
Traffic Congestion Alleviation over Dynamic Road Networks: Continuous
Optimal Route Combination for Trip Query Streams

Ke Li1 , Lisi Chen1 , Shuo Shang1 ∗ , Panos Kalnis2 and Bin Yao 3

1University of Electronic Science and Technology of China, China
2King Abdullah University of Science and Technology, Saudi Arabia

3Shanghai Jiaotong University, China
like like@std.uestc.edu.cn, {chenlisi.cs, jedi.shang}@gmail.com, panos.kalnis@kaust.edu.sa,

yaobin@cs.sjtu.edu.cn

Abstract
Route planning and recommendation have attracted
much attention for decades. In this paper, we study
a continuous optimal route combination problem:
Given a dynamic road network and a stream of
trip queries, we continuously find an optimal route
combination for each new query batch over the
query stream such that the total travel time for all
routes is minimized. Each route corresponds to
a planning result for a particular trip query in the
current query batch. Our problem targets a variety
of applications, including traffic-flow management,
real-time route planning and continuous congestion
prevention. The exact algorithm bears exponen-
tial time complexity and is computationally pro-
hibitive for application scenarios in dynamic traf-
fic networks. To address this problem, a self-aware
batch processing algorithm is developed in this pa-
per. Extensive experiments offer insight into the ac-
curacy and efficiency of our proposed algorithms.

1 Introduction
With the growing popularity of location-based services, many
route planning services (e.g., Google Maps) and ridesharing
services (e.g., DiDi, Uber, and Grab) are playing an indis-
pensable role in our lives. Route planning and recommen-
dation have attracted much attention in recent years [Shar-
ifzadeh et al., 2008; Shang et al., 2013; Li et al., 2013;
Zeng et al., 2015; Shang et al., 2019]. Some studies focus
on the optimal route planning for a single trip query under
current traffic condition (e.g., [Malviya et al., 2011]).

As route planning services and ridesharing services are be-
coming increasingly popular, massive-scale users in a city
may issue trip queries within a short period of time, espe-
cially during rush hours. Thus, it is of great importance to en-
able route planning for a stream of trip queries based on real-
time traffic conditions. Existing related proposals aim to find
an optimal route (i.e., a route with the minimum travel time)
for each single trip [Malviya et al., 2011; Xu et al., 2012;
Shang et al., 2012; Shang et al., 2015]. However, recom-
mending the optimal route based on individual trip query may
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induce potential traffic congestion. Recently, [Li et al., 2020]
recognizes this potential traffic congestion and studies the
problem of finding a route for each trip such that the global
travel time cost for all trips is minimized. However, it only
considers a static collection of trip queries as input, making it
ineffective to handle a stream of trip queries in practice as the
routes recommended ahead of current time are ignored. As a
result, its solutions cannot be used to answer continuous trip
queries in practice.

In this light, we study a Continuous Optimal Route Com-
bination (CORC) problem: Given a dynamic road net-
work G and a stream of trip queries Q={q1, q2, . . .}, we
aim to periodically generate an optimal route combination
Π={π1, π2, . . .} for new trip queries such that the total travel
time of all routes in Π is minimized. In our settings, the real-
time travel time on each edge e is proportional to the number
of current vehicles on e. The problem is challenging due to its
high computational cost. The time complexity of the exact al-
gorithm is exponential to the number of queries, thus it is im-
possible to find the optimal route combination in interactive
time. To enable high efficiency, a self-aware batch process al-
gorithm (SBP) and its corresponding pruning techniques are
developed. In addition to the non-query traffic flow and the
query-related flow caused by our planned routes ahead of cur-
rent time, we also consider the potential traffic flow caused by
those planning initial routes. The main contributions of this
paper can be summarized as follows.

• We propose a novel CORC problem that targets a variety
of applications, including traffic-flow management, real-
time route planning and congestion prevention.

• We develop a self-aware batch process algorithm (SBP)
for answering CORC problem.

• The accuracy and efficiency of our solutions are eval-
uated by extensive experiments over two real-life
datasets. The experimental results show that our pro-
posal outperforms the baseline method and it is capable
of handling streams of trip queries in real-time fashion.

