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Abstract

Online credit payment fraud detection plays a crit-
ical role in financial institutions due to the grow-
ing volume of fraudulent transactions. Recently, re-
searchers have shown an increased interest in cap-
turing users’ dynamic and evolving fraudulent ten-
dencies from their behavior sequences. However,
most existing methodologies for sequential model-
ing overlook the intrinsic structure information of
web pages. In this paper, we adopt multi-scale be-
havior sequence generated from different granular-
ities of web page structures and propose a model
named SAH-RNN to consume the multi-scale be-
havior sequence for online payment fraud detec-
tion. The SAH-RNN has stacked RNN layers in
which upper layers modeling for compendious be-
haviors are updated less frequently and receive the
summarized representations from lower layers. A
dual attention is devised to capture the impacts on
both sequential information within the same se-
quence and structural information among different
granularity of web pages. Experimental results on a
large-scale real-world transaction dataset from Al-
ibaba show that our proposed model outperforms
state-of-the-art approaches. The code is available
at https://github.com/WangliLin/SAH-RNN.

1 Introduction

Recent year dramatically increased e-commerce payments
have resulted in the booming occurrence of fraudulent trans-
actions. It has been reported that $24.26 billion was lost due
to digital payment fraud worldwide in 2018, which increased
by 18.4% compared to 2017 and is still climbing'. Online
credit payment fraud detection is therefore increasingly im-
portant to restrain the impact of fraud on the quality of ser-
vices, costs and reputation of financial service institutions.
Machine learning methods based on feature engineering have
played an essential role in financial fraud detection [West and
Bhattacharya, 2016; Abdallah et al., 2016], which depends
on the effectiveness of the statistical features extracted from
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Figure 1: A toy example of web page structure. Each page is com-
posed of several blocks, and users’ actions occur under these blocks.

different aspects, such as user profiles and historical transac-
tions [Bahnsen et al., 2016]. However, criminals may commit
few transactions before making a fraudulent payment, or pre-
tend to be a benign user to make multiple small normal pay-
ments and then make a large fraudulent payment. Under these
scenarios, the statistical-based features may fail to effectively
capture these users’ fraudulent patterns, which results in a
misjudgement [Zhong et al., 2020].

Recently, RNN-based models show promising results by
utilizing users’ sequential behaviors that can timely reflect
their dynamic and evolving intentions [Jurgovsky et al., 2018;
Feng et al., 2019]. In these methods, actions of a user on
a web page, e.g., click, search, view image, etc., are usu-
ally considered as his/her behavior sequence, and the intrinsic
structure information of web pages are usually overlooked.
A toy example of the intrinsic structure information of web
page is demonstrated in Figure 1. In such a figure, a page
consists of several blocks, and each block may contain multi-
ple actions. The schema page—block—raction is the intrinsic
structure of web page used in this paper’>. Multi-scale be-
haviors over different granularities can be derived given spe-
cific intrinsic web page structures, which might be benefi-
cial to characterize the users’ intentions. First, multi-scale
behaviors may complement each other. For instance, Fig-
ure 2 demonstrates two multi-scale behavior sequences with
the same action and block sequences. However, considering

2Qther schema is also alternative in our model.
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Figure 2: Two examples collected from a real-world dataset. There are many of the same action-level and block-level behaviors while
different at page-level in (a) and (b). We can find that the password editing operation in (b) is performed on password reset page whose entry
is the password-retrieve page, and the search operation is executed on a particular merchant page, reflecting that the user has a clear purchase
intention. Such a pattern is more likely to be suspected as a fraud transaction.

information in the page sequence, the potential frauder could
be unearthed. Second, the natural tree-like subordinate re-
lations of web page structure shed new light on aggregation
multi-scale behaviors to capture hierarchical collaborative be-
havioral patterns. For example, action sequences in the same
block may together be helpful to reflect user’s intention in
such a block.

To comprehensively exploit multi-scale user behavior se-
quences derived by web page structures, we propose a novel
method coined Structure-Aware Hierarchical Recurrent
Neural Networks (SAH-RNN for short) in this paper. First,
we stack multiple RNN layers to consume multi-scale be-
havior sequences. Each layer models the corresponding be-
havior sequence on given granularity of web page structure.
Then a subordinate relation guided update and interaction ap-
proach among RNN layers is devised. Basically, the upper
layers which model compendious behaviors are updated less
frequently and receive the summarized representations from
lower layers. Furthermore, a dual attention mechanism is de-
signed to perceive the impacts on both sequential information
within the same sequence and structural information among
different granularity of web pages.

