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Abstract

The vast majority of community detection algo-
rithms assume that the networks are totally ob-
served. However, in reality many networks can-
not be fully observed. On such network is edges-
missing network, where some relationships (edges)
between two entities are missing. Recently, several
works have been proposed to solve this problem by
combining link prediction and community detec-
tion in a two-stage method or in a unified frame-
work. However, the goal of link prediction, which
is to predict as many correct edges as possible, is
not consistent with the requirement that is predict-
ing important edges for identifying communities on
edges-missing networks. Thus, combining link pre-
diction and community detection cannot work very
well in terms of detecting community structure for
edges-missing networks. In this paper, we propose
a community self-guided generative model which
jointly completes the edges-missing network and
identifies communities. In our new model, com-
pleting missing edges and identifying communi-
ties are not isolated but closely intertwined. Fur-
thermore, we developed an effective model infer-
ence method that combines a nested Expectation-
Maximization algorithm and Metropolis-Hastings
sampling. Extensive experiments on real-world
edges-missing networks show that our model can
effectively detect community structures while com-
pleting missing edges.

1 Introduction

With the development of computer technology and the mas-
sive increase in data, network has become an important and
ubiquitous structure in real world, which can describe rela-
tionship (represented by edges) between entities (represented
by nodes). Such networks include, for example, social net-
works, biological networks and citation networks, just to
name a few [Barrat et al., 2008; Cohen and Havlin, 2010;
Newman, 2018]. Community detection, one of the most
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important tasks in network analysis, has attracted great at-
tention. In general, the goal of community detection is to
discover functionally related modules which generally has
the following structural characteristics: nodes in the same
community are densely connected whereas nodes in different
communities are sparsely connected [Girvan and Newman,
2002]. Community detection has been successfully applied
to a wide range of areas. For instance, social networks allow
us to recommend advertisements to users with similar hob-
bies; Protein-protein interaction networks permit us to dis-
cover specific functional modules of proteins. Many commu-
nity detection algorithms have been proposed. They include,
for example, modularity optimization based methods [New-
man and Girvan, 2004; MacMahon and Garlaschelli, 2015],
deep learning based methods [Rozemberczki er al., 2018;
Wang ef al., 2017; Li et al., 2020] and stochastic block mod-
els (SBM) [Ball et al., 2011; Peixoto, 2014; Karrer and New-
man, 2011; Yang and Leskovec, 2013; Zhang et al., 2015;
Ye et al., 2018].

These algorithms mentioned above assume that the ob-
served networks are complete. However, there are missing
edges in many real-world networks. For instance, some users
on Twitter may hide part of their friends list, making the
edge between the corresponding pair of users unobserved in
the network [Lin ef al., 2013]. In the terrorist organization
network [Lin ef al., 2013], where each node represents ter-
rorist activities, and the edge between two nodes indicates
that two activities come from a same organization, we may
not know which terrorist organization carried out a terror-
ist activity. Thus, the relationships between some terror-
ist activities are unknown. Hereafter network with missing
edges is called edges-missing network. As the topology in-
formation plays an important role in community detection,
intuitively using traditional algorithms designed for complete
networks directly on edges-missing networks could compro-
mise community detection accuracy. This is verified by Ga-
bielkov [2012], where various different community detec-
tion algorithms were tested on many edges-missing networks.
In addition, missing edges have been shown to have impact
on some important network properties, such as the diame-
ter, the centrality or the degree distribution [Huisman, 2009;
Borgatti er al., 2006]. Therefore, it is necessary to design
community detection algorithm that is particularly suitable
for edges-missing networks.
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Recently, some community detection algorithms for edges-
missing networks have been proposed. These methods fall
into two categories. The first category includes two-stage al-
gorithms [Tran er al., 2018]. Concretely, the first stage en-
tails performing link prediction to recover the missing edges,
and the second stage entails performing community detec-
tion on the complemented network. The second category
includes methods conducting community detection and link
prediction simultaneously in a unified framework [Shao er
al., 2019]. Such as CLMC [Shao et al., 2019], is one of the
most representative algorithms in this category, whose goal
is to learn a similarity matrix to detect communities and a
supplement matrix to predict missing edges simultaneously
in a unified framework. It is worth noting that all these algo-
rithms assume that the more missing edges the algorithm can
predict correctly, the more accurate the community detection
is. However, the assumption may not hold in reality as not
all edges play the same role in community detection. For
some nodes, even several edges are missing, their commu-
nity memberships are still clear. Conversely, for other nodes,
even one missing edge could change their community mem-
bership. For example, we applied this representative unified
method CLMC on the classical community detection dataset,
Zachary’s Karate club network, and we removed 10% edges
randomly from the network, making it an edges-missing net-
work. The result is shown in Figure 1 (a), where although
most of edges are predicted correctly, the results of commu-
nity detection are still biased, i.e., node 2 is divided into a
wrong community. This is because the correctly predicted
edges do not play an important role in community detection,
echoing what we illustratively explained earlier. For instance,
removing edge (1, 17) (which is correctly predicted) will not
change the community membership of node 1 and node 17.
This is due to the fact that the true community of node 1 and
17 are easy to determine, and most of their neighbors only
belong to one community and they have few connections to
another community. This is also the case for edges (29, 33)
and (1, 7). On the contrary, node 2 is located at the bound-
ary of two communities, which is difficult to determine its
community membership. For this node, the algorithm CLMC
did not predict its missing edges which indirectly led it be-
ing placed into the wrong community. In fact, link prediction
algorithms prefer to predict the intra-community edges that
play less important role in community detection. Thus, sim-
ple combination of link prediction and community detection
cannot handle the problem of community detection on edges-
missing networks in essential.