Related work. Optimal route planning is extensively in-
vestigated under different settings [Shang et al., 2016;
Guo et al., 2018; Chen et al., 2019; Chen et al., 2020a;
Chen et al., 2020b]. Some studies aim to generate a route
based on a particular optimization goal (e.g., the shortest dis-
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tance, minimum congestion probability) under user-specified
constraints (e.g., the departure time) [Chen et al., 2010;
Cao et al., 2012; Shang et al., 2014; Liebig et al., 2017].
However, such queries proposed by these studies are based on
a singe trip. Existing studies of traffic-based global optimiza-
tion problems [Dafermos and C., 1972; Lim and Rus, 2012;
Babak et al., 2018] can be regarded as the flow assignment
problem rather than real-time route planning problem, where
the routes are pre-defined and they search for an optimal flow
assignment to each route. Though a recent work [Li et al.,
2020] proposes to minimize the global travel time, its solu-
tions cannot be used to answer CORC problem. The reason
we have explained in introduction.

2 Preliminaries and Problem Statement
Dynamic road networks. We formulate a dynamic road
network by a connected and directed graph G(V,E), which
consists of a set of vertexes V representing road intersections
or ends, and edges E ⊂ V × V representing road segments.
Each edge e(vi, vj) ∈ E connects two end-points vi and vj
where vi, vj ∈ V . Associated with each road segment e is a
natural-valued road capacity Ce and a minimum travel time
Tm(e), denoting the travel time on e when there are no vehi-
cles.1 The dynamic weight of an edge e, denoted by T(e, t), is
the travel time for passing through e, which is at least Tm(e)
and is proportional to the number of current vehicles on e.
Travel time function. The travel time of a vehicle on
road segment e at time t is correlated to current number
of vehicles, which is defined as traffic flow [Greenshields,
1934]. Following existing studies [Lim and Rus, 2012;
Babak et al., 2018; Li et al., 2020], we use a popular travel
time function (cf. Equation 1) based on current traffic flow
on e (i.e., f(e, t)) to compute the estimated travel time of
segment e at time t, which is denoted by T(e, t). Here, Ce is
the capacity of segment e, α and β are road-specific parame-
ters, which are determined by segment attributes (e.g., speed
limit, road width). Note that our proposal is independent
of these parameters. Our modeling of road networks aligns
with existing studies [Wilkie et al., 2011; Shang et al., 2017;
Chen et al., 2020b].

T(e, t) = Tm(e)× (1 + α× (
f(e, t)

Ce
)
β

) (1)

Route and its estimated travel time. Route π is defined
as a finite sequence of vertices 〈v0, v1, . . . , v|π|−1〉. Assume
that route π starts at time t0 and ti is the estimated arrival time
on vertex vi (i.e., ti = ti−1 + T(e(vi−1, vi), ti−1)). Denoted
by ET(π, t0) the estimated travel time of π departing at time
t0 is computed by the sum of estimated travel times on each
road segment traveled by π (cf. Equation 2). In remaining
parts of this paper, we use π.v0 and π.v|π|−1 to denote the
first and the last vertices of π, respectively.

ET(π, t0) =

|π|−2∑
i=0

T(e(vi, vi+1), ti) (2)

1For ease of presentation, we use e to represent e(vi, vj) where
the context is clear.

Trip query stream. A single trip query is denoted by q =
(s, d, t), where s is the source location, d is the destination
location, and t is the departure time. Q = {q1, q2, . . .} de-
notes a stream of trip queries arriving in a streaming manner
(i.e.,∀qi, qj ∈ Q, i > j: qi.t ≥ qj .t). Note that Q is dynami-
cally updated by new trip queries over the data stream.
Continuous Optimal Route Combination (CORC) Prob-
lem. Given a dynamic road network G, a stream of trip
queries Q = {q1, q2, . . .}, and a time interval T , the CORC
problem aims to process the newly issued query batch Qn =
{qk, qk+1, . . . , q|Q|} (Qn ⊂ Q ∧ q|Q|.t − qk.t = T ) for an
optimal route combination Π = {π1, π2, . . .} such that:

(1) |Q| = |Π|;
(2) (∀πi ∈ Π) (πi.v0 = qi.s ∧ πi.v|πi|−1 = qi.d);
(3) The sum of estimated travel time for routes in Π, de-

noted by TT(Π) (cf. Equation 3), is minimized.