The main contributions are summarized as follows:

* To the best of our knowledge, it is the first work to incor-
porate web page structures into behavior sequence mod-
eling for online credit payment fraud detection task.

* We propose a novel SAH-RNN which employs stacked
RNN layers equipped with the structural subordinate re-
lation guided update strategy and dual attention mecha-
nisms to perceive users’ global and local intentions.

» Experimental results on a large-scale real-world dataset
from Alibaba platform show that the proposed model
significantly outperforms recent state-of-the-art ap-
proaches, and has a better generalization ability for var-
ious behavior sequence lengths.

2 Related Work

2.1 Credit Payment Fraud Detection

The credit payment fraud occurs when accounts or credit
cards are stolen and paid. Conventional solutions usually ex-
tract statistical features from different aspects (e.g., user pro-
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files, transaction summarizing and interaction relations) and
detect fraudulent transactions with supervised learning algo-
rithms, such as tree-based algorithms [Van Vlasselaer et al.,
2015; Xuan et al., 2018] and neural networks [Fu et al., 2016;
Liu et al., 2018; Zhang et al., 2018].

However, these methods aggregate historical transactions
as a whole and ignore the drifting trend of users’ interests.
Recent works start to utilize the users’ sequential behaviors
to enrich the representation of users’ dynamic and evolving
interests. [Jurgovsky et al., 2018] employs the Long Short-
Term Memory Networks (LSTM) to aggregate the users’ his-
torical purchase behaviors with the goal to improve fraud de-
tection accuracy. [Babaev et al., 2019] presents Embedding-
Transactional Recurrent Neural Network (E.T.-RNN) to com-
pute credit scores of the bank customers by examining their
historical credit and debit card transactions. Apart from trans-
action sequence-based methods, the e-commerce platforms
can capture more detailed behaviors in websites (e.g., click,
search and edit operations), which have been proven effec-
tive for fraud detection in e-commerce scenario. For instance,
[Wang et al., 2017] presents a fraud detection system in which
the Stacked LSTM is used to capture the users’ click and
browsing behavior sequences. [Liu et al., 2020] proposes LIC
Tree-LSTM that exploits local intention calibration for fraud
transaction detection.

Comparatively, both the temporal and hierarchical repre-
sentations of users’ sequential behaviors are modeled in our
work, which makes it distinct to the existing ones.

2.2 Hierarchical RNN

Hierarchical structures naturally exist in many sequential
data. A typical approach to learn both hierarchical and
temporal representation is to stack multiple recurrent layers
vertically [El Hihi and Bengio, 1996; Chung et al., 2017],
which called hierarchical RNN. Various hierarchical RNNs
have been proposed to capture the latent hierarchical struc-
ture in sequences. For example, in the clockwork RNN (CW-
RNN) [Koutnik et al., 2014], the hidden layer is grouped
into separate modules, each of which is interconnected and
is explicitly assigned different timescales for update. Di-
lated RNN [Chang er al., 2017] is constructed by stacking
multiple dilated recurrent layers with hierarchical dilations,
which mitigates the vanishing gradient problem. Ordered
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Neurons LSTM (ON-LSTM) [Shen er al., 2019] introduces
an elegant way of adding a hierarchical inductive bias to in-
tegrate the latent tree structures in sequences into recurrent
models, achieving state-of-the-art performance on many se-
quential tasks.

Inspired by multi-scale behavior sequences that are derived
according to the natural tree-like structure of web pages, we
propose to incorporate the structural information into hierar-
chical RNN architecture, which has not been explored before.

3 Methodology

3.1 Problem Statement

In this paper, the online credit payment fraud detection task
is phrased as a binary sequence classification problem. That
is, given the user’s multi-scale behavior sequence X =
[X1; X 9;...; X 7] before initiating a payment (also known
as a transaction), where 7' is the length of behavior sequence,
X € RE*? denotes the multi-scale behaviors at the ¢-th time
step and L is the number of structure hierarchies, our purpose
is to predict whether it is a fraudulent transaction. We assign
alabel y € {0,1} on each transaction to indicate whether it
is fraud or not. Hence, given the training set D = {(X,y)},
our goal is to predict the fraud probability of each transaction
in the testing set.

