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Abstract

Multi-lead electrocardiogram (ECG) provides clin-
ical information of heartbeats from several fixed
viewpoints determined by the lead positioning.
However, it is often not satisfactory to visualize
ECG signals in these fixed and limited views, as
some clinically useful information is represented
only from a few specific ECG viewpoints. For the
first time, we propose a new concept, Electrocardio
Panorama, which allows visualizing ECG signals
from any queried viewpoints. To build Electrocar-
dio Panorama, we assume that an underlying elec-
trocardio field exists, representing locations, mag-
nitudes, and directions of ECG signals. We present
a Neural electrocardio field Network (Nef-Net),
which first predicts the electrocardio field repre-
sentation by using a sparse set of one or few in-
put ECG views and then synthesizes Electrocar-
dio Panorama based on the predicted representa-
tions. Specially, to better disentangle electrocardio
field information from viewpoint biases, a new An-
gular Encoding is proposed to process viewpoint
angles. Also, we propose a self-supervised learn-
ing approach called Standin Learning, which helps
model the electrocardio field without direct super-
vision. Further, with very few modifications, Nef-
Net can also synthesize ECG signals from scratch.
Experiments verify that our Nef-Net performs well
on Electrocardio Panorama synthesis, and outper-
forms the previous work on the auxiliary tasks
(ECG view transformation and ECG synthesis from
scratch). The codes and the division labels of car-
diac cycles and ECG deflections on Tianchi ECG
and PTB datasets are available at https://github.
com/WhatAShot/Electrocardio-Panorama.

1 Introduction

Electrocardiogram (ECG) has been instrumental in saving
millions of lives since it emerged. Multi-lead ECG visual-
izes heartbeat signals in several views (see Fig. 1(a)), and
the corresponding viewpoints are physically determined by

*The corresponding author.
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Figure 1: (a) A conventional multi-lead (e.g., 8-lead) ECG repre-
sents multi-view ECG signals from viewpoints determined by the
lead positioning. (b) Illustrating the conventional lead positioning.
(c) A continuous ECG signal can be divided into several cardiac
cycles, and each cardiac cycle has 6 types of non-overlapping de-
flections, which are colored for better viewing. (d) Electrocardio
Panorama can provide ECG signals from any queried viewpoints.

the lead positioning (Fig. 1(b)!). In the past years, ECG
visualization approaches have continued to evolve quickly.
On one hand, more clinical information was recorded as the
number of views increased from 3 to 8, 12, and even 18,
with each view recording the signals (see Fig. 1(c)) from one
specific viewpoint. For example, the increase of viewpoints
helps determine the exact origin of the arrhythmia locating

"From https:/litfl.com/right- ventricular-infarction-ecg-library/ .
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accuracy for the radiofrequency catheter ablation (RFCA)
surgery. On the other hand, the visualization form has be-
come increasingly more read-friendly [Graybiel et al., 1946;
Case et al, 1979]. Still, current ECG visualization ap-
proaches do not meet all the needs, as some clinical informa-
tion is only intuitively represented in certain specific views
(possibly outside of the conventional views).

In this paper, we propose a novel concept, Electrocar-
dio Panorama, which allows real-time querying of any ECG
views, as illustrated in Fig. 1(d). Conventional ECG view-
points are physically determined by the leads, while Electro-
cardio Panorama seeks to decouple the ECG views from the
leads. Such panoramic representation increases the value of
ECG monitoring, and thus is potentially life-saving.

Some literature assumed an ECG view as the recording
of an underlying electrocardio field from the corresponding
viewpoint [Grant, 1950], as illustrated in Fig. 1(a). Follow-
ing this assumption, it is possible to synthesize Electrocardio
Panorama based on the underlying electrocardio field. Moti-
vated by NeRF [Mildenhall et al., 2020], we present a new
neural network, called Neural electrocardio field Network
(Nef-Net), which encodes a sparse set of one or few input
ECG views to predict the electrocardio field representation,
and a reverse model (decoder) utilizes this representation to
synthesize new ECG views. Specifically, we model the elec-
trocardio field by using a basic representation and a set of de-
flection representations for separately modeling 6 ECG sig-
nal deflections (such 6 deflections are shown in Fig. 1(c)),
as ECG deflections contain comprehensive personalized or
morbid information. Since there is no direct supervision for
electrocardio field modeling, we propose a novel Angular
Encoding approach to process viewpoint information (repre-
sented by angles), and a novel self-supervised learning ap-
proach called Standin Learning to help disentangle electro-
cardio field information from viewpoint biases.