To address this problem, we proposed a community self-
guided generative model for jointly completing the edges-
missing network and identifying communities. Unlike the
state-of-the-arts such as CLMC, our model predicted the
missing edges (2, 3) correctly and divided node 2 into the cor-
rect community (as shown in Figure 1 (b)). The improvement
is brought about by accommodating two sets of variables in
our model, one for recovering the missing edges, and one for
characterizing communities. In this new model, recovering
missing edges is guided by community detection in such a
way that we predict the edges that are important for identi-
fying communities. Meanwhile, community detection is also
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affected by completing the network. For training the model,
we developed an effective method that combines a nested
Expectation-Maximization (EM) algorithm and Metropolis-
Hastings sampling. We evaluated our model on a variety
of real-world networks and compared with different kinds
of methods, including methods for complete networks, two-
stage methods and unified end-to-end methods for edges-
missing networks. Empirical results show the significant su-
periority of a model over the existing methods.
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Figure 1: An motivated example on the Zachary’s Karate club net-
work. The bold dashed line indicates the split observed in real world.
These two colors on nodes, blue and green, represent two communi-
ties inferred by community detection algorithms. The black dashed
line represents missing edge. The red and green lines indicate the
wrong and correct edges inferred by algorithms. We remove 10%
edges randomly, and then apply CLMC and our algorithm to per-
form (a) and (b) results.

2 The Community Self-Guided Approach

In this paper, we developed a community self-guided gener-
ative model for completing the edges-missing network and
discovering community structure at the same time. To train
the model, we developed an effective method for combin-
ing a nested Expectation-Maximization (EM) algorithm and
Metropolis-Hastings sampling approach.

2.1 The Model

Considering an observed network Go (V, Ep) with n nodes
and |Ep| edges. We use Gy (V, Ej) to represent a la-
tent network Gps (V, Eps), where Ej; denotes the missing
edges of the observed network Go. We define the complete
graph containing the observed network GG and the latent
network G as G(V, E), where E = Eo U Ejp;. We use
A = (aij),,,, to denote the adjacent matrix of the observed
network G, where a;; = 1 if an edge exists between node ¢
and node 7, or 0 otherwise. We use Z = (Zij)nm to denote
the adjacent matrix of the latent network G57, where z;; = 1
if the edge between node 7 and node j is missing, or O other-
wise. Then, with a community assumption, complete network
G (where G = G U G)y) can be viewed as an ensemble of
¢ probabilistic communities, {G1, G2, ...G.}, where every
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node has a probabilistic membership in each community Gy,
k = 1,2---c. For each community, it can be regarded as
a random graph with no community structure, and we use a
random-graph null model to model each probabilistic com-
munity as Jin [2015]. Note that the community memberships
are designed for the complete network including both the ob-
served part and the missing part.

