-gp

Initialization: xgk) =xq1,T.

1. fort=1,2,--- ,T do
2: ift =1 then

3: Draw S%k) samples and compute
vt = VF0 (x("); 51)
4:  else
5: Draw Séi) samples and compute
k k k k
N
VE® (x2); 557)
6: en% if )
7y = ZjENk Wi vy
8: ugk) = arg maxueg)(ygk), u)
k j k
9: x§+)1 = Zje./\/k, wij,(gj) + %ug )
10: end for
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4 Decentralized Stochastic Variance-Reduced
Frank-Wolfe Method

4.1 Gossip-based Decentralized Stochastic
Variance-Reduced Frank-Wolfe Method

In Algorithm 1, we propose the decentralized stochastic
variance-reduced Frank-Wolfe method based on the gossip
communication strategy (DeSVRFW-gp). At the ¢-th itera-
tion, the k-th worker computes the variance-reduced gradient

( ) based on its local data, and then communicates vg ) with
1ts neighbors by using the gossip algorithm as follows:

(k) Z WV (J) , (8)
JENK

where N, denotes the neighboring workers of the k-th

worker. It can be seen that ygk)

()

is the weighted average of
the neighboring v,

(k) , the k-th worker optimizes the following linear program-
mmg problem to get the feasible ascent direction as the regu-
lar Frank-Wolfe method:

ul =

after the gossip communication. With

— (k)
argmax(y,”, u) . )
After that, it updates the local model parameters as follows:

X = 3 wixy) + —ul (10)
JEN

where the first term on the right-hand side is to get the model
parameter from its neighboring workers by using the gossip
algorithm, and the second term is to update the local model
parameter with the feasible ascent direction uik).

In Algorithm 1, we use the variance-reduced technique to
reduce the variance of local stochastic gradients. On the con-
trary, existing works, such as DeSGTFW [Xie et al., 2019],

just use the stochastic gradient as vgk). As a result, DeS-
GTFW has to use a large batch size of samples to reduce
the gradient variance, resulting in a large sample complex-
ity at each iteration. Here, inspired by [Fang er al., 2018],
we use the variance-reduced gradient to improve the sample
complexity. As shown in Algorithm 1, at the first iteration,

the k-th worker randomly selects SYC) samples and computes

(k)

the stochastic gradient v, . At other iterations, each worker

selects Sg’ft) samples and computes the following variance-
reduced gradient estimator:

VE® (x5 88y
(1)
This gradient estimator has a smaller variance compared with
the standard stochastic gradient [Fang et al., 2018]. As a re-
sult, it does not need to sample a large batch of samples to
reduce the gradient variance as [Xie et al., 2019]. Thus, our
method is supposed to have a smaller sample complexity than
existing works. In particular, we establish the following the-
orem to demonstrate the complexity of our Algorithm 1.

vi? = vi?) + VF® (x{F; 5y -

Theorem 1. For Algorithm 1, under Assumptions 1-5, when
|S'§k)| = 2T and |S(k)| 9§D€ forVk,t, we have

- L2D2
1 .. DRL LR?> +2LD?
J&ra) = (1= D) = =2 = 0 = 5
3(1—p)LDR
12)

Remark 1. From Theorem 1, it can be seen that DeSVRFW-
gp needs O(1/€) iterations to achieve the e-accuracy ap-
proximation ratio when optimizing Eq. (1). It also indicates
that the communication complexity of our method is O(1/¢),
which can match the best existing result [Xie et al., 2019].
Thus, our method is efficient in communication.

Remark 2. Since the number of iterations T is O(1/¢), the
size ofok) is O(1/€*) and that ong? is O(1/€). Then, the
sample complexity of Algorithm 1 is |S£k)\ + |S§f€t)| « T =
O(1/€2). On the contrary, existing methods, such as DeSCG
[Mokhtari et al., 2018] and DeSGTFW [Xie et al., 2019],

require O(1/€®) gradient evaluations. Thus, our method is
computationally efficient.

From Eq. (12), it can be seen that the last two terms on
the right-hand side are independent on 7'. Thus, it can only
converge to the neighborhood of (1 — 1) f(x*), which is not
satisfactory. To address this issue, in the following subsec-
tion, we propose a new method to have a better convergence
result.

Algorithm 2 DeSVRFW-gt

Initialization: xgk) =x1,T.
1. fort=1---,T —1do
2: ift =1 then

3: Draw S %k) samples and compute
2" = v = VF® (x{"; 51)

4:  else

5: Draw Sé ¢ samples and compute

v _ (k)
v, =

Vfl

VF®) (Xgﬁ)ﬁ S2,t )