Motivated by representation interpolations [Karras et al.,
2019], our Nef-Net can also be used to synthesize ECG sig-
nals from scratch by mixing the extracted electrocardio field
representations without explicitly modeling the latent distri-
butions. This work has five major contributions:

(A) To our best knowledge, we are the first to propose the
concept of Electrocardio Panorama, which decouples ECG
signal recordings (views) from physical lead positioning and
can provide ECG signals from any desired viewpoints.

(B) We present a new Angular Encoding to construct a
high-dimensional angle space, which is helpful to disentan-
gling electrocardio field information from viewpoint biases.

(C) We propose a novel self-supervised learning approach,
Standin Learning, for electrocardio field information purifi-
cation, which we verify to be effective.

(D) Our proposed Nef-Net can synthesize the Electrocar-
dio Panorama using sparse input ECG views, and can from
scratch synthesize multi-lead ECG signals.

(E) We publish cardiac cycle division and deflection di-
vision labels (e.g., see Fig. 1(c)) for two large open ECG
datasets, contributing to the ECG research and community.
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2 Background and Related Work

2.1 Electrocardiogram (ECG)

ECG signals record the heartbeats in multiple views, which
are determined by the physical lead positioning [Anderson et
al., 1994] (see Fig. 1(a)-(b)). Currently, the most widely used
ECG recording method is the standard 12-lead system, utiliz-
ing 12 ECG views (see Fig. 1(a)). A signal in a ECG view
can be divided into several cardiac cycles (each represents a
heartbeat), and each cardiac cycle signal can be divided into
6 non-overlapping deflections (containing rich personalized
and morbid information): P wave, PR-segment, QRS com-
plex, ST-segment, T wave, and TP-segment (see Fig. 1(c)).
Besides, there is a U wave in the TP-segment, but it is often
ignored in practice due to its minimal deflection.

2.2 ECG Visualization

Grant [1950] indicated that the P wave and QRS complex
were clinically useful and suggested to interpret ECG signals
based on them. Interestingly, doctors summarized the corre-
lations of various ECG views and proposed many visualiza-
tion methods for multi-lead ECG in [Graybiel et al., 1946;
Case et al., 1979; Anderson et al., 1994] based on their
ECG reading preferences. These studies [Case et al., 1979;
Anderson et al., 1994] suggested that the limited and fixed
ECG views were far from satisfactory, as each doctor has
personal habit in ECG reading. Also, Anderson et al. [1994]
pointed out that some clinical information was more evident
in some of the views. Hence, we propose a new concept,
Electrocardio Panorama, which allows to provide ECG sig-
nals in any views.

2.3 ECG Synthesis and View Transformation

Some prior work [Golany et al., 2020a; Golany et al., 2020b]
employed conditional generative adversarial networks (con-
ditional GANs) [Mirza and Osindero, 2014] to synthesize
personalized or morbid ECG signals. But, these meth-
ods could only synthesize signals of one view and did not
consider the correlations among various views, thus giving
only limited assistance in clinical practice. In [Lee et al.,
2019], V-lead ECG signals (“V” is a kind of ECG lead)
were synthesized using ECG signals recorded by other leads.
Earlier work [Edenbrandt and Pahlm, 1988a; Kors et al.,
1990] explored ECG view transformation between the Frank
lead [Frank, 1956] and standard lead system?, and was metic-
ulously compared in [dos Santos Silva et al., 2020]. Recently,
some neural network based regression models [Sohn et al.,
2020; Matyschik et al., 2020] were proposed for ECG view
transformation. However, these methods were confined to the
known ECG view transformation and could not synthesize
new ECG views.

3 Neural Electrocardio Field Network
3.1 Architecture

Here we introduce the proposed Neural electrocardio field
Network (Nef-Net). Nef-Net is based on an encoder-decoder

*The Frank is another ECG systems.
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Figure 2: Our proposed Nef-Net architecture for Electrocardio Panorama synthesis (illustrated using one input ECG view). Nef-Net
extracts the electrocardio field representation Zg from the input ECG views, and synthesizes ECG signals of a new view based on the learned
representation Z g and the queried viewpoint (64, ¢4 ). In the legend, “rep.” means “representation”.

architecture, as shown in Fig. 2. In encoding, Nef-Net uses
ECG signals in one or few views with the corresponding
viewpoints to predict the electrocardio field representation; in
synthesizing, a reverse model (decoder) uses this representa-
tion to predict new ECG views conditioned on the queried
viewpoints. To explore viewpoint information, a new Angu-
lar Encoding is used in both the encoding and synthesizing
processes.