Now we give the specific definition of the model. We use
d;1, to denote the expected degree of node ¢ within community
G, As every probabilistic community G, is a random graph,
the expected number of edges between node ¢ and node j in
community Gy, is:

ok dirdjr,
ko ZRTIk
J Er drk

Taking all k probabilistic communities into account, the ex-
pected number of edges between node ¢ and node j can be

defined as:
. . dirdjk
BeYa-T e o
k k T

The exact number of edges between nodes ¢ and j is Pois-
son distributed about this mean value @,;;. Then, the like-
lihood function that the complete network G (including the
observed network G, and the latent network G ;) was pre-
sumably generated from the model can be defined as follow:
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P(A,Z | D)
digdip \ Wii
. (Zk Ef d]r];) dirdjk 3)
B VR e S Y T
i,je(AUZ) i % r drk

where A denotes the adjacent matrix of the observed network
Go, Z the adjacent matrix of the latent network G, and
D = (dix),,.. the expected degrees of nodes for all commu-
nities. In fact, the latent network G s is not known, and the
missing edges in Z can be considered as latent variables.

In this case, our model integrates the missing edges and the
community memberships in a unified generative model. With
this configuration of Z, it can help to produce the complete
network which helps the community detection best. Then, the
latent network and community structures can be learned si-
multaneously and are mutual enhancement. By doing so, the
model has better performance than the two-stage methods.
More importantly, compared to previous unified frameworks,
such as CLMC, our model focuses on the important nodes
and those from community boundary based on the parameter
D. Furthermore, by calculating the subordination of nodes
degree participating in communities, our model can recog-
nize latent edges that are the most important for community
detection. To sum up, our model is self-guided by community
structure and designed for missing edge networks.

In our model, the model parameters d;; is the community
information and they are also used to completing the missing
part. Given d;, the expected number of edges w;; between
any node ¢ and node j can be obtained, and then the probabil-
ity of the existence of missing edge between any unconnected
pair nodes of the observed network G can be modeled by
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Bernoulli distribution with parameter @;;. The completing
missing edges and the discovering community structures are
closely intertwined. Once the missing part Z is obtained, the
model parameters d;; can be estimated by maximizing the
likelihood function. After the model parameters d;; are esti-
mated, the configuration of the missing part that results in the
largest increase of the likelihood function is selected. The se-
lected configuration will result in a new potential maximum
value of the likelihood function. Then the model parameters
d;y 1s refined by finding the optimal value corresponding to
the new potential maximum value. As we keep alternating
between estimating the missing part Z and model parameters
d;, the community structure becomes clearer and clearer.

Although the determination of the missing part Z has been
modeled by Bernoulli distribution with the expected num-
ber of edges as its parameters, the sample Z that is directly
generated by Bernoulli distribution is highly random. In or-
der to minimize the impact of randomness on likelihood and
generate a confident sample Z, we develop a Metropolis-
Hastings sampling process with a Markov chain. According
to Markov property, given sampled Z(*), the next candidate
sample Z(*+1) can be generated. Then we accept or reject
this new Z(**1) according to an acceptance probability. This
process continues until reaching a steady state. According
to the mechanism of Metropolis-Hastings sampling, when it
reaches a stationary state, the sampled samples can effectively
improve the likelihood, and the determined missing part can
improve the performance of community detection.

2.2 The Model Inference

We then describe how to infer community structure and the
latent network simultaneously on edges-missing networks by
using a nested Expectation-Maximization (EM) algorithm
with Metropolis-Hastings sampling.

E-Step with Metropolis-Hastings Sampling

Given the model parameters D, we use Metropolis-Hastings
sampling to determine the missing part Z from the Bernoulli
distribution with parameter W = (@;),,,,,, where @;; is the
expected number of edges between node ¢ and node j. To
make the sampling process effective, we adopted the strategy
of [Kim and Leskovec, 2011] which can produce a sample
of Z in constant time. According to Markov property, given

the current sample Z(*), the next candidate sample Z can be
generated. The new sample Zis generated based on Z(*) by
removing one edge randomly from Z() and adding another
edge to it as [Kim and Leskovec, 2011]. This sample 7 is
accepted as the next sample Z(**+1) with an acceptance prob-
ability. If the new sample Z (1) is rejected, the current sam-
ple Z® is taken as the next sample Z(**+1). The acceptance
rate R (Z, Z“)) is defined as:

P(Z)P (Z“) | Z)

R (Z Z(t>) — min [ 1, )

P(z0)P(Z]|20)

where the transition probability P (Z “)) P (Z | Z “)) can be
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defined as:
P (Z“)) P (Z | Z“))
=P (Z(t)\el,eg) P (61 € Ez(»tf)) P (62 ¢ EM) (del ei,addes)
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t
By} ZEGZEJ(&)P(EHP(H)

