
A Rule Mining-Based Advanced Persistent Threats Detection System
Sidahmed Benabderrahmane1,2∗ , Ghita Berrada3,4 , James Cheney1,5 and Petko Valtchev6

1The University of Edinburgh, School of Informatics, Edinburgh, UK
2New York University, Computer Science Department

3King’s College London, School of Population Health and Environmental Sciences, UK
4University of Manchester, School of Health Sciences, UK

5The Alan Turing Institute, UK
6Université du Québec à Montréal, CRIA, Montréal (QC), Canada

sidahmed.benabderrahmane@gmail.com, ghita.berrada@kcl.ac.uk, jcheney@inf.ed.ac.uk,
valtchev.petko@uqam.ca

Abstract

Advanced persistent threats (APT) are stealthy
cyber-attacks that are aimed at stealing valuable
information from target organizations and tend to
extend in time. Blocking all APTs is impossi-
ble, security experts caution, hence the importance
of research on early detection and damage lim-
itation. Whole-system provenance-tracking and
provenance trace mining are considered promising
as they can help find causal relationships between
activities and flag suspicious event sequences as
they occur. We introduce an unsupervised method
that exploits OS-independent features reflecting
process activity to detect realistic APT-like attacks
from provenance traces. Anomalous processes are
ranked using both frequent and rare event associ-
ations learned from traces. Results are then pre-
sented as implications which, since interpretable,
help leverage causality in explaining the detected
anomalies. When evaluated on Transparent Com-
puting program datasets (DARPA), our method out-
performed competing approaches.

1 Introduction
“[I]n this world nothing can be said to be certain, except
death and taxes.”, wrote Benjamin Franklin in 1789. To this
list, one could add the increasingly common and headline-
grabbing cyberattacks/security breaches [Sebenius, 2021;
Ping and Johnson, 2018; Huang and Majidi, 2018], most of
which are so-called advanced persistent threats (APT).

APTs are long-running and stealthy cyberattacks where ad-
versaries gain access to specific targets’ systems, staying un-
detected in the system for as long as necessary to reach their
goal (mostly stealing or corrupting sensitive data or damaging
the target’s critical systems). Such attacks are now ”part and
parcel of doing business“ [Auty, 2015], say experts and when
not stopped early enough, inflict significant damage, partic-
ularly financial or reputational, to the victim. Preventing all

∗Contact Author

such attacks is impossible [Auty, 2015], experts warn, so sys-
tems should be monitored continuously so as to detect APTs
early and keep their damage to a minimum.

With APTs mimicking normal user activity, such attacks
cannot be detected with traditional means (e.g antivirus soft-
ware, signature or system-policy-based techniques). Meth-
ods relying on system/event logs or audit trails typically
fail as they generally only analyze short event/system call
sequences, which not only makes them unable to properly
model and capture long-term behavior patterns but also sus-
ceptible to evasion techniques. Recent work [Manzoor et al.,
2016; Han et al., 2018; Berrada et al., 2020; Han et al., 2020]
has suggested whole-system provenance-tracking and prove-
nance trace mining as solutions better suited for APT detec-
tion: the richer contextual information of provenance would
help identify causal relationships between system activities,
allowing the detection of attack patterns (e.g data exfiltration)
that usually go unnoticed with the usual perimeter defence-
based or policy-driven tools [Brian and Beaver, 2011; Zhang
et al., 2012; Abir et al., 2016; Jenkinson et al., 2017].

There are, however, challenges to be overcome before
mining provenance data that can fulfill its system security
strengthening promises. There are also issues directly linked
to the recording of provenance itself (e.g. level of provenance
granularity, fault tolerance, trustworthiness and consistency
of the recorded trace [Jenkinson et al., 2017]). The more wor-
risome issue though is the ”needle in a haystack“ problem:
the volume of recorded provenance traces is massive (each
day of system activity results in one or more gigabytes of
provenance traces, containing hundreds or thousands of pro-
cesses) and anomalous system activity (if at all present) only
constitutes a tiny fraction of the recorded traces. Added to
this, the diversity of possible APT patterns and the unavail-
ability of fully annotated data make it even more complex to
uncover anomalous activity indicative of an ongoing APT.

In such a context, typical supervised learning techniques
would be of limited use to detect APT patterns and only un-
supervised learning techniques would pass muster (see sec-
tion 5.1 on data imbalance). In operational security settings,
the ready availability of actionable information is critical. Se-
curity analysts can easily recognize and forensically investi-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3589

gate suspicious system behavior (e.g. processes created or
subverted by an attacker) when brought to their attention.
However, having the analysts sift through the traces in their
entirety, when as little as 0.004% of the activity, if any at
all, is suspicious, is hardly an efficient use of their time.
In this paper, we investigate the key subproblem of quickly
flagging unusual process activity that calls for further man-
ual inspection. To tackle this problem, we summarize pro-
cess activity through binary or categorical features (e.g kinds
of events performed by a process, process executable name,
IP addresses and ports accessed) and propose an anomaly
detection method that scores individual processes based on
whether they satisfy or violate association rules (both fre-
quent and rare) extracted from process activity summaries.

Central to our method and a key advantage of it is the use of
association rules. Not only do the rules let us score processes
and flag anomalies in a principled manner, but they also al-
low us to present results in a way that could be more easily
understood and interpreted by experts/security analysts seek-
ing to thoroughly investigate and gain a deeper understanding
of attack patterns. We evaluated our approach using prove-
nance traces produced by the DARPA Transparent Comput-
ing (TC) program1. We set our association-based anomaly
detector against an array of existing batch anomaly detectors
and show it outperformed all of them.