TT(Π) =

|Π|∑
i=1

ET(πi, qi.t) (3)

3 Exact Traversal Algorithm
An exact method for answering the CORC problem works
as follows: for each incoming trip query q ∈ Q, we first
run Depth-First Search (DFS) on the road network to find all
possible routes from q.s to q.d. Next, we evaluate all pos-
sible route combinations and select the combination that has
the minimum TT(Π) as result. To answer the CORC prob-
lem in a real-time fashion, exact traversal algorithm (ETA)
periodically conducts aforementioned operations to return an
optimal combination as real-time result. If the number of pos-
sibles routes for each query is k and there are totally |Q| trip
queries, the ETA will performs exhaustive evaluation of k|Q|
possible route combinations.

4 Self-Aware Batch Processing Algorithm
To answer the CORC problem efficiently, we propose a Self-
aware Batch Processing (SBP) algorithm, which consists of
two primary steps: (1) Initial Route Search and (2) Batch Re-
fining Processing. In particular, given a batch of new trip
queries Qn, we first run Initial Route Search that generates
an high-quality initial route combination Πn consisting of
planned routes for each incoming trip query. Next, we run
Batch Refining Processing to refine the routes in Πn.

In remaining parts of this section, we present Initial Route
Search and Self-Aware Batch Refining algorithms. Finally,
we present an overall solution based on the self-aware batch
processing algorithm.

4.1 Initial Route Search
The objective of Initial Route Search is to generate a high-
quality individual route for each trip query q in a new query
batch Qn. The time-aware traffic flow is calculated as a
combination of “query-related flow” and “other traffic flow”.
Specifically, the query-related flow is the extra traffic flow
incurred by routes planned for queries in Q, which is self-
aware. The other traffic flow is resulted from traffic flow out-
side Q. We take other traffic flow directly as input.
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Algorithm 1 InitSearch (G, q,L)

Input: Dynamic road network G = (V,E);
A trip query q = (vs, vd, t);
All-pair lower-bound estimation for the travel time

H(vi, vj);
A set of edge labels L of planned routes;

Output: An initial route π for query q;

1: Init: ∀v ∈ V : v.ts =∞, v.td = H(v, vd), v.et = t;
vs.pred = null, vs.ts = 0; π = ∅;

2: PQ← {vs};
3: while PQ 6= ∅ do
4: v ← PQ.pop();
5: if v = vd then
6: while vd.pred 6= null do
7: π ← {vd, π};
8: vd ← vd.pred;
9: end while

10: return π;
11: end if
12: for each edge e(v, v′) ∈ G do
13: calculate the current traffic flow f(e, v.et);
14: if v.ts + T(e, v.et) ≤ v′.ts then
15: v′.ts ← v.ts + T(e, v.et);
16: v′.et← t+ v′.ts;
17: v′.pred← v;
18: if v′ /∈ PQ then
19: PQ.push(v′);
20: end if
21: end if
22: end for
23: end while

Edge labels. To enable fast computation of the traffic flow
on each edge caused by planned routes, we maintain a label
Le = {l1, l2, . . .} for each edge e to record the time infor-
mation of each route that travels on e. A label li = {ta, tb}
consists of the timestamp entering e (i.e., ta) and the times-
tamp leaving e (i.e., tb) of a route. Initially, the Le of each
edge is empty and they are dynamically updated each time
we complete the processing of a new batch of trip queries.

Query-Related flow calculation. The query-related flow
on edge e at timestamp t is the number of edge label li ∈ Le
that satisfies [li.ta, li.tb] 3 t. A priority queue is applied to
accelerate computation in our experiment study.

Lower-bound Travel Time Estimation We use a heuristic
value H(vi, vj) to denote the lower-bound estimation of the
travel time from vertex vi to vj , it is pre-computed by Dijkstra
[Dijkstra, 1959] given the minimum non-query flow. Note
that the minimum non-query flow on each edge e is regarded
as a static value. We take it directly as input.