Input Structure

In our paper, a tuple containing one cardiac cycle view and
its viewpoint is treated as one sample. We build a spherical
coordinate system, with its origin point at the central elec-
tric terminal, the anatomical sagittal axis as the x-axis, the
inverse frontal axis as the y-axis, and the vertical axis as the
z-axis (see Fig. 2). Note that the radius is viewed as indepen-
dent of ECG signals. Thus, we define a viewpoint by a polar
angle # and an azimuthal angle . In the following, we first
depict the processing of a single input ECG view and then
multiple input views. A single-view signal is denoted by z
of length ¢ (in time dimension) and the viewpoint is denoted
by (0, ). A cardiac cycle signal with L views is denoted
by {W} (I € {1,2,...,L}). In the decoder, a new view is
synthesized conditioned on a queried viewpoint (09, p?).

Encoding

Given a cardiac cycle signal x and the corresponding view-
point (6, ¢), we first extract a time-aligned feature volume
W = f(z) by a 1D convolution module f, and extract a high
dimensional angle feature © = g(A(f, ¢)) by a multi-layer
perceptron (MLP) ¢ and a new Angular Encoding process
A, where W € RCth,Q € R¢, ¢ is the channel size, and
t’ is the time dimension size. Then, we remove the view-
point information from the feature volume W by W(’C>< oy =
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Wiextry © @’(Cxt,), where @’(Cxt/) is the stacking of © by ¢’
times and © is the dot product.

Since the deflections contain rich diagnostic features, we
learn the electrocardio field representation, Zg, using a basic
representation Z; and a set of deflection representations Zg,
(i € {1,2,3,4,5,6} indexing the deflection types). The basic
representation Z;, learns the global information of the under-
lying electrocardio field, and each deflection representation
Z, separately models each type of deflection. 1D convolu-
tion modules are then used to project W’ to predict W} and
W}, for Z, and Z,, respectively. We project features of the
i-th deflection d; on W into the representation space Zg, us-
ing ROIAlign pooling [He et al., 20171, as the lengths of the
same type of deflections vary among cardiac cycle signals but
the size of Z, is fixed. The range (in ¢’-dimension) of the de-
flection d;’s features on Wu’l is denoted by 7; — 7;_1, where
T = % x Dy, and D; is the demarcation point of the (i — 1)-
th and i-th deflections in the original signal 2 (D; is given).
T,, T, are the lengths in time-dimension of x and Wé, re-
spectively. Specifically, Dy = 0, Dg = T, and 7; is a value
as in [Girshick, 2015] that varies among cardiac cycles.

Synthesizing

New view synthesizing can be regarded as a reverse process
of encoding, using Zg to predict ECG views. Each deflec-
tion representation Zg, is first processed by a 1D convolution
module (not shared among deflection representations) to ob-
tain features M .» and then is projected into features Mg, to
restore the length proportions of the deflections using a re-
verse ROIAlign pooling (reROI):

Myl mim1 : 1) = My, = reROI(MF’li) (D

where 7; is computed as in encoding, and the exact grid value
in My is computed by linear interpolation like ROIAlign. We
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set My and M, (from Z;) to have an identical size. Then
My, and M, are stacked along the channel dimension to form
M. A queried viewpoint is processed by Augular Encoding
and an MLP, and is then multiplied by M to add the queried
viewpoint information. In this way, the features are processed
to predict new views (as shown in Fig. 2).

Angular Encoding
As mentioned above, Angular Encoding is used to handle the
viewpoint angles in both encoding and decoding. Nef-Net
learns to remove from or add viewpoint information to the
electrocardio field (see Fig. 2), but there is no direct super-
vision for the electrocardio field representation Zg. Hence,
ultimately, extracting viewpoint information is vital. It is
intuitive to treat the viewpoint (angles) as a condition, and
an ECG signal from a viewpoint (0, ) is defined as * =
h(Zg | (6,¢)), where h is a function (e.g., a decoder). Pre-
vious conditional GANs fed such conditions to a model di-
rectly. But, directly feeding raw angles may ignore the spatial
relationships and thus result in poor performance.