The remainder of the paper is as follows: Section 2 sum-
marizes related work, while section 3 provides background
on association rule mining. Next, section 4 introduces our
approach and section 5 discusses the experimental study and
its outcome. We conclude with section 6.

2 Related Work
Intrusion and malware detection methods follow two main
approaches: misuse detection (e.g. [Kumar and Spafford,
1994]) and anomaly detection (e.g. [Ji et al., 2016]). Mis-
use detection searches for events matching predefined signa-
tures and patterns. Related methods can only detect attacks
with known signature/patterns, hence are unsuitable for APT
detection. By contrast, anomaly detection makes no assump-
tion about the attack nature and just looks for activity that
deviates from normal behavior i.e. usually recorded on a spe-
cific host or network. Ahmed et al. [Mohiuddin et al., 2016]
is a survey of the main network anomaly detection tech-
niques, which it divides into four categories: classification-
based, clustering-based, information theory-based and sta-
tistical. Anomaly detection surveys [Chandola et al., 2009;
Akoglu et al., 2015] typically distinguish approaches w.r.t.
the type of data (categorical, continuous, semi-structured,
etc.) they admit. Among those, graph methods are the most
relevant for our study, yet they typically work on graph for-
mats of reduced expressiveness (e.g. undirected or unla-
beled), whereas provenance graphs have rich structure (labels
and properties on both nodes and edges). Existing anomaly
detection approaches for provenance graphs rely on train-
ing with benign traces [Manzoor et al., 2016], require user-
provided annotations [Hossain et al., 2017], or assume highly
regular background activity [Hassan et al., 2018].

1https://www.darpa.mil/program/transparent-computing

In parallel, a number of anomaly detection approaches
have been designed for categorical data [He et al., 2005;
Narita and Kitagawa, 2008; Koufakou et al., 2007; Koen
and Vreeken, 2011; Akoglu et al., 2013; Bertens et al.,
2017]. Some of them, e.g. OC3 [Koen and Vreeken, 2011;
Vreeken et al., 2011] and CompreX [Akoglu et al., 2013],
are based on the Minimum Description Length (MDL) prin-
ciple [Grünwald, 2007]: the idea here is to preprocess the
dataset by compressing it and then take the compressed
record size as its anomaly score, the underlying assumption
being that infrequent/anomalous patterns are less efficiently
compressed and result in higher sizes. UPC [Bertens et al.,
2017] also relies on MDL (in combination with pattern min-
ing) and is a two-pass approach that looks for a different kind
of anomalies (class-2) than CompreX. FPOF (Frequent Pat-
tern Outlier Factor) [He et al., 2005] is an itemset-mining
method exploiting transaction outlierness: outliers (lower
FPOF values) are transactions with fewer frequent patterns.
Outlier-degree (OD) [Narita and Kitagawa, 2008], uses both
categorical and continuous variables whereby infrequent val-
ues would indicate outlier status. AVF (Attribute Value Fre-
quency) [Koufakou et al., 2007] computes anomaly scores by
summing attribute frequencies. Data points having features
with low occurrence probability (estimated from frequencies)
are likely to be outliers. Other existing methods mixing cat-
egorical and numerical, e.g. SmartSifter [Yamanishi et al.,
2004] and ODMAD [Koufakou and Georgiopoulos, 2010],
could be applied to pure categorical data. ODMAD performs
an initial off-line pattern mining stage, while SmartSifter is,
to the best of our knowledge, the only previous unsupervised
online algorithm for categorical data. However, it is unclear
whether it can scale to a large number of attributes.

3 Itemset and Association Rule Mining
In association rule mining (ARM) [Agrawal et al., 1993], data
comes as a transaction database D (as in Table 1) involving
a universe of items, or attributes, A = {a1, a2, . . . , an} (here
named a to e). A set of items X ⊆ A is called an item-
set. Below, for compactness reasons, itemsets are given in
separator-less form. Then, a transaction, aka object, is a pair
(tid, itemset) where tid is a transaction identifier taken from
the set O = {o1, o2, ..., om} (aka set of objects). Next, a set
of tids is called a tidset. For historical reasons, we call D a
context and introduce it as ×-table (see Table 1).

The image of a tidset Y from O, ι(Y) =
⋂
{Z|(j, Z) ∈

D, j ∈ Y } is made of the items shared by all the correspond-
ing objects. Conversely, the image of an itemset X , aka its
support set, comprises the tids of all objects for which X is a
subset of the respective itemset, τ(X) = {j|(j, Z) ∈ D, X ⊆
Z}. For instance, in Table 1, τ(e) = {o1}. An itemset qual-
ity reflects its support: (absolute) support is its supporting set
size, suppa(X) = |τ(X)| while relative support is the frac-
tion supp(X) = |τ(X)|/|D|. A support threshold, min supp,
splits itemsets into frequent and infrequent itemsets, whereas
with a max supp, infrequent ones, a.k.a. rare [Szathmary et
al., 2007], are the target. For instance, with min supp=3,
ac is frequent while abcd is rare. Here, we exploit border-
line cases, i.e. maximal frequent itemsets (MFI, no frequent
superset) and minimal rare itemsets (MRI, no rare subsets),

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3590

a b c d e
o1 x x x
o2 x x x
o3 x x x x
o4 x x
o5 x x x x
o6 x x x

Table 1: A sample transaction database (context).

which are closed itemsets and generators, respectively. In
fact, τ induces an equivalence relations on ℘(A): X ≡ Z
iff τ(X) = τ(Z) whereby each class has a unique maximum,
called the closed itemset, and one or more minima, its gen-
erators. Both categories admit straightforward support-wise
definitions: an itemset X is closed (generator) if it admits
no superset (subset) with identical support. For instance, in
Table 1, bc is closed while b is a (non closed) generator.