Algorithm description. Algorithm 1 presents the pseudo
code of Initial Route Search. The input includes a dynamic
road network G = (V,E), a trip query q = (vs, vd, t), all-
pairs lower-bound travel time H(vi, vj), and a collection of
edge label sets L = {Le1 , Le2 , ...} consisting of edge label
set Le for each edge e. The output is an initial route planned

for q. Associated with each v ∈ V is the exact travel time
from q.vs to v, which is denoted by ts; a heuristic value td
representing the lower-bound travel time from v to the desti-
nation q.vd; the earliest arriving time of v from vs to v, which
is denoted by et; and a predecessor pred. First, we initialize
each v ∈ V and set the route π a empty set (line 1). Then we
add the starting vertex vs into the priority queue PQ that sorts
vertexes in ascending order based on v.ts+v.td (line 2). Dur-
ing the search process, in each iteration we select a vertex v
from PQ and explore its adjacent vertices (lines 3–23). To be
specific, each time we select the v with minimum v.ts + v.td
on the top of PQ, which is based on the hypothesis that this v
may be a intermediate destination with minimum travel time
cost (line 4). If v is the destination, we utilize the predecessor
record pred of corresponding vertexes to generate a route π
as the result (lines 5–11). If v is not the destination, for each
edge e starting from v, we calculate the current traffic flow
on e(line 13). For the ending vertex v′ of e(v, v′), we check
whether it can be reached with a smaller ts through vertex v
(line 14). If it satisfies we will update ts, et and pred of v′,
respectively (lines 15–17). In the next, we add v′ into PQ
for next iteration if v′ is not contained in PQ. The algorithm
terminates when PQ is empty or the destination is found. In
the worst case, we need to evaluate all vertexes. The max-
imum number of adjacent vertices of a vertex is up to |V |,
thus the maximum times of edge evaluation is |V |2. Comput-
ing the query-related flow on edge e requires time complexity
O(|Le|). Assume the maximum value ofO(|Le|) ism, the to-
tal time complexity of the Initial Route Search is O(m|V |2).

4.2 Batch Refining Processing
To improve the result quality, a Batch Refining Processing
method is developed to refine these initial routes Πn of Qn
(cf. Algorithm 1). We reuse the initial route combination Πn

and refine each πi ∈ Πn with a self-aware swapping strat-
egy in a batch mode. The high-level idea works as follows:
During each refinement we select a route πi ∈ Πn, then we
take other planning initial routes (i.e, Πn \ πi) as known traf-
fic flow input to re-predict the traffic condition and reassign
a route π′i to qi. Note that the swap operation is performed
for a whole route. We swap π ∈ Πn with π′, denoted by
Πn.swap(π, π

′). If this swapping operation can reduce the
total travel time of all trips at least by a factor of 1 + ε (e.g.,

TT ({Π,Πn})
TT ({Π,Πn.swap(π,π′)}) > (1 + ε), we define this swapping
operation as a valid operation and apply it. Here, the small
constant ε is used to filter out some ”useless” operations (i.e.,
the operations that only reduce little travel time) and guaran-
tee the number of swapping operations is finite.

Swapping operation. During our refining process, in addi-
tion to the non-query traffic flow and the query-related flow
caused by our planned routes ahead of current time, we also
consider the potential traffic flow caused by planning initial
routes. A new edge label L′ = {L,L(Πn \ πi)} is defined
as a combination of primitive edge labels L and the estimated
time information of these planning initial routes in Πn except
route πi (cf. Algorithm 1). We reassign a new route π′i to qi
by conducting Algorithm 1 that uses L′ as traffic condition
input, and we will swap πi ∈ Πn by π′i if it is valid.
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Algorithm 2 BatchRefining(G,Π,Πn,L, ε)

Input: Dynamic road network G = (V,E),
The global route combination Π ,
An initial route combination Πn,
A set of edge labels L of planned routes,
Parameter ε

Output: A refined route combination Πn

1: Init:flag ← true;
2: while flag do
3: flag ← false;
4: for each route πi ∈ Πn do
5: if UB(πi) > (1 + ε) then
6: L′ ← {L,L(Πn \ πi)};
7: π′ ← InitSearch(G, qi,L′);
8: if the operation Πn.swap(π, π

′) is valid then
9: Πn ← Πn.swap(π, π

′);
10: flag ← true;
11: end if
12: end if
13: end for
14: end while
15: return Πn

Pre-checking strategy. In order to check whether the
swapping operation is valid, we have to update the edge la-
bels of all edges to calculate the ratio of decreased travel time,
which is time-consuming. Here, a pre-checking strategy is
developed to improve efficiency. In Equation 4, we define an
upper bound UB as the maximum ratio of decreased travel
time of refining route π ∈ Πn. Note that TT({Π,Πn \ π}) 6=
TT({Π,Πn}) − ET(π, t), here TT({Π,Πn \ π}) is the total
travel time assuming that route π does not exist. In such case
the extra increased travel time of other routes caused by route
π should be excluded in addition to the travel time of the route
π itself.