We propose a new Angular Encoding to process viewpoint
angles. We define a triplet as 7w(p) = [p, sin(p), cos(p)] for
an angle p. We define the Angular Encoding A by:

A(0.9) = A(0,2) = [70). (7). 70 + &) (0~ §)
where p = p + € and € is a random variable sampled from
a Gaussian distribution NV(0, £5). Angular Encoding trans-
forms two angles into a 12-element tensor, which is then pro-
cessed by an MLP. Since we treat the recorded ECG views as
projections of the electrocardio field, some spatial projection
related expressions (e.g., sin(#)cos(y)) should be considered.
However, it is hard to fit such expressions (especially multi-
plication) by using a finite MLP with raw angles, as an MLP
can be regarded as an affine transformation if we ignore the
activations. With sin( £ ¢) and cos(6 £ ), it is possible to
represent the spatial projection related expressions via sum-
to-product formulas. Thus, various relationships of angles
(e.g., addition, cosine, multiplication) can be expressed with
the Angular Encoding and a finite MLP. We also add a pertur-
bation € to help avoid over-fitting the given angles, as Nef-Net
is used to synthesize new views (of unknown patterns).

3.2 Multi-View ECG Signal Processing

Given a cardiac cycle signal {z(V} (¢ ¢ {1,2,...,L})
with L views, we separately deal with these ECG views
in parallel by group convolutions, instead of fusing them
together as in the previous work [Kachuee et al, 2018;
Chen et al., 2020b]. Formally, we predict L basic represen-
tations and L groups of deflection representations, and then
compute the averaged basic representations Z; and averaged
deflection representations Z; over the L views as the input of
the decoder.

3.3 Learning

To synthesize Electrocardio Panorama, we train Nef-Net un-
der ECG view transformation supervision and use it for new
view synthesis. A set of ECG data is partitioned for train-
ing and testing, and all kinds of views are divided into three
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groups, called the input group (IG), reconstruction group
(RG), and synthesis group (SG). In training, Nef-Net takes
the views in /G of an ECG in the training set to reconstruct
its views in RG, under the guidance of the Mean Absolute Er-
ror (MAE). In testing, Nef-Net synthesizes views in SG of an
ECG in the testing set by using its views in /G.

Standin Learning

As mentioned above, Nef-Net is trained to synthesize new
ECG views based on the electrocardio field. However, there
is no direct supervision for the electrocardio field represen-
tation learning, and the input and output are related to the
viewpoints. To deal with this, we perform self-supervision
tricks [Wei et al., 2019; Feng et al., 2020; He et al., 2020]
to eliminate the biases. To capture information from multiple
views, a previous self-supervision work [Tian et al., 2019]
gathered view representations and implicitly built a scene em-
bedding, by iteratively anchoring a view as the temporary tar-
get. But, this is ineffective as each view is somewhat biased
and the intrinsic information is not directly extracted and fully
used.

We propose a new self-supervised learning approach called
Standin Learning for electrocardio field prediction, anchoring
at the averaged representations as temporary targets to neu-
tralize viewpoint biases. Given a cardiac cycle signal with
L views, {z(®} (I € {1,2,...,L}), the corresponding ba-
sic representations and deflection representations are {Zlgl)}
and {Z{"},and Zy = S0, 2V /Land Zy, = S, 2 /L
are the averaged basic representation and averaged deflection
representations, respectively. We define the contrastive loss
for Standin Loss L7 = (L7, + Lz,), where L, and L,
are defined as:

{cz,, =0 Lvae(hse(Zo, Zal(0g,00)) h( 23", Zal (84, 04)))/ L

L2, = Yitr Lwns(hg(Zy: Zal(6o, 00)). (20, 2, |6, 00))) /L
3)
where h denotes the decoder and “sg” means “stop gradi-
ent”. “Lyag(target, prediction)” denotes the Mean Absolute
Error. Lz pushes the reconstruction based on the basic and
deflection representations of one view close to that based on
the averaged representations (fusing information of multiple
views). We optimize the output rather than the representa-
tions to avoid changing the representation distribution and
causing information loss. Hence, the electrocardio field rep-
resentations are optimized iteratively: better single view rep-
resentations improve the averaged representations, which fur-
ther guide the single view representations to learn better.

Losses
We supervise the Nef-Net training using the reconstruction
loss MAE (Lmag) and contrastive loss £ as:

L = Lyvap(zq,Tq) + Lz 4)
where z, and &, = h(Zy, Z4|(04, ¢q)) indicate the ground
truth and predicted ECG signals of the queried view.