An association rule has the form X→Y , where X,Y ⊆
A and X ∩ Y = ∅. Among the most popular rule qual-
ity measures are the support, supp(X→Y)=supp(X∪Y),
the confidence, conf (X→Y)=supp(X→Y)/supp(X), and the
lift, lift(X→Y)= supp(X∪Y)/supp(X)×supp(Y). Again,
support-wise, a rule qualifies as frequent or rare [Szathmary
et al., 2007] whereas it is said to be confident if it reaches a
confidence threshold min conf . Frequent (rare) and confi-
dent rules are valid. For example, with min conf = 3/5, and
min supp=max supp=3, a→c is valid frequent (supp= 4 and
conf =4/5) while ab→d is valid rare (supp=2 and conf =1).

4 Rule Mining-Based Anomaly Detection
Below, we first provide some arguments in favor of our rule-
based approach and then present it together with some tech-
nical details.

4.1 Rationale
Frequent and rare patterns [Szathmary et al., 2007] clearly
convey different types of regularities in the data. The former
tend to capture generally valid rules, e.g. the typical behavior
of customers on an online retail portal. The latter, in con-
trast, focus on local regularities that, without being totally
exceptional, i.e. unique, have a very limited extent. In fact,
such regularities will likely be missed by an exhaustive search
with a low min supp threshold since they will be missed in
the immensely voluminous result. Rare patterns have the ca-
pacity to capture the features of a highly under-represented —
and unknown — class in an imbalanced sample, which makes
them valuable for our study.

Following the above guidelines, we hypothesize that APT-
related processes constitute a separate class following a event
chaining schema that distinguishes them from normal ones.
The schema should manifest as atypical associations of events
which, taken separately, might be totally legitimate. Conse-
quently, such atypical behavior may be captured either as a
mismatch to common behavioral patterns or as a consistent,
yet rare, pattern of itself. Thus, a forensic APT detection ap-
proach should focus on candidate processes satisfying these
conditions. Technically speaking, an anomaly score needs to
quantify the above (mis)matches of key patterns while also

reflecting those patterns’ quality (see section 3).
As a first approach, we propose to organize system traces

as a transaction database and to mine itemset associations
from them (rather than, say, sequential patterns). Such an
approach has the added benefit of being explainable as the
event implication format is easy to interpret. This, in turn, fa-
vors better understanding of mechanisms behind an APT and
therefore should facilitate threat prevention.

4.2 Anomaly Detection Method
We designed two separate anomaly detection methods: VR-
ARM for Valid Rare ARM and VF-ARM for Valid Frequent
ARM. The underlying association rules have been derived
from MRIs and MFIs, respectively. The advantage behind
using both here is to speed up the ARM task w.r.t. other di-
rect approaches [Szathmary et al., 2012] due to a substantial
reduction in the underlying search space.

Algorithm 1 presents the pseudo-code of VR-ARM. It
takes as input a context C (i.e. a m × n ×-table) plus the
support and confidence thresholds. Its outputs are (i) Rules:
the association rules extracted from C; (ii) Attacks: the list
of anomalous objects; and (iii) Scores: the list of scores asso-
ciated to objects in Attacks. The algorithm starts by calling
GetRareRules to generate the rare rules through the MRIs.
It implements the BtB (Break the Barrier) method [Szath-
mary et al., 2012]. Next, objects from C are matched against
rare associations: an object satisfies a rare rule if its item-
set comprises all the items of the rule. An anomalousness
score is assigned to each object based on the set of match-
ing outcomes (the higher the score, the more anomalous the
object). VF-ARM follows the same principles as VR-ARM
so will be skipped here: main differences include the pa-
rameter min supp and a call to the MFI-based rule miner
GetFreqRules. Moreover, an object violates a frequent rule
if its itemsets are included in the left-hand side of the rule
and not in its right-hand side. Objects matching rare rules
or violating frequent ones are deemed potentially anoma-
lous, hence put in Attacks. Their anomalousness scores
are computed as the average of a function combining the in-
terestingness (e.g. lift) and length of the respective rules,
log2(1−Interest(R[j]))∗Length(R[j]). High quality rules,
with many items on both sides, would have large scores.

At a final stage, the list of the potential attack objects are
ranked w.r.t. their anomaly scores so that the top-ranked el-
ements could be subsequently checked by a security expert.

5 Evaluation
Below, we first describe the data used in our experiments to-
gether with the selected performance metrics and then present
the evaluation study outcome and discuss the observed trends.