3.2 Model Overview

In the following, we present an SAH-RNN variant based on
LSTM, called Structure-Aware Hierarchical LSTM (SAH-
LSTM). As shown in Figure 3, the overall architecture has
three main components, namely Structure-Aware Factor Se-
quences Extraction, Hierarchical RNN Layers and Dual At-
tention Mechanism. The structure-aware factor sequences are
extracted from the multi-scale behavior sequences to deter-
mine the timing of updating and interacting for the hierarchi-
cal RNN layers. The hierarchical RNN consists of multiple
stacked RNN layers. Each layer models the corresponding
behavior sequence at the given granularity of web page struc-
ture and interacts with other layers when the update opera-
tion is executed. The dual attention mechanism including se-
quence attention and structure attention layers are designed to
capture the users’ global and local intentions simultaneously.

Structure-Aware Factor Sequences Extraction

To automatically capture the structure information of web
page, the structure-aware factor sequences S € RE*T are ex-
tracted from the multi-scale behavior sequences X, sé stands
for the structure-aware factor in the [-th layer at the ¢-th time
step, which is calculated as follows.

sh = 0
11

The binary value of s! indicates whether the behavior in the
next time step varies from the current time step. As the upper
layers have more repeated behaviors, the binary sequences .S
are getting sparse from lower layers to upper layers. More-
over, the structure-aware factor sequences determine whether
to update the hierarchical RNN layers and are used as the
masking vector of the sequence attention layer.

ifzl =al
ifel Aalyort =T
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Hierarchical RNN Layers

Taking the multi-scale behavior sequences and structure-
aware factor sequences as input, the depth of the stacked
LSTM layers is the same as the number of structure hierar-
chies, and each layer models a behavior sequence at the cor-
responding granularity from fine to coarse. At each time step,
each layer executes either update operation or copy operation,
which is determined by the structure-aware factor s.. The up-
date function for the hidden states h and cell states c at each
layer [ is defined as follows.

L hi 1 if st =0
hi = { o} ®tanh(ci_;) ifsi =1 @
L Ci1 ifst =0
“ _{ flod_ +i_,0g ifsi=1 &)

where f,1,0,g are forget gate, input gate, output gate and
candidate vector, respectively, and ® is the element-wise
product. Note that unlike the standard stacked LSTM which
are updated at every time step, the upper layers are updated
less frequently than the lower layers. It is because the upper
layer models the behavior sequence with a coarser granular-
ity. The update operation is executed only when the behavior
in the next time step varies from the current, and f, %, 0, g are
obtained by the following equations.

fi o

i o 1g1l 11 [

ol = o Sotice(Wihy_1 + Wo&, +0)  (4)
gi tanh

where o is the sigmoid function, W and b denote the weight
matrix and bias vector, respectively. &, is the input to this
step, which is defined as follows.

ifl=1
ifl >1
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At the first layer, the input is the embedding of the finest-

grained behavior sequence w% Otherwise, we concatenate

x! with the hidden state of the lower layer hffl as the input
to the upper layer [. This operation allows the upper layer
to absorb the summarized representation of behaviors at the
lower layer. Thus, it is reasonable to expect that the upper
layer obtains a more comprehensive global view, benefiting
from the memorization of long-term dependencies based on
short-term dependencies learned from the lower layer.

(&)

Sequence Attention Layer

Considering that behaviors at the same LSTM layer are
strongly related to each other, and there are many consec-
utive repeated behaviors exist in the upper layer which are
not updated at every step. We employ the multi-head self-
attention mechanism [Vaswani et al., 2017] to capture the
inner relationship between behaviors at the same layer and
decrease the effect of repeated behaviors at the upper layers.
Specially, the self-attention operations are applied to the hid-
den states of each LSTM layer separately. Mathematically, let
H,; = [h};h);...;hY] € RT*? be the input of the I-th self-
attention layer, and the ¢-th head is calculated as follows.

head} = Attention(H, W&, HW [, H{W')

HWeWE H (©)

= softmax( YH,W)
Vd
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Figure 3: The overall architecture of our proposed model SAH-RNN.

where the projection matrices W, WK W) € R¥d. As
for the input of the softmax function, we use the structure-
aware factor sequence at the corresponding layer of S as the
masking vector to mitigate the impact of consecutive repeated
behaviors on the upper layer. Then the concatenated vector of
different heads is fed into the feed-forward network:

F, = FFN(Concat(head: , ..., head),)W?) (7)

where FFN(-) is the feed-forward network, W e R d*d
is the projection matrix, and A is the number of heads. Resid-
ual connection and layer normalization are successively con-
ducted around both the multi-head attention and feed-forward
network. Then the distilled representation of F'; is calculated
as follows.

F; = Avg (F1) ®)
where Avg(-) is the average pooling.

Structure Attention Layer

We assume that the infrequently updated upper layers