4 Multi-Lead ECG Synthesis from Scratch

Our Nef-Net can also be utilized in ECG synthesis from
scratch, without directly modeling the distributions as Gen-
erative Adversarial Nets (GAN) [Goodfellow et al., 2014]
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and Variational Auto-Encoder (VAE) [Kingma and Welling,
2013; Rezende ef al., 2014]. Since ECG signal features are
subtle, a simple representation distribution assumption (e.g.,
Gaussian distribution as in VAE) or a discriminator-guided
distribution may not be suitable.

Motivated by representation interpolations [Karras et al.,
2019] and Mixup [Zhang et al., 2018; Chen er al., 2020b;
Chen et al., 2020al, we synthesize electrocardio field rep-
resentations of a new ECG by mixing the extracted electro-
cardio field representations of the same categories (e.g., dis-
eases). As the range of each deflection type varies and the
features of different types of deflections should not be mixed
for new data synthesis, for this task we train a Nef-Net such
that the electrocardio field representation is only predicted
by the deflection representation learning branch (i.e., remov-
ing the branch for the basic representation). After training
on a dataset, we introduce a memory bank B to store all the
averaged deflection representations Z; for inference. Given

the electrocardio field representations Z C(lp v/ c(zq) € B of ran-
domly selected cardiac cycles p and g, the representation of a

new cardiac cycle n is:
72\ =az¥P + (1 -a)z? )

where a ~ Beta(1.0,1.0) as default. The new electrocar-
dio field representation is then fed to the trained decoder
hsg to synthesize new ECG data. As the deflection lengths
Ty, of p and ¢ may be different (used to compute 7; for re-
verse ROIAlign pooling (Eq. 1)), we use the weighted aver-

age length for n, with Té?) =ax Téf) +(1—a)x Téf).

5 Experiments

5.1 Questions

We conduct evaluations for five major questions in experi-
ments. (A) Can Nef-Net synthesize Electrocardio Panorama,
especially the ECG views that Nef-Net has not seen before?
(B) As Nef-Net is trained with the view transformation su-
pervision, can it outperform previous work in view transfor-
mation? (C) Are our proposed approaches (e.g., Angular En-
coding) helpful? (D) Is Nef-Net good at synthesizing ECG
signals from scratch? (E) The model complexity of Nef-Net
and its potential value in ECG monitoring?

5.2 Datasets

We conduct experiments using the MIT-BIH dataset [Moody
et al., 2001], PTB dataset [Bousseljot et al., 1995], and
Tianchi ECG dataset’>. The MIT-BIH dataset contains 48
half-hour ECG signals recorded at a frequency of 360 Hertz,
and each ECG signal is divided into several cardiac cycles
(heartbeats). Each signal has 2 views, and the disease ground
truth for each cardiac cycle is provided. The PTB dataset
contains 549 12-lead ECG signals recorded at a frequency
of 1,000 Hertz. The Tianchi dataset contains 31,779 12-lead
ECG signals recorded at a frequency of 500 Hertz. Differ-
ent from the MIT-BIH dataset, the PTB and Tianchi ECG

3https://tianchi.aliyun.com/competition/entrance/231754/
information?lang=en-us
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datasets provide signals in 12 views. However, both these
datasets do not provide the cardiac cycle division and the
disease ground truth for cardiac cycles, and we annotate
and publish the cardiac cycle division and deflection division
ground truth for the PTB and Tianchi ECG datasets. For MIT-
BIH, we divide the deflections using the package [Makowski
et al., 2021]. The PTB and Tianchi datasets are randomly
partitioned into a training set and a test set with probabili-
ties 0.8 and 0.2, respectively. The training-test partition for
the MIT-BIH dataset follows [Golany et al., 2020a], with
51,020 training samples and 49,711 test samples. We per-
form pre-processing, including de-noising (using the pack-
age [Makowski er al., 2021]), interpolation to 500 Hertz, and
linear scaling normalization to 0-1. To our best knowledge,
no prior work is known on angle quantification for conven-
tional ECG leads. Thus, we measure angles on 30 body
CTs and compute the average angles for 12 leads (in lead-
angle pair form), as: I-(3, 3), II-(3F, 3), I-(3F, — %), aVR-
§7 _g)’ aVL_(%7 %)» aVF_(ﬂ-a g)’ Vl_(ga _%)’ V2_(%7 %)9

T 11t = 8t w 8t w
V3'(§7 TS)’ V4'( 20 ° 6)’ VS'(E) 5)7 V6'(T53 5)

5.3 Experimental Setups

We use PyTorch 1.7.1 to implement Nef-Net. In training, the
batch size is 32. Nef-Net is run 150 epochs in training. The
learning rate is initialized to 0.1, and is reduced by 10X at the
50-th and 100-th epoch. We use SGD as the optimizer with
momentum 0.9. We compute the structural similarity index
measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) for
evaluating the performances of new view synthesis and view
transformation. Though SSIM is originally for 2D images,
we regard ECG signal as a special case of images. We re-
port the means and standard deviations over 3 runs with an
RTX2080Ti GPU for all the experiments.