5.1 Datasets
In our evaluation study, we have used two data collections
described in [Berrada et al., 2020], which are publicly avail-
able2. These collections (or scenarios) consist of sets of fea-
ture views or contexts from raw whole-system provenance

2https://gitlab.com/adaptdata

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3591

https://gitlab.com/adaptdata

Algorithm 1: VR-ARM: Association Rule Mining
Anomaly Detion

inputs : A context C[m,n], max supp, min conf
outputs: Rules[0 : r]; // A list of association rules

Attacks[0 : a]a≤m; //A list of anomalous objects
Scores[0 : a]a≤m; // A list of attack scores

1 begin
2 Rules = GetRareRules(C,max supp, min conf);
3 foreach Object O[i]1≤i≤m in C do
4 Score[i] = 0.0;
5 IsAttack = False;
6 foreach Rule R[j] in Rules do
7 if O[i] satisfies R[j] then
8 IsAttack = True;
9 Score[i] = Score[i] + |log2(1−

Interest(R[j])) ∗ Length(R[j])|
10 end
11 end
12 if IsAttack==True then
13 Append(Attacks,O[i]);
14 Append(Scores, Score[i]);
15 end
16 end
17 Rank(Attacks using Scores);
18 return (Rules,Attacks, Scores);
19 end

graphs produced during two DARPA Transparent Comput-
ing (TC) program “engagements” (exercises aimed at evaluat-
ing provenance recorders and techniques to detect APT activ-
ity from provenance data). During the engagements, several
days (5 for scenario 1 and 8 for scenario 2) of system activity
(process, netflow, etc.) were recorded on various platforms
(Windows, BSD, Linux and Android) subjected to APT-like
attacks. [Han et al., 2020] explains engagements in more de-
tail and provides more information on provenance data for
Scenario 2. All contexts in the data collections relate unique
process identifiers (rows) to varying features/attributes of pro-
cess activity. They include the following contexts:

• ProcessEvent (PE): Integrated traces use event types
such as open, close, exit, etc. to describe process ac-
tivity in a OS-independent way. Thus, process uuids
are rows and event types are columns: A process p has
attribute ty if p ever performs an event of type ty.

• ProcessExec (PX): Attributes are executable names
nm, for example ls or sudo. A process p has attribute
nm if p is an instance of executable nm.

• ProcessParent (PP): Attributes are executable names
nm. A process p has attribute nm if p is a child process
of an executable named nm.

• ProcessNetflow (PN): Attributes are IP addresses ip
and port numbers pn. A process p has attributes ip and
pn if it ever communicates with IP address ip at port pn.

• ProcessAll (PA): Combination of all of the above con-
texts, with attributes renamed to avoid ambiguity.

Table 2 summarizes the properties of contexts per collec-
tion/scenario. It is noteworthy that the number of processes
observed in each system varies significantly: In particular,

the Linux dataset comprises 3 to 10 times as many differ-
ent processes compared to the Windows or BSD datasets and
up to 2400 times as many compared to Android. In gen-
eral, among the base contexts, ProcessEvent usually has
the largest number of processes, while ProcessNetflow or
ProcessExec have the largest number of attributes, followed
by ProcessParent. The last column represents the percent-
age of attacks observed in each OS/context. For example,
there are 8 attack processes in the Windows data (0.04%) in
the first scenario, and 8 (0.07%) in the second one. Note that
the size of the original datasets do not directly correlate with
the number of processes or attributes. For example, the An-
droid dataset is the largest but has the fewest processes and at-
tributes, because the provenance recorder would log low-level
app activity and perform dynamic information flow tracking
which are pieces of information we do not analyze. For a
more detailed description, of the data collections/contexts, the
reader is referred to [Berrada et al., 2020].

5.2 Evaluation Metrics
Rather than classifying processes as anomalous or not, our
method ranks them w.r.t. their degree of suspiciousness. Due
to the high data imbalance (attacks amount to 0.004% to 8.8%
of data), using classification with accuracy would lead to the
accuracy paradox [Thomas and Balakrishnan, 2008].

Instead, a better suited metric would be normalized dis-
counted gain (nDCG), first introduced in [Kalervo and
Kekäläinen, 2002] as a means to assess ranking quality in
information retrieval. It is intended to reflect the value the
end user assigns to a ranked document, i.e. relevant docu-
ments are more valuable than marginally relevant ones and
even more so than irrelevant ones. Also, intuitively, since
a user will only scan a small portion of a ranking, relevant
documents close to its top have more value than comparably
relevant ones further down the list (those too far down would
be skipped). Consequently, nDCG favors rankings with all
relevant documents near the top. The same principle applies
to anomalous process: low ranked attack processes are all but
useless to analysts whose monitoring burden increases with
the amount of events to inspect (up to a point where suspi-
cious processes escape their attention). Also, a large number
of top-ranked normal processes (false alarms) may degrade
analyst confidence in the automated monitoring system. The
discounted cumulative gain (DCG) of a ranking sums element
relevance scores penalized by the logarithm of their rank:
DCGN =

∑N
i=1

reli
log2(i+1) , where N is the ranking size,

reli the i-th element relevance score. As DCG scores are
not comparable for lists of varying size, a normalization
is performed with the ideal score iDCG, i.e. one corre-
sponding to the best case (all relevant entities at the top).
Thus, for a ranking with p relevant entities iDCGN =∑p

i=1
reli

log2(i+1) . nDCG is the normalized version of DCG:

nDCGN = DCGN

iDCGN
. We use a binary scale for the relevance

reli where 1 stands for attack processes, 0 for normal ones.
Another possible choice would have been the recall@k

measure. It has not been used in this study because we see it
as likely less informative and of lower discriminative power
than nDCG. As an illustration, assume two anomaly detec-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3592