®

where Z(®)\e;, e; means edges e; and ey are not in Z(*),
and E") denotes the set of edges in sample Z(*). Similarly,
P(Z)P (Z“) | Z) is defined as:

P(Z)P (Z(’f> | Z)

:P(Z\el,€2) (e2)(1— P(el)’EM‘Ze&E;(e(;))JrP(ez) “

The final acceptance probability can be derived as follows:

R (Z Z<t>) — min (1, }:I’jggg) %)

Using the above acceptance probability, we generate samples
of Z and get a mean matrix F' as follows:

F=(zW), zW+D  ZzW+5) /g (8)

where W is the warm-up iterations and S is the total number
of samples. [ is an n X n matrix, where each element f;;
in F represents the strength between node i and node j. The
confident sample Z can be derived through F' by setting a
threshold value a:

Zconfident :{Zij = 1 when fl_] >
otherwise Zij = 0 | Zij € 7, f” € F}

M-Step with Nested EM

In M-step, we consider the missing part Z and the observed
part A are given, and the goal is to estimate the model pa-
rameters D that maximize the likelihood function in (3), that
is, finding the parameters that fit the model to the given data
(the missing part Z and the observed part A) best. Here max-
imizing the likelihood is typically done by maximizing the
logarithm of the likelihood, which makes the differentiation
much simpler while giving the exact same result. Taking the
logarithm of (3), we can get the log-likelihood:

L= walog(z ”“dﬂ’“) Z(Z ““d’k> (10)

ijk
Since directly maximizing (10) by differentiation will lead to
a set of nonlinear implicit equations for the model parameters
d;1, here we apply an EM algorithm to solve this problem.
Applying Jensen’s inequality to (10), we get:

®

- dirdjk - drk
L (dik, gijr) = » (’wij%y‘,k log L)
ijk Gij.k
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where L is a lower bound of L and the probabilities g;;  can
be freely chosen provided satisfy >, ¢i;» = 1. And the
equality holds at:

digdjx/ >, drk

Bigk = 5= (dudyi /3, dei) (12)

Maximizing the log-likelihood L with respect to the
model parameters d;; equates maximizing its lower bound
L (d;, gij,%) with respect to both the model parameters d;j
and the probabilities g;;.The EM algorithm for this dual
maximization is to iteratively maximize g;; ;. (i.e., the E-step)
and then maximize the model parameters d;;(i.e., the M-
step),which has been proved to converge to a local maximum.

For the E-step, we need to make L = L. Given the optional
model parameters d;,the optimal values of g;; z can be ob-
tained by Eq.(12); For the M-step, given the optional values
of ¢;;k, the optional d;;; can be found by differentiating (12)
under the constraints » , d;; = d;, which gives:

dik = D Wijij.k (13)

3 Experiments

We first compare our method SGCD with some state-of-the-
art methods on real networks with ground-truth communities,
and then on networks without known communities. Next, we
give a case study analysis to show why our method works
and, moreover, why it is superior to the link prediction en-
hanced end-to-end strategies. We finally test its effectiveness
by varying the radio of missing edges, as well as its stability
on the unique hyperparameter «.

3.1 On Networks with Known Communities

We test the performance of our method SGCD on six widely-
used real networks with known communities (Table 1). Since
these networks are fully observed, according to [Shao et al.,
2019], we randomly removed 20% existing edges for each
network to produce edges-missing networks. To be specific,
for each network we generated 50 edges-missing network
instances randomly, and calculated the mean of the perfor-
mance of each algorithm tested on these networks.

We compare SGCD with some most related methods (Ta-
ble 2). BigClam [Yang and Leskovec, 2013], DANMF [Ye et
al., 2018] and GEMSEC [Rozemberczki et al., 2018] are tra-
ditional community detection methods which do not consider
missing edges. NM-SBM [Peixoto, 2018] and CLMC [Shao
et al., 2019] are designed for finding communities on edges-
missing networks. MNDP [Jin er al., 2015] is the base of
our method not considering missing edges, MNDP;gy,q is
the two-stage version of MNDP considering missing edges
(i.e., we use the results of the first run of MNDP to fill up
missing edges for its second run), and MNDPgy; is MNDP
running on the original complete network without removing
edges. SGCDgy is our SGCD running on the complete net-
work. We use the default settings for all the baselines, and
set a= 0.5 for our method (see the parameter analysis sec-
tion later). We run each method 20 times on each network
instance and select the result corresponding to the maximum
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likelihood since they are mainly model-based methods. We
use Normalized Mutual Information (NMI) as the measure
metric as it is widely-used in community detection.