5.4 Performances

View Transformation Performances

To examine the view transformation performances, we com-
pare our Nef-Net with the known state-of-the-art mod-
els: conventional ECG lead transformation methods, includ-
ing the Kors inverse matrix method (KIM) [Kors er al.,
1990], Kors quasi-orthogonal method (KQO) [Kors er al.,
1990], and Dower inverse matrix method [Edenbrandt and
Pahlm, 1988bl; neural network based methods, including
ensemble LSTM (E-LSTM) [Sohn et al., 2020] and VAE-
CNN [Matyschik et al., 2020]. The Dower, KQO, and KIM
methods were originally for Frank vectorcardiogram recon-
struction. We use them for view transformation with the pro-
cedure that we first transform the standard ECG signals to
Frank vectorcardiogram, and then transform the vectorcardio-
gram back to the standard ECG signals. For fair comparison,
the types of views used for input and the transformation (re-
construction) follow the previous work, and the numbers of
views are orderly listed in the parentheses. As shown in Ta-
ble 1, it is clear that our Nef-Net significantly outperforms the
previous work on view transformation tasks, by about 6-10
in PSNR and about 0.05-0.2 in SSIM.
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Tianchi PTB

Methods PSNR  SSIM | PSNR  SSIM
Dower (12,12) | 2188 0.837 19.99 0.844
Nef-Net (ours) (12, 12) | 33.8440.30 0.973 | 30.74+0.18 0.983
KQO 3.12) 2155 0.776 1986 0810
Nef-Net (ours)  (3,12) | 34254031 0.972 | 31534033 0.975
KIM 3. 12) 2230 0.3 2101 0.862
Nef-Net (ours) (8, 12) | 33.2440.29 0.973 | 30.46-0.32 0.982
VAE-CNN (1,11) | 26402021 0.918 | 23.99£0.09 0012
Nef-Net (ours) (1, 11) | 32.944037 0.968 | 30.82--0.07 0.972
E-LSTM (3.9) | 22.885033 0.830 | 20.20+0.14 0.821
Nef-Net (ours)  (3,9) | 32954022 0.971 | 30.48+022 0.971

Table 1: The performances (mean =+ std) for view transformation tasks on the Tianchi and PTB datasets. The conventional methods (Dower,
KQO, and KIM) did not show std. We report std only for PSNR, since the std of SSIM is too small. The numbers of views for input and
transformation (reconstruction) are orderly listed in the parentheses, and the better performances are marked in bold.

Group Tianchi PTB
PSNR SSIM PSNR SSIM
(1) Nef-Net (1,9,2) 29.60+£0.35 0.949 | 28.954+0.65 0.951
(1,9+42,0) | 31.744£0.21 0.953 | 29.77+£0.06 0.952
(2) Nef-Net 3,7,2) 29.1940.19 0.943 | 29.274+0.26  0.955
(3,7+42,0) | 31.9940.37 0.953 | 30.54+0.24 0.954
(3) Nef-Net (5,5,2) 30.77+£0.25 0.950 | 29.78+£0.40 0.958
(5,5+42,0) | 32.57+0.27 0.964 | 30.62+0.37 0.960
(4) Nef-Net (1,10, 1) 29.97+0.36  0.938 | 29.31£0.05 0.954
(1, 10+1, 0) | 32.144+0.03 0.956 | 30.68+0.07 0.954
(5) Nef-Net (3,8, 1) 30.51£0.45 0.946 | 29.43+0.25 0.951
(3,8+1,0) | 32.244+0.23 0.968 | 30.89+£0.22 0.961
(6) Nef-Net (5,6,1) 30.58+0.35 0.949 | 29.53+£0.44 0.959
(5,6+1,0) | 32.354+0.12 0974 | 31.28+£0.34 0.962

Table 2: The performances for view synthesis on the Tianchi and PTB datasets. The numbers of views for input, transformation (reconstruc-
tion), and synthesis are orderly listed in parentheses. The part of views used to compute SSIM and PSNR is underlined.