Scenario Size PE PX PP PN PA nb attacks % nb attacks
nb processes

BSD 1 288 MB 76903 / 29 76698 / 107 76455 / 24 31 / 136 76903 / 296 13 0.02
2 1.27 GB 224624 / 31 224246 / 135 223780 / 37 42888 / 62 224624 / 265 11 0.004

Windows 1 743 MB 17569 / 22 17552 / 215 14007 / 77 92 / 13963 17569 / 14431 8 0.04
2 9.53 GB 11151 / 30 11077 / 388 10922 / 84 329 / 125 11151 / 606 8 0.07

Linux 1 2858 MB 247160 / 24 186726 / 154 173211 / 40 3125 / 81 247160 / 299 25 0.01
2 25.9 GB 282087 / 25 271088 / 140 263730 / 45 6589 / 6225 282104 / 6435 46 0.01

Android 1 2688 MB 102 / 21 102 / 42 0 / 0 8 / 17 102 / 80 9 8.8
2 10.9 GB 12106 / 27 12106 / 44 24 / 11 4550 / 213 12106 / 295 13 0.10

Table 2: Experimental dataset metrics. A context entry (columns 4 to 8) is number of rows (processes) / number of columns (attributes).

tion methods, A and B, that detect 4 anomalous entities by
rank 10: A at ranks 1, 4, 6 and 7 and B at ranks 3, 4, 9 and
10. Recall@10 for both methods would be 0.4, thus, based on
recall@10, the methods would be seen as performing equally
well. Yet, with anomalous entities closer to the top with A,
an analyst would consider the results of A better than those of
B. The nDCG captures this difference in performance: The
nDCG value is 0.83 for A and only 0.59 for B. We are not
only concerned with finding relevant entities in the top k but
also with the quality of that top k ranking, therefore choosing
nDCG over recall@k.

5.3 Evaluation Results
APT Ranking Visualisation with Band Diagrams
To ease the inspection of generated rankings, we designed a
visualization technique, called band diagram charts (see Fig-
ure 1). In a diagram, each ranked list is drawn as a horizontal
band where the position of a true positive, i.e. an APT, is
marked by a red vertical line. The left-to-right order follows
rank decrease: Top ranked entities will be put on the left,
hence multiple red lines in that area indicate a highly efficient
anomaly detection. Such an overall presentation enables easy
visual result interpretation and helps filter out algorithmic pa-
rameters.

Ranking Evaluation With nDCG
We compared VF-ARM and VR-ARM to existing tools
such as FPOutlier (FPOF) [He et al., 2005], Outlier-degree
(OD) [Narita and Kitagawa, 2008], CompreX [Akoglu et al.,
2013], AVF (Attribute Value Frequency) [Koufakou et al.,
2007] and OC3 (Krimp) [Vreeken et al., 2011]: We ran them
on the contexts from Table 2 and assessed the resulting rank-
ings by means of nDCG. To that end, we first reimplemented
FPOF, AVF, OC3 and OD in Python following their original
descriptions3. We reused publicly-available implementations
of OC3 [Koen and Vreeken, 2011] and CompreX [Akoglu et
al., 2013], in C++ and Matlab respectively. Finally, experi-
ments were run on an Intel Core i7-6700 CPU (3.4 GHz), 32
GB RAM PC with Ubuntu OS.

The global set of nDCG scores is split context-wise into ta-
bles 3, 4, 5, 6, and 7. An entry here corresponds to a combina-
tion (method, scenario, OS). Noteworthily, some algorithms
did not finish within a reasonable time (4 to 48 hours). Such
cases are indicated by DNF . For each OS (row) vs scenario
combination, the maximum nDCG score is marked in bold.

3Code available at https://gitlab.com/anomalyDetection/baseline

Figure 1: Band diagrams representing the positions of the attacks
(true positives) in some contexts of the BSD dataset (scenario 1).
The x-axis represents the attack positions in ranked lists.

For visibility, high scores of our approach, VR-ARM or VF-
ARM, are colored: green for values in]0.25,50], orange for
]0.50, 0.75] and red for top scores in]0.75, 1].

VR-ARM and OC3 were competitive on the
ProcessEvent context with considerably better scores
obtained with VR-ARM between 0.50 (Android, scenario 2)
and up to 0.87 (Android, scenario 1). FPOF and OD yielded
similar scores to each other. AVF and VF-ARM produced
good scores with scenario 1. Concerning ProcessExec
and ProcessParent, AVF and OC3 generated moderately
acceptable scores with all four OS. The highest scores in
these contexts were obtained by OC3 (0.51 and 0.42) in
BSD w.r.t. scenario 2. VF-ARM got good ranking scores
for BSD (scenario 1) for both contexts, yet due to the low
confidence values, they were deemed irrelevant and non
competitive with the other methods on this task. Concerning
attacks in ProcessNetflow, VR-ARM reached good
results on both attack scenarios, with nDCG scores varying
between 0.30 (Windows, scenario 2) and 0.71 (Android,
scenario 2). Like-wise, top-ranked anomalous entities in
the super-context ProcessAll have been detected with
VR-ARM on both attack scenarios. AVF and OC3 have
also generated good scores with attack scenario 1. Note that
CompreX produced good results whenever it was able to

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3593

https://gitlab.com/anomalyDetection/baseline

Detection method FPOF OD Comprex OC3 AVF VR-ARM (sup x conf) VF-ARM (sup x conf)
Attack scenario 1 2 1 2 1 2 1 2 1 2 1 2 1 2