UB(π) =
TT({Π,Πn})

TT({Π,Πn \ π}
(4)

Algorithm description. Algorithm 2 presents the pseudo
code of our Batch Refining Processing method. Initially, we
use a flag to mark if any valid swapping operation applied in
last ”while” loop and we initially set it true (line 1). During
the refining process, for each initial route π ∈ Πn we check
whether it could be swapped by a new route π′ (lines 4–13).
Specifically, we first change the flag to assume there is no
valid swapping operation in current ”while” loop (line 3). For
each π ∈ Πn, we compute the UB(π) to determine whether
the operation is possibly valid (line 5). If it is possibly valid,
we generate a new edge labels L′ by combining the primitive
edge label L and the traffic flow caused by the currently plan-
ning routes in Πn except the πi itself (line 6). Then given the
L′ as input we generate a new route π′ by conducting Algo-
rithm 1 (line 7). In the next, we apply the swapping operation
if π′ 6= π and the exact total travel time decreased by at least
a factor of 1+ε through this swapping, then we set flag true
again to record the fact that there are valid swapping opera-
tions applied (lines 8–11). The algorithm terminates when no

Algorithm 3 SBP(G,Q, T, ε)

Input: Dynamic road network G = (V,E),
a stream of trip queries Q,
Refining Interval T ,
Parameter ε

Output: A real-time route combination Π

1: Init: L ← ∅;Π← ∅; Πn ← ∅
2: while true do
3: for each incoming trip query q ∈ Q do
4: π ← InitSearch(G, q,L);
5: Πn ← {Πn, π};
6: end for
7: if currentTime %T = 0 then
8: Πn ← BatchRefining(G,Π,Πn,L, ε);
9: Π← {Π,Πn};

10: L ← {L,L(Πn)};
11: Πn ← ∅;
12: Output Π as real-time result
13: end if
14: end while

valid swapping operations applied during current loop for all
π ∈ Πn, indicating that no valid swapping operation could
produce a better result.

4.3 Overall Solution for CORC Problem
By integrating all above methods, here we present the SBP
algorithm for answering the CORC problem.

Refining interval. In our settings, the Batch Refining Pro-
cessing (cf. Algorithm 2) is periodically conducted at a fixed
frequency (e.g., 2s). We define T as the time interval between
each two batch refining operations. By utilizing the refin-
ing interval T , we can more accurately predict future traffic
condition for more planning initial routes are considered as
known traffic flow input, thus we can reduce the TT(Π) more
by a valid swapping operation, which enables less swapping
operations occurred during the whole refining process.

Algorithm descriptions. The overall solution of the SBP
Algorithm for CORC problem is presented in Algorithm 3.
Initially, there are no trip queries in our query system. We set
the edge labels L and the global route combination Π a empty
set, which records the planned routes of all trip queries. We
use a route combination Πn to store the planning initial routes
of a new query batch Qn, initially it is empty (line 1). First
we perform Algorithm 1 to generate an initial route π for each
new trip query q ∈ Q (lines 3–6). We perform aforemen-
tioned operations until the time-up for next Batch Refining
Processing (line 7). During the refinement, we conduct Al-
gorithm 2 to generate a refined Πn (line 8). In the next, we
add these refined routes into the global route combination Π
and update the edge labels L accordingly (lines 9–10). At the
end of each refinement, since all initial routes have been re-
fined, we reset the Πn empty (line 11). The empty Πn is used
to store new initial routes that planned for next batch of trip
queries subsequently. We output the global route combina-
tion Π as real-time result each time we complete the refining
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TG NY

Number of queries |Q| 4,000-20,000
/default 4,000

2,000-10,000
/default 2,000

Parameter ε 0.0002-0.0010
/default 0.001

0.0002-0.0010
/default 0.001

Refining interval T 1s-5s
/default 2s

1s-5s
/default 2s

Query arrival rate 20/s-100/s
/default 50/s

20/s-100/s
/default 50/s

α (cf. Equation 1) 1-5
/default 2

1-5
/default 2

β (cf. Equation 1) 1-3
/default 2

1-3
/default 2

Table 1: Parameter Settings

processing of a new batch of trip queries (line 12).