Datasets # nodes # edges # classes
Zachary’s karate club 34 78 2
Dolphin social network| 62 160 2
Political books 105 441 3
Football 115 613 12
Political blogs 1,490 16,717 2
Pubmed 19,717 44,338 3

Table 1: Real-world networks with ground-truth communities.

The results are shown in Table 2. As shown, our SGCD
performs the best on all the networks with missing edges,
and is very close to the gold standard, i.e., MNDPg. Par-
ticularl, our SGCD outperforms 7.39% on average over the
second-best method CLMC (which is also an end-to-end
model but uses link prediction to reinforce community de-
tection). In addition, thanks to the effectiveness of this
new self-guided mechanism, SGCDgy; can even improve
MNDPg,;; which can be taken as an upper bound of the link
prediction-enhanced methods like CLMC. This further shows
that, SGCD not only has the superiority on networks with
missing edges, but can also improve community detection
performance on full networks. This may further explain why
it is more effective than the link prediction based community
detection for edge-missing networks.

3.2 On Networks without Known Communities

We further test SGCD on several real networks without
known communities (Table 3). Because the model-based
methods compared need the number of communities, we de-
rive it by using the well-known Louvain method, as suggested
by [Newman and Girvan, 2004]. While this number may not
be completely correct, it does not affect the fairness of the
evaluation and comparison of these methods in general. We
use modularity ) as the evaluation metric which is often the
most widely-used metric in this case.

The results are shown in Table 4. As shown, SGCD per-
forms best on 3 out of the 5 networks, while CLMC performs
best on the remaining two networks. But on average, SGCD
improves CLMC 0.1791 under the condition that @) is typi-
cally in the range of 0.2 to 0.8. Furthermore, on the complete
networks, SGCDgy;; improves MNDPp; 0.0906 on average.
This further validates the effectiveness of the new framework
with our self-guided mechanism.

Datasets # nodes # edges # classes
Les Miserables 77 254 6
Word adjacencies 112 425 7
Jazz musicians collaborations| 198 2,742 4
C. Elegans neural 297 2,148 5
E-mail network URV 1,133 5,451 11

Table 3: Real-world networks with unknown community structures.
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Metrics (%) Methods Karate Dolphin Polbooks Football Polblogs Pubmed
BigClam 71.01 59.33  30.87 60.51 0.93 1.21
DANMF 73.75 7437 5271 88.69  51.71 7.34
GEMSEC 73.08 73.53  49.85 8490 4269 647
NM-SBM 64.38 51.02  48.15 88.47  41.63 537
CLMC  79.66 82.61 5254 88.06 17.98 3.29
MNDP 7137 70.13  45.05 8573  45.14 653
MNDP,s 72.08 77.34  48.30 86.20 4726 579
SGCD 82.72 83.70  53.63 8890 52.07 749
MNDPg,; 100 88.88  53.98 9254 5473 10.30
SGCDgui 100 88.88  56.43 92.63  55.30 10.70

NMI

Table 2: Comparison of different methods in terms of NMI. Each
result is averaged on 50 randomly generate edges-missing network
instances for each network by removing 20% edges. Differently,
MNDPg,1 and SGCDgyi show results on the complete network with-
out removing edges.

Metrics Methods  Les Word  Jazz C,Elegans E-mail
BigClam  0.4217 0.0509 0.2649 0.0456 0.0400

DANMF 03464 0.0370 0.2888 0.2435 0.4954

GEMSEC 0.5093 0.2563 0.4124 0.3607 0.4756

NM-SBM 04760 0.2507 0.4034 0.3523 0.4931

Modularity Q CLMC 0.1988 0.0973 0.4885 0.3788 0.0216
MNDP 0.5207 0.2658 0.3915  0.3685 0.4758

MNDP,s  0.5314 0.2824 04215 0.3674 0.5001

SGCD 0.5355 0.2832 0.3962 0.3648 0.5011

MNDPg;;  0.5426  0.3343  0.4405  0.4029 0.5517

SGCDgy;  0.5680 0.3354  0.4473  0.4082 0.5584

Table 4: Comparison of different methods on networks without
ground-truth in terms of modularity Q.