So
ur

ce

Windows 0.20 DNF 0.20 DNF 0.60 DNF 0.30 0.23 0.60 0.21 0.82 (5x100) 0.19 (5x100) 0.33 (60x70) 0.13 (30x30)
BSD 0.20 0.13 0.19 0.17 0.54 DNF 0.43 0.24 0.51 0.19 0.64 (0.05x100) 0.12 (5x100) 0.33 (40x97) 0.12 (40x40)
Linux 0.18 0.22 0.18 0.21 0.30 DNF 0.38 0.38 0.27 0.29 0.13 (0.05x100) 0.14 (5x100) 0.22 (20x97) 0.10 (40x40)
Android 0.29 0.36 0.33 0.22 0.82 DNF 0.74 0.32 0.84 0.30 0.87 (30x100) 0.50 (5x100) 0.77 (5x70) 0.12 (5x70)

Table 3: Evaluation of anomaly scoring: ProcessEvent (PE)

Detection method FPOF OD Comprex OC3 AVF VR-ARM (sup x conf) VF-ARM (sup x conf)
Attack scenario 1 2 1 2 1 2 1 2 1 2 1 2 1 2

So
ur

ce

Windows 0.15 DNF 0.15 DNF DNF DNF 0.28 0.24 0.28 0.22 0 0 0 0
BSD 0.15 0.18 0.15 0.17 DNF DNF 0.49 0.51 0.34 0.17 0.08 (0.05x100) 0.05 (0.05x100) 0.53 (0.001x10) 0.06 (1x40)
Linux 0.18 0.20 0.18 0.20 DNF DNF 0.30 0.42 0.43 0.42 0.12 (0.05x100) 0 0.10 (0.001x0.1) 0.004 (0.001x0.1)
Android 0.22 0.29 0.22 0.29 0.22 DNF 0.39 0.39 0.39 0.38 0 0 0 0

Table 4: Evaluation of anomaly scoring: ProcessExec (PX)

Detection method FPOF OD Comprex OC3 AVF VR-ARM (sup x conf) VF-ARM (sup x conf)
Attack scenario 1 2 1 2 1 2 1 2 1 2 1 2 1 2

So
ur

ce Windows 0.10 DNF 0.10 DNF DNF DNF 0.21 0.22 0.21 0.22 0 0 0 0
BSD 0.13 0.10 0.13 0.09 DNF DNF 0.43 0.29 0.30 0.17 0.29 (0.05x100) 0.24 (0.05x100) 0.67 (0.001x10) 0.06 (0.001x10)
Linux 0.17 0.20 0.17 0.20 DNF DNF 0.24 0.42 0.20 0.25 0 0 0.12 (0.001x1) 0.03 (10x40)

Table 5: Evaluation of anomaly scoring: ProcessParent (PP)

Detection method FPOF OD Comprex OC3 AVF VR-ARM (sup x conf) VF-ARM (sup x conf)
Attack scenario 1 2 1 2 1 2 1 2 1 2 1 2 1 2

So
ur

ce

Windows 0.36 DNF 0.36 DNF DNF DNF 0.65 0.24 0.58 0.18 0.62 (10x100) 0.30 (5x100) 0 0
BSD 0.13 0.20 0.14 0.20 DNF DNF 0.11 0.50 0.58 0.18 0.34 (10x100) 0.60 (5x100) 0.11 (5x60) 0.18 (5x60)
Linux 0.23 0.31 0.23 0.23 DNF DNF 0.38 0.35 0.31 0.42 0.58 (20x100) 0.39 (5x100) 0.42 (5x50) 0.11 (10x40)
Android 0.42 0.36 0.36 0.34 DNF DNF 0.64 0.30 0.47 0.32 0.46 (50x100) 0.71 (30x100) 0 0.10 (20x50)

Table 6: Evaluation of anomaly scoring: ProcessNetflow (PN)

Detection method FPOF OD Comprex OC3 AVF VR-ARM (sup x conf) VF-ARM (sup x conf)
Attack scenario 1 2 1 2 1 2 1 2 1 2 1 2 1 2

So
ur

ce

Windows DNF DNF DNF DNF DNF DNF 0.49 DNF 0.52 DNF 0.61 (5x100) 0.35 (5x100) 0.50 (80x70) 0.07 (40x40)
BSD 0.21 0.15 0.19 0.15 DNF DNF 0.38 DNF 0.52 DNF 0.36 (0.05x100) 0.52 (5x100) 0.18 (97x97) 0.14 (40x40)
Linux 0.18 DNF 0.18 DNF DNF DNF 0.41 DNF 0.29 DNF 0.54 (0.05x100) 0.45 (5x100) 0.13 (40x70) 0.09 (40x40)
Android 0.31 0.37 0.34 0.20 DNF DNF 0.82 0.40 0.83 0.35 0 0.51 (0.05x100) 0 0.43 (40x40)

Table 7: Evaluation of anomaly scoring: ProcessAll (PA)

finish within a reasonable time (ProcessEvent, scenario 1);
for wider contexts such as ProcessExec or ProcessParent
or ProcessAll, it usually did not terminate within a few
minutes (while [Akoglu et al., 2013] claims CompreX can be
run in anytime-mode, the available Matlab implementation
does not support it). Runtime-wise, FPOF, CompreX and OD
were significantly more expensive than VR-ARM and AVF.