+ VE®(x(M: sy —

k k k k

6: ( ) — y§,’1 + Vg - V§7)1
7: er(ld if )
8 y, = Zje/\/k Wiz,
9: ug ) = arg maxueg)(ygk),u)

k j k
10: XE_,’_)I = Zje/\fk wijgj) + %ug )
11: end for

4.2 Gradient-Tracking-based Decentralized
Stochastic Variance-Reduced Frank-Wolfe
Method

In Algorithm 1, we use the gossip strategy to communi-
cate with neighboring workers. In this subsection, we pro-
posed a new method based on the gradient tracking technique.
Specifically, our proposed gradient-tracking-based stochas-
tic variance-reduced Frank-Wolfe method (DeSVRFW-gt) is
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shown in Algorithm 2. Its high-level idea is similar to Algo-
rithm 1. The difference lies in the strategy of updating gradi-
ents. In detail, at the ¢-th (£ > 1) iteration, after obtaining the
local variance-reduced gradient vgk), each worker k uses the
gradient tracking method to track the average of gradients as

follows:

yg )= Z wkj(ygi)l +V£]) - Vz@ ) - (13)
JENK
With this strategy, yik) is capable of tracking

LK vk (x{F). The reason is that y{* is close to
yi= % Zkl,(:l ygk) and y, is close to Zszl Vf(k)(xgk)).
Compared with Algorithm 1 which uses the gossip commu-
%) can a i 7o = LK 3k
pproximate y; = = > ;1 ¥,

nication method, y;
more tightly. In other words, Algorithm 2 has a tighter

consensus error ||y£k) — ¥¢||? than Algorithm 1, which will
be shown in the next section.

To see the sample and communication complexities of
DeSVRFW-gt, we establish the following theorem.
Theorem 2. For Algorithm 2, under Assumptions 1-5, when

k 22 k 9R?
|S£ )| — 2222 and ‘Sé,t)| = ;lfDZ for Yk, t, we have

1 LDR V2LD®* DG
< > _ = x -0 Ve T
fXep1) 2 (1 e)f(x ) oT T oT
_ VI2LD? + V2TLDR LR’
p°T 2T
(14)

Remark 3. From Theorem 2, it can be seen that Algorithm 2
can converge to (1 — 1) f(x*) rather than its neighborhood.
Thus, Algorithm 2 has a better convergence performance than
Algorithm 1.

Remark 4. Theorem 2 indicates that the communication
complexity of Algorithm 2 is O(1/€) to achieve the e-
accuracy approximation ratio for optimizing Eq. (1), which
is the same as that of Algorithm 1 and can match the best
existing result in [Xie et al., 2019].

Remark 5. As for the sample complexity of Algorithm 2, it is
O(1/€?), which is the same as that of Algorithm 1 and better
than DeSCG [Mokhtari et al., 2018] and DeSGTFW [Xie et
al., 2019].

From Theorems 1 and 2, we can find that the batch size
|S£{? | at each iteration is O(1/€). Compared with DeSGTFW

[Xie et al., 2019] whose batch size is O(1/¢?), our two meth-
ods have a smaller sample complexity at each iteration, ac-
celerating the convergence speed.

In summary, we proposed two computationally efficient
decentralized Frank-Wolfe methods to optimize Eq. (1). To
the best of our knowledge, this is the first work applying
the variance reduction technique to the decentralized Frank-
Wolfe method. Although the variance reduction technique
has been studied for the single machine case, our methods are
novel and challenging, especially for the convergence anal-
ysis. On one hand, unlike the traditional variance-reduced
Frank-Wolfe methods, our methods need to deal with the con-
sensus error among different workers. On the other hand,
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the introduced variance-reduced gradient makes it more chal-
lenging to handle the consensus error compared with the tra-
ditional decentralized Frank-Wolfe methods.

5 Main Proof

In this section, we present the high-level idea of proving
the convergence rate of our proposed DeSVRFW-gp and
DeSVRFW-gt.

According to the smoothness of the loss function, we can
get the following inequality:

L) — s + 2

2T
T K
D 1
72 75 (k) (k) _ =

T
_ D _
+ N IX = Xilr+—= |V, -Yir .
v XXl T«ﬁ[(;%,f_nli
3

15)
where T measures how the averaging stochastic gradient y,
is close to the averaging full gradient + S5 v f() (x\")
T» measures the consensus error regarding the local model
parameter, and 75 measures the consensus error regarding the
local stochastic gradient. Thus, to establish the convergence
results in Theorem 1 and 2, what we need to do is to bound
these three terms.
Due to the space limitation, we only show the bound of the
consensus error 73 for these two theorems. The bounds for
T1 and T5 can be found in the Supplementary Materials.

bl

Lemma 1. For Algorithm 1, under Assumption 1-5, when
2T2 2T
|S1| = F=p5z and |Sa| = %, we have

JEG+ 3(1 — p)VKLR(t — 1) .

E[lY; = Yilr] < (1-p) pT

(16)
Lemma 2. For Algorithm 2, under Assumption 1-5, when

|S1] = % and | S| = ?}1;;7;, we have

E[Y; = Yillr] < (1—p) "' VEG +

V1I2KDL + v27TKRL

p*T
a7
From the above two lemmas, it can be seen that Algo-
rithm 2 can obtain a tighter consensus error ||Y; — Y| p.
Specifically, the first term in Lemma 1 is a constant, result-
ing in the constant term in Theorem 1. Thus, Algorithm 1
can only converge to the neighborhood of (1 — 1) f(x*). On
the contrary, all items in Lemma 2 are shrunk when increas-
ing the number of iterations. Thus, its bound is tighter than
Lemma 1.

6 Experiments

In this section, we describe the experimental design and re-
sults of an empirical evaluation of the proposed methods.
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In the experiment, following [Xie er al., 2019; Mokhtari
et al., 20181, we apply our proposed DeSVRFW-gp and
DeSVRFW-gt to the movie recommendation system. The
loss function can be found in Supplementary Material. Here,
we use two datasets: MovieLens-1M and MovieLens-100K
3. In detail, MovieLens-1M has 1 million ratings which are
from 6,040 users on 3,883 movies, and MovieLens-100K has
100,000 ratings which are from 943 users on 1,682 movies.
Ratings range from 1 to 5. The goal of this experiment is to
recommend a group of |O] = 10 movies to users expecting
the highest satisfaction based on users’ historical ratings. In
our experiment, we use 8 workers for MovieLens-1M and 4
workers for MovieLens-100K. For each case, the ratings from
users are divided into all workers evenly. For instance, when
there are 8 workers for MovieLens-1M, each worker will have
755 users and their associated historical ratings.

——DeSGTFW

o  |[7""DeSVRFW gt //
S 4 t|——DeSVRFW_gp
= DeSCG L —
> | |—DeSGTFW
e ==
4581 =
EL5l A
8 4.56
E 1.72 1.74 1.76 1.78
[S} x10*
0
0 0.5 1 1.5 2
#function evaluations, 104
(a) MovieLens-100K
—--DeSVRFW_gt
4 DcSVRFW—gp,ﬂr,,———""
g ]

[\e}

objective value

=)

0 2 4 6 8
#function evaluations, 104

(b) MovieLens-1M

Figure 1: Comparison between different methods. The plots show
the objective value versus the total number of function evaluation
calculated.

As for the communication graph, we use the Erdos-Renyi
random graph in our experiment. The mean vertex degree in
the graph is 2. For the non-diagonal entries in the weight ma-
trix W of the communication graph, if vertex ¢ and vertex j
are connected, w;; = 1/(1 4+ max(D;, D;)) where D, de-
notes the degree of the vertex i. If there is no edge between
vertex ¢ and vertex j, w;; equals to 0. For the diagonal en-
tries, w;; = 1 — Zje./\/'(i) w;j. This kind of weight matrix
satisfies Assumption 1.

In Figure 1, we compare our proposed two methods with
two baseline methods: DeSCG [Mokhtari et al., 2018] and
DeSGTFW [Xie et al., 2019]. In particular, we plot the ob-
jective function value with respect to the number of func-

*https://grouplens.org/datasets/movielens/

tion evaluations for two datasets, respectively. Here, for our
methods, we use the batch size of 100 for MovieLens-100K
and 200 for MovieLens-1M. Regarding the other two baseline
methods, we set it according to their theoretical results.
From Figure 1, we can see that DeSCG converges much
slower than all the other methods. The reason is that it uses
the stochastic gradient at each iteration which has a large es-
timation variance, slowing down the convergence speed. In
addition, it can be found that DeSGTFW converges faster
than DeSCG but slower than our two methods. Here, DeS-
GTFW employs the gradient tracking technique so that it is
faster than DeSCG. However, our methods employ the vari-
ance reduced gradient at each iteration. Thus, our two meth-
ods converge faster than DeSGTFW, which is consistent with
our theoretical results. Note that, in Figure 1, DeSGTFW
converges a little faster than our two methods at the beginning
phase. The reason is that DeSGTFW uses O(1/t?) samples
at each iteration where ¢ represents the ¢-th iteration. There-
fore, at the beginning phase, DeSGTFW is faster, but it be-
comes slower as the training progresses because more sam-
ples are needed for each update. Furthermore, we observe
that DeSVRFW-gt outperforms DeSVRFW-gp. The reason
is that DeSVRFW-gt employs the gradient tracking technique
to estimate the global gradient across different workers so
(k)

that y; ’ has a smaller variance compared to DeSVRFW-gp.
Thus, DeSVRFW-gt converges faster.
;g 3 FR— Prmmm————— S
s DeSVRFW-gt
°2 ~--DeSVRFW-gp
> DeSCG
5 --#--DeSGTFW
21
el
o
5 5.5 6

comm-cost (#doubles) 1>

Figure 2: The plots show the objective value versus the communica-
tion cost for MovieLens-100K.

Finally, in Figure 2, we plot the objective function value
versus the accumulated communication cost. Due to the
space limitation, we only show the result for MovieLens-
100K. The other dataset produces a similar result. It can be
seen that our two methods have almost the same communica-
tion cost as DeSGTFW, which is consistent with the theoreti-
cal result. DeSCG has the largest communication cost, which
is also consistent with Table 1.

7 Conclusions

In this paper, we proposed two novel decentralized stochas-
tic Frank-Wolfe methods for optimizing the continuous DR-
Submodular maximization problem. Our theoretical results
demonstrated that our two methods have better sample com-
plexities than the existing methods. This is the first work that
achieves such sample complexities. Our extensive empirical
evaluation is consistent with the theoretically predicted re-
sults.
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