5 Experimental Study
5.1 Experimental Settings
Datasets. Two real road networks are used in our experi-
mental study: San Joaquin County Road Network (TG)2 and
the New York Road Network (NY)3,which contain 18,263
vertices and 23,874 edges, and 95,581 vertices and 260,855
edges, respectively. A capacity Ce ranging form 20 to 100
was assigned to each road segment based on the road length
for both TG and NY. The minimum travel time Tm(e) is a
randomly generated value ranging from 5 to 10 (minutes) for
each edge. To simulate the non-query vehicles, we assume
the averaged traffic flow x̄ of non-query vehicles on edge e
is 0.4 × Ce, and the number of real-time non-query vehi-
cles on edges cyclically change by a ratio ranging from 0.8x̄
to 1.2x̄ over time. Given traffic flows 0.8x̄ on all road seg-
ments, we pre-compute the all-pair minimum travel time us-
ing Dijkstra algorithm [Dijkstra, 1959] and store the results.
We generate a stream of trip queries by randomly sampling
source-destination pairs in those areas with high density of
road intersections (e.g., the mean out-degree of the area is no
less than 3), which is consistent with the real-life application
scenarios. Given a departure time q1.t of the first trip, the de-
parture time of subsequent trips increase by a short period of
time. The query arrival rate setting is presented in Table 1.

Computing traffic flow. The real-time traffic flow f(e, t)
on edge e at timestamp t, is computed by Equation 5. Here,
f ′(e, t) denotes the number of non-query vehicles, while
f ′′(e, t) is the number of vehicles using our query system.
To simulate the non-query vehicles, we assume f ′(e, t) cycli-
cally change (e.g.,f ′(e, t + T )=f ′(e, t) ,T=2h) over time.
How to calculate f ′′(e, t) is detailed in Algorithm 1.

f(e, t) = f ′(e, t) + f ′′(e, t) (5)

Evaluation settings. To evaluate the result quality of SBP
algorithm, we implement an individual-based search algo-
rithm (Ind algorithm). Specifically, given a stream of trip
queries Q, for each trip q ∈ Q we derive a route π with

2https://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm
3https://publish.illinois.edu/dbwork/open-data/

the minimum travel time ET(π, q.t) regrading current traffic
condition at timestamp q.t, which aligns with existing works
[Malviya et al., 2011; Xu et al., 2012]. Note that the ex-
act algorithm is extremely time-consuming, which requires
at least 1 day with default setting. Thus, we do not report
its performance. To evaluate the performance of our Initial
Route Search method that takes self-awareness and network
dynamics into account, we implement SBP*SA algorithm
and SBP*DA algorithm, respectively. Here, the SBP*SA is
the SBP algorithm without self-aware idea. Specifically, it
applies an Initial Route Search method that is not aware of
extra traffic flow caused by planned routes. The SBP*DA is
the SBP algorithm with the assumption that the traffic flow
is static. In particular, it generates initial routes regrading a
snapshot of traffic condition at the departure time of each trip.
The performance metrics for efficiency evaluation and effi-
cacy evaluation are CPU time and the total travel time TT(Π)
of the route combination Π generated by the proposed algo-
rithm, respectively. All algorithms were conducted in Java
and tested on a Windows 10 platform with Intel(R) i5-9300H
CPU (2.40 GHz) and 16GB memory. The default parameter
settings are listed in Table 1.

5.2 Experimental Results
Effect of the number of trip queries. First, we investigate
the effect of the query count |Q| on the performance of the
proposed algorithms with the default setting. Intuitively, a
larger |Q| leads to the increment of the total travel time. Addi-
tionally, a larger |Q| causes more computation effort for eval-
uating more edges and the CPU time is thus increased. Figure
1 shows the performance of the proposed algorithms in TG
and NY, respectively. As expected, the CPU time increases
when |Q| become larger for all algorithms. Among these al-
gorithms, the Ind algorithm requires less CPU time because it
is a one-time planning mechanism without refining process.
Compared with Ind algorithm, SBP algorithm can reduce at
least 40% total travel time. SBP*SA and SBP*DA perform
slightly worse than SBP since more swapping operations per-
formed in their refining process. Particularly, the SBP*SA
does not consider the traffic flow caused by these planned
routes, thus making traffic prediction insufficiently. SBP*DA
plans initial routes regarding the static traffic flow at the de-
parture time. Hence, the initial routes planned by SBP*SA
and SBP*DA are of low-quality, which leads to more refining
effort to improve result quality. We also observe that the re-
sults of the three algorithms are reasonably close , as shown
in Figure 1(b) and Figure 1(d), and SBP consistently exhibits
less total travel time. These results demonstrate the superior-
ity of our Initial Route Search.
Effect of the query arrival rate. A larger query arrival rate
indicates that more vehicles are coming to roads per unit time.
In such case, the increment of traffic flow on edges exhibits
more significant. Consequently, there will be more extra traf-
fic flow caused by planned routes on each road. In Figure
2, an increasing trend regarding the CPU time and TT(Π) is
observed in both NY and TG. Here, the CPU time increases
for more swapping operations are conducted in refining pro-
cess to further alleviate traffic congestion. And the TT(Π)
increases for traffic flow of edges increase accordingly, more
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(a) NY (b) NY (c) TG (d) TG

Figure 1: Effect of trip count |Q|

(a) CPU time (b) Travel time

Figure 2: Effect of query arrival rate

(a) CPU time (b) Travel time (c) CPU time (d) Travel time

Figure 3: Effect of the parameters α & β

(a) CPU time (b) Travel time

Figure 4: Effect of refining interval T

travel time is thus required to pass through an edge. Note that
the SBP Algorithm results in a larger TT(Π) in TG than that
in NY for we process more trip queries in TG by default.

Effect of the parameters of travel time function. Figure
3 shows the performance of the SBP algorithm as we vary the
parameters α and β (cf. Equation 1). Intuitively, a larger α or
a smaller β leads to more traffic congestion because that more
travel time is required to pass through an edge. In Figure 3,
an increasing trend regarding both CPU time and the TT(Π)
is observed as we vary α from 1 to 5. In contrast, the travel
time decreases as we vary β from 1.0 to 3.0. It’s worth noting
that there are no specific trend regarding CPU time as we vary
β for CPU time is not directly related to the value of β.

Effect of the refining interval. A larger value of refining
interval T denotes that the waiting time for each query is in-
creased while the planning results are closer to the optimal re-
sult because more planed routes are considered. In such case,
we are able to substantially reduce the TT(Π) through swap-
ping operations. From Figure 4(a), we see that the CPU time
increases as T increases, the reason is that we process more
trip queries in each refinement. A slightly decreasing trend of
TT(Π) is observed in Figure 4(b). These results demonstrate
that an appropriate T is helpful to avoid traffic congestion by
reusing planning initial routes to more accurately predict fu-
ture traffic condition.

(a) CPU time (b) Travel time (c) NY

Figure 5: Effect of ε and pre-checking strategy

Effect of ε and pre-checking strategy. We study the ef-
fect of the refining parameter ε. A larger ε means fewer valid
operations (cf. Algorithm 3), thus less CPU time is required.
However, a larger ε also results in a route combination Π with
a larger TT(Π). As we vary ε from 0.0002 to 0.001, a decreas-
ing trend of CPU time is observed in Figure 5(a). In contrast,
a slightly increasing trend of TT(Π) is observed in Figure
5(b). Note that the CPU time decreases rapidly when we vary
ε from 0.0002 to 0.0004. It is worth noting that the TT(Π)
slightly increases as ε increases. We also find that 0.001 is an
optimal value of ε that enables both high efficiency and effec-
tiveness. The SBP algorithm without pre-checking strategy is
denoted by ”SBP*PC”. In Figure 5(c), we observe that the
required CPU time of SBP is consistently less than those of
SBP*PC, which shows that our pre-checking strategy is able
to enhance efficiency.

6 Conclusions
We proposed and investigated a novel route planning prob-
lem that finds optimal route combination for a stream of trip
queries (CORC problem). The SBP algorithm was proposed
for answering CORC problem efficiently. Pruning techniques
were developed to enhance efficiency. Extensive experiments
confirmed that our proposal was capable of achieving high ef-
ficiency and high effectiveness, and the pre-checking strategy
was helpful to avoid unnecessary computation.
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