New View Synthesis Performances

Since we are the first to propose the Electrocardio Panorama,
we compare the synthesized results with the transformed re-
sults of Nef-Net on the same types of views. As there are a
large amount of combinations, we can only report some cases
for references in Table 2. In Group (1) of Table 2, we train
two Nef-Nets: one is trained with the 1 view input and with
the 9 views as supervision, and synthesizes 2 views in testing;
the other one is trained with the 1 input view, but with all the
rest (11 views) as supervision, and predicts the corresponding
2 views (in test sets) in inference. The other groups are run
following similar ways. We compare SSIM and PSNR on the
2 synthesized views of the test samples, and the key differ-
ence of these two models is whether the 2 types of views for
comparison are used in training. We use only 1 or 2 views for
synthesis, making the supervision similar. As shown in Ta-
ble 2, the qualities of the synthesized views are comparable
to the transformed views (in PSNR and SSIM). These results
suggest that our synthesized views have high authenticity.
Besides, comparing among the group of (1), (2), and (3),
and among the group of (4), (5), and (6), one can see that with
more input views, the synthesis performances often get better.
Also, one may note that with one input view (groups (1) and

3602

(4)), the synthesis performances of Nef-Net are comparable
to its transformation performances, and largely outperform
the transformations of previous work (see Table 1). Thus, our
Nef-Net is potentially useful in dynamic ECG applications
(possibly with only one lead).

To further verify the authenticity of the synthesized views,
we also present one case of panoramic representations where
the viewpoint angles 6 and ¢ are evenly distributed in the
angle ranges with an interval %, as shown in Fig. 3. The syn-
thesized ECG views are though to be highly trusty.

Ablation Study

Based on the benchmark Nef-Net (4, 4, 4) (denoted by (a) in
Table 3), we evaluate the effects of our proposed approaches,
including (b) Angular Encoding (AE) and the perturbation e
used in AE, (c) deflection modeling by independent represen-
tations Zg4, and (d) contrastive losses L, and Lz,. Besides,
to verify (e) the effectiveness of using averaged representa-
tions as the temporary targets for the contrastive loss, we use
L', and L7, toreplace Lz, and Lz, in Eq. (3), respectively.
For ﬁ’Zb, we replace the averaged basic representation Z; in
Lz, with the basic representation of a random view (sam-
pled once per iteration). For £/, , we replace the averaged
deflection representations Z in Lz, with the deflection rep-
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, , synthesis transformation

¢ AE Zy Lz Lz, Ly L7, psNR - SSIMPSNR SSIM
@|v v Vv v v 29.34  0.957 | 3232 0.964
(b) v v v v 29.18 0.945 | 31.90 0.955
v v v v 2844 0.941 | 3235 0.964
©|v Vv v 28.64 0.946 | 31.77 0.959
v v v v 29.16  0.946 | 3231 0.956
@|v v Vv v 28.65 0.943 | 31.13 0.961
v v v 28.50 0.945 | 30.00 0.959

v v v v v 27.02 0.936 | 27.20 0.936

@ |v v Vv v v 2891 0.934 | 32.07 0.948
v v v v v 2597 0922 | 2644 0.929

Table 3: Ablation study using the Tianchi ECG dataset.

Diseases VGAN DCGAN SimVGAN SimDCGAN Nef-Net (ours)
SVEB 0.768+0.06  0.685+0.04 0.765+0.07  0.72440.05 0.782+0.05
VEB 0.982+0.01 0.981+£0.00 0.979+0.01 0.980£0.01 0.983+0.00

FUSION 0.811£0.08 0.8234+0.09 0.778+0.05 0.827+0.09 0.855+0.07

Table 4: Classification performances (ROC-AUC) on the MIT-BIH dataset augmented by synthesized data. The best results are in bold.

resentations of a random view.

As shown in Table 3, all our proposed approaches are help-
ful in synthesis. One may notice that the models without An-
gular Encoding or deflection representations can attain com-
parable performances for the view transformation tasks, but
are not effective for new view synthesis. The results suggest
that our Angular Encoding and deflection modeling can help
enhance generalization of models. As shown in (d) and (e) of
Table 3, Lz (especially Lz,) and Standin Learning help Nef-
Net considerably on both the view transformation and view
synthesis tasks.