Table 8 summarizes attack detection and ranking for each
combination (OS, scenario): The winner method for each
OS is given with the best input context. Results comprise
the top nDCG scores, the running time and the Area Under
Curve (AUC). As per the figures, VR-ARM is likely to be the
method that has led to the best nDCG scores with interesting
AUC values on the four OS w.r.t. both scenarios (see also
Figure 2). Its time efficiency is arguably due to MRI-based
associations being only a tiny fraction of all the rules.

Intuitively, the results seem to confirm that most of the at-
tacks can be detected by tracking their uncommon (rare) be-
havior in the provenance data. Indeed, in our experiments,

we ran VR-ARM with max supp values ranging between 0.05
and 30 %. More interestingly, the rare rules found have con-
fidence of 100%. Note that we kept the best configuration for
every method that needs parameter tuning. Here again, VR-
ARM stood out as very competitive even when compared to
the best configurations of its competitors.

As an additional benefit, our tool output is highly
explainable. As an illustration, consider the rare
association rule made of the following itemsets:
(OPEN, READ, CHANGEPRINCIPAL, SENDMSG)
of Events, (216.66.26.25:1025’, ’216.66.26.25:0’,
’128.55.12.10:53’) of Network activities, and
(’/etc/host.conf’,’/lib/x86 64 linux gnu/libnss dns.so’)
of File activities. The rule was detected when tracing back
one of our top anomalous processes whose score was among
the highest overall (79.0). A plausible interpretation of
these itemsets could be as follows: Processes matching
the rule alter some sensitive library files. They also try to
establish communication with the devices on the listed IP

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3594

Winner AD method Winner context Running time (sec.) nDCG AUC
Attack scenario 1 2 1 2 1 2 1 2 1 2

Source

Windows VR-ARM VR-ARM ProcessEvent ProcessAll 4.60 23.86 0.82 0.35 0.75 0.50
BSD VR-ARM VR-ARM ProcessEvent ProcessNetflow 12.18 12.30 0.64 0.60 0.75 0.50
Linux VR-ARM VR-ARM ProcessNetflow ProcessAll 3.53 2.74 0.58 0.45 0.83 0.50
Android VR-ARM VR-ARM ProcessEvent ProcessNetflow 0.78 3.35 0.87 0.71 0.92 0.50

Table 8: Highest AUC and nDCG scores of the rule-mining anomaly detection (AD) methods for each database.

Figure 2: ROC curves of the best anomaly scores obtained with the winner contexts (cf Table 8). Top: scenario 1, bottom: scenario 2. Left to
right: Windows, BSD, Linux, Android (different scales in both axes are used due to space limits).

addresses and subsequently send and/or receive data. We
believe that presenting the security analyst not only with a
list of anomalous processes but also with a list of such rules
describing various aspects of the attack should easy her grasp
of the attacking techniques.

6 Conclusion
In this paper. we proposed a novel OS-agnostic APT detec-
tion method in which anomalous entities are detected by an
association rule-based scoring algorithm. Two versions of the
algorithm was designed exploiting frequent and rare rules, re-
spectively. A new visualization technique was also proposed
to evaluate the position of potential anomalies within ranked
lists. Our tool was evaluated on several large datasets con-
taining realistic APT on a variety of OS (produced as part of
the DARPA Transparent Computing program). The rare rule
version VR-ARM was shown to consistently rank attack pro-
cesses as highly anomalous entities. A major advantage of
our approach over its competitors is the easy interpretation of
both methods’ output.

As a first step towards online detection, we are studying a

stream version of our rule-based method which is to main-
tain MFIs/MRIs over a stream window (e.g. as in [Martin et
al., 2020] for closures). Alternatively, we shall also exam-
ine the integration of analysts’ feedback in the scoring loop,
e.g. as an active learning task. Indeed, similarly to game
theory problems, the security expert would imitate the adver-
sary by giving answers on whether the top ranked elements
are anomalous or not. The algorithm would receive these an-
swers and adapt the scoring weights correspondingly.

Acknowledgements
Reported work was partially supported by Defense Advanced
Research Projects Agency (DARPA) under contract number:
FA8650-15-C-7557, by ERC grant Skye (grant 682315), and
by an ISCF Metrology Fellowship grant provided by the UK
Department for Business, Energy and Industrial Strategy. The
assistance provided by Himan Mokherjee in re-implementing
FPOF and OD in Python was greatly appreciated.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3595

References
[Abir et al., 2016] A. Abir, S. Kadry, et al. Data leakage de-

tection using system call provenance. In INCoS, 2016.
[Agrawal et al., 1993] R. Agrawal, T. Imieliński, and

A. Swami. Mining association rules between sets of items
in large databases. SIGMOD Rec., 22(2):207–216, 1993.

[Akoglu et al., 2013] L. Akoglu, H. Tong, et al. CompreX:
Fast and reliable anomaly detection in categorical data. In
CIKM, pages 415–424, 2013.

[Akoglu et al., 2015] L. Akoglu, H. Tong, et al. Graph based
anomaly detection and description: a survey. DMKD,
29(3):626–688, 2015.

[Auty, 2015] M. Auty. Anatomy of an advanced persistent
threat. Network Security, 15(4):13–16, 2015.

[Berrada et al., 2020] G. Berrada, J. Cheney, et al. A base-
line for unsupervised advanced persistent threat detection
in system-level provenance. FGCS, 108:401–413, 2020.

[Bertens et al., 2017] R. Bertens, J. Vreeken, et al. Effi-
ciently discovering unexpected pattern-co-occurrences. In
SDM, pages 126–134, 2017.

[Brian and Beaver, 2011] J. Brian and M. Beaver. Host-
based data exfiltration detection via system call sequences.
In ICIW, pages 134–142, 2011.

[Chandola et al., 2009] V. Chandola, A. Banerjee, et al.
Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3):15:1–15:58, July 2009.

[Grünwald, 2007] P. Grünwald. The Minimum description
length principle. MIT Press, 2007.

[Han et al., 2018] X. Han, T. Pasquier, et al. Provenance-
based intrusion detection: Opportunities and challenges.
In TaPP, 2018.

[Han et al., 2020] X. Han, T. Pasquier, et al. Unicorn: Run-
time provenance-based detector for advanced persistent
threats. In NDSS, 2020.

[Hassan et al., 2018] W. Hassan, M. Lemay, et al. Towards
scalable cluster auditing through grammatical inference
over provenance graphs. In NDSS, 2018.

[He et al., 2005] Z. He, X. Xu, et al. FP-outlier: Frequent
pattern based outlier detection. CSIS, 2(1):103–118, 2005.

[Hossain et al., 2017] N. Hossain, S. Milajerdi, et al.
SLEUTH: real-time attack scenario reconstruction from
COTS audit data. In USENIX, pages 487–504, 2017.

[Huang and Majidi, 2018] B. Huang and M. Majidi. Case
study of power system cyber attack using cascading outage
analysis model. In 2018 IEEE PESGM, pages 1–5, 2018.

[Jenkinson et al., 2017] G. Jenkinson, L. Carata, et al. Ap-
plying provenance in APT monitoring and analysis: Prac-
tical challenges for scalable, efficient and trustworthy dis-
tributed provenance. In TaPP, pages 16–21, 2017.

[Ji et al., 2016] S.Y. Ji, B.K. Jeong, et al. A multi-level in-
trusion detection method for abnormal network behaviors.
NCA, 62:9–17, 2016.

[Kalervo and Kekäläinen, 2002] J. Kalervo and
J. Kekäläinen. Cumulated gain-based evaluation of
IR techniques. TOIS, 20(4), 2002.

[Koen and Vreeken, 2011] S. Koen and J. Vreeken. The odd
one out: Identifying and characterising anomalies. In
SDM, 2011.

[Koufakou and Georgiopoulos, 2010] A. Koufakou and
M. Georgiopoulos. A fast outlier detection strategy
for distributed high-dimensional data sets with mixed
attributes. DMKD, 20(2):259–289, 2010.

[Koufakou et al., 2007] A. Koufakou, E. Ortiz, et al. A scal-
able and efficient outlier detection strategy for categorical
data. In 19th IEEE ICTAI, pages 210–217, 2007.

[Kumar and Spafford, 1994] S. Kumar and E. Spafford. A
pattern matching model for misuse intrusion detection. In
NCSC, page 11, 1994.

[Manzoor et al., 2016] E. Manzoor, S. Milajerdi, et al. Fast
memory-efficient anomaly detection in streaming hetero-
geneous graphs. In SIGKDD, pages 1035–1044, 2016.

[Martin et al., 2020] T. Martin, G. Francoeur, et al. CI-
CLAD: A fast and memory-efficient closed itemset miner
for streams. In ACM SIGKDD, pages 1810–1818, 2020.

[Mohiuddin et al., 2016] A. Mohiuddin, A. Mahmood, et al.
A survey of network anomaly detection techniques. JNCA,
60:19–31, 2016.

[Narita and Kitagawa, 2008] K. Narita and H. Kitagawa.
Outlier detection for transaction databases using associa-
tion rules. In WAIM, pages 373–380, 2008.

[Ping and Johnson, 2018] W. Ping and W. Johnson. Cyberse-
curity incident handling: A case study of the equifax data
breach. Issues in Information Systems, 19(3), 2018.

[Sebenius, 2021] A. Sebenius. SolarWinds hack followed
years of warnings of weak c-security. Bloomberg, 2021.

[Szathmary et al., 2007] L. Szathmary, P. Valtchev, et al. To-
ward rare itemset mining. In ICTAI, pages 305–312, 2007.

[Szathmary et al., 2012] L. Szathmary, P. Valtchev, et al. Ef-
ficient vertical mining of minimal rare itemsets. In CLA,
pages 269–280, 2012.

[Thomas and Balakrishnan, 2008] C. Thomas and N. Bal-
akrishnan. Improvement in minority attack detection with
skewness in network traffic. In Data Mining, Intrusion De-
tection, Inform. Assurance, and Data Networks Security,
page 69730N, 2008.

[Vreeken et al., 2011] J. Vreeken, M. van Leeuwen, et al.
KRIMP: Mining itemsets that compress. DMKD,
23(1):169–214, 2011.

[Yamanishi et al., 2004] K. Yamanishi, J.I. Takeuchi, et al.
On-line unsupervised outlier detection using finite mix-
tures with discounting learning algorithms. DMKD,
8(3):275–300, 2004.

[Zhang et al., 2012] O. Zhang, R. Ko, et al. How to track
your data: Rule-based data provenance tracing algorithms.
In TrustCom, pages 1429–1437. IEEE, 2012.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3596

	Introduction
	Related Work
	Itemset and Association Rule Mining
	Rule Mining-Based Anomaly Detection
	Rationale
	Anomaly Detection Method

	Evaluation
	Datasets
	Evaluation Metrics
	Evaluation Results
	APT Ranking Visualisation with Band Diagrams
	Ranking Evaluation With nDCG

	Conclusion