3.3 Why SGCD Works

We give an illustrative experiment to show why our method
SGCD works on networks with missing edges. Here we select
two representative algorithms MNDP and CLMC to be com-
pared, and use the dolphin social network with 20% missing
edges as a sample dataset. The results of MNDP, CLMC and
SGCD are shown in Figure 3 (a), (b) and (c) respectively.
Compared to MNDP, our SGCD divides nodes 28 and 39 into
correct communities by producing important edges, such as
edges (28, 36) and (28, 39). Compared to CLMC, our SGCD
divides node 39 into the correct community. In this case,
while CLMC predicts many edges correctly, as most of these
edges do not play an important role in community detection,
the result is still compromised. Conversely, thanks to the ef-
fective self-guided mechanism, our SGCD produces edges
like (28, 39) that significantly improve community structures.
This could be the reason why our new framework is effective
for networks with missing edges, and better than other types
of methods (e,g., CLMC) which allow missing edges.

3.4 Varying the Ratio of Missing Edges

The goal here is to show the robustness of SGCD on net-
works with varying the ratios of missing edges. Here we
only show the results on two sample networks due to space
limitation as other networks are similar. For each network,
we chose eight different edges-missing ratios, i.e., from 0%
to 35% with step size of 5%. (We did not consider the ra-
tio higher than 40% because it will make the network too
sparse to be detected, according to the theoretical limits of
detectability [Decelle et al., 2011]) The results are shown in
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Figure 2: Comparison of (a) MNDP, (b) CLMC and (c¢) SGCD on
the dolphin social network with 20% edges removed as an exam-
ple. Different colors of nodes denote different communities inferred
by the algorithm, and real communities are splatted by Bold grey
dashed lines. Grey edges represent the existing edges, black dashed
edges represent the removed edges, and red (and blue) edges the
incorrectly (and correctly) predicted edges.

Figure 3, where our model achieves the best performance in
most cases. Even when the ratio is 0%, which means MNDP
reduces to MNDPpgy;;, our SGCD still performs better. This
further demonstrates the advantages of our new model due to
this community self-guided mechanism.

3.5 Parameter Analysis

Our model has only one hyperparameter o which is to control
the threshold of the probability of filling out edges. We select
the same networks as those in the above section as examples
to test the sensibility our SGCD on «. As shown in Figure
4, when « approaches 0.0, the result of SGCD was inaccu-
rate compared to MNDP. This is because the lower the «, the
more noise edges are added. As a result, these noise edges
may produce negative effects on inferring community struc-
tures based on the observed edges. When « approaches 0.9,
which leads to very few edges added to observed data, the
NMI accuracy of SGCD and MNDP are similar. However,
when « is in the range of 0.4 to 0.5, SGCD is often stable and
gives better results and this trend is similar on other networks.
Therefore, we set « = 0.5 without loss of generality.

4 Conclusion and Discussion

In this paper, we studied the problem of community detection
on edges-missing networks, and proposed a community self-
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Figure 3: Performance of different methods on networks with dif-
ferent ratio of missing edges.

0.8

06 06
§ Eus
0.4 4
0.4
027 -~ SGCD 03 -~ SGCD
—& MNDP —<¢ MNDP

00 01 02 03 04 05 06 07 08 09 0:0 0_’1 0:2 0.‘3 0:4 0.‘5 0:6 0.‘7 0:8 0.‘9

Different parameter values Different parameter values

(a) Zachary’s karate club (b) Dolphin social network

Figure 4: The performace of SGCD with varying the values of hy-
perparameters on networks. We take the results of MNDP as the
baseline because it is the base of SGCD.

guided generative model SGCD. The model jointly formu-
lates missing edges and community memberships in a unified
likelihood function, which can realize predicting important
edges for community detection by choosing edges that in-
crease likelihood mostly. We developed an efficient inference
method by using a nested EM algorithm with Metropolis-
Hastings Sampling to train the model. We finally tested our
SGCD on eleven real-world edges-missing networks with or
without ground-truth, and compared with several state-of-the-
art approaches. The results showed that this new approach
outperformed all the methods compared.

The new model is still not perfect. That is, when the ratio
of missing edges reaches a certain level, it will hard to find
edges so effective to help community detection. While there
are several works working on it, it is still a bank for edges-
missing networks which we will take as the future work.
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