ECG Synthesis from Scratch

To evaluate Nef-Net’s capability to synthesize ECG sig-
nals from scratch, we compare its classification perfor-
mances (with ROC-AUC) on morbid ECG signal synthe-
sis with the state-of-the-art methods, simDCGAN and sim V-
GAN [Golany et al., 2020b], DCGAN [Radford et al., 20151,
and vanilla GAN [Goodfellow et al., 2014], on the MIT-BIH
dataset. The performances of these known methods are ob-
tained by running the open source [Golany et al., 2020b],
and the classifier for evaluating the synthesized samples is
implemented as in [Kachuee et al., 2018]. All the other set-
tings follow [Golany et al., 2020b] for comparison. As shown
in Table 4, our Nef-Net outperforms the previous work, our
method outperforms the previous work by clear margins on
those performance-unsaturated diseases: SVEB (1.4%) and
FUSION (2.8%). For VEB, since the performances were
close to 100% in the previous work, there is not much room
for improvement. Such performances reveal that our Nef-Net
captures the key information of ECG.

A visualization of multi-lead ECG data synthesis from
scratch by Nef-Net is given in Fig. 4, which is considered
as having a high degree of authenticity. As shown in Fig. 4,
Nef-Net can synthesize multi-lead ECG signals from scratch,
presenting very detailed waves and segments (e.g., the key
waves are marked in the top-left sub-figure of Fig. 4(a)),
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while SimGAN can synthesize only single-lead ECG whose
key waves are lost (e.g., P waves and T waves; see Fig. 4(b)).
Also, the signals synthesized by SimGAN have considerable
noise (e.g., as highlighted in the orange rectangles), while
those synthesized by ours are nearly noise-free. The three II-
lead cases in Fig. 4(b) of SImGAN are actually different but
they look similar, which shows that SimGAN might cause the
mode collapses. In contrast, the synthesized ECG data of our
Nef-Net are of diversity.

Model Complexity

In inference, the fps (frames per second) of our Nef-Net is
13.9, which can be used for real-time Electrocardio Panorama
synthesis. The Nef-Net model size is 7.18 MB, and is feasi-
ble to be used on some mobile devices. Thus, Nef-Net is po-
tentially helpful to medical doctors (e.g., for dynamic ECG
(holter ECG) and home-ECG monitoring).

6 Conclusions and Future Work

In this paper, we proposed a new concept, Electrocardio
Panorama, which decouples the ECG views from the physical
lead positioning and can provide ECG signals of any queried
views in real time. We presented a versatile neural network
called Nef-Net, which can transform ECG views, synthesize
Electrocardio Panorama, and synthesize ECG signals from
scratch. Experiments verified that Nef-Net performs well on
these tasks. To extract the electrocardio field representations
without supervision, we proposed a new Angular Encoding
for angle processing and an effective self-supervised learning
approach (Standin Learning) to help extract and purify elec-
trocardio field representations. Ablation study showed that
our new approaches are helpful. Finally, the cardiac cycle
and deflection division labels for the PTB and Tianchi ECG
datasets are available for reference.

There are some potential improvements for future research
on Electrocardio Panorama. First, ECG signals are currently
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Figure 3: A case of Electrocardio Panorama.

normalized before feeding into Nef-Net. However, normal-
ization might neglect absolute amplitudes, which are impor-
tant in practice. Second, an interesting issue is to consider
ECG synthesis from scratch. Our Nef-Net can synthesize
ECG data from scratch and significantly outperform the pre-
vious work. It is worth exploring to improve the GAN and
VAE methods for ECG by incorporating Nef-Net. Third,
although the datasets used in our study contain some ECG
signals of patients with heart diseases, we did not explicitly
utilize some specific operations for processing morbid ECG
signals. Thus, it is important to investigate improving Elec-
trocardio Panorama with respect to morbid ECG signals. Fi-
nally, developing a modern visualization system for Electro-
cardio Panorama is still an open research topic.

Acknowledgments

This research was partially supported by the National Key Re-
search and Development Program of China under grant No.
2019YFCO0118802, the National Natural Science Foundation
of China under grant No. 61672453, the Zhejiang Univer-
sity Education Foundation under grants No. K18-511120-
004, and No. K17-511120-017, the Zhejiang public welfare
technology research project under grant No. LGF20F020013,
and the Key Laboratory of Medical Neurobiology of Zhejiang
Province. D.Z. Chen’s research was supported in part by NSF
Grant CCF-1617735. Jintai Chen, Xiangshang Zheng, and
Hongyun Yu are co-first authors.

3604

9 / A’/\% mL
(a) Nef-Net
A J W/ A M
*, ) 1 M ‘\ ; ’f \ i
- (b) Sli-rr=1(.l:IAN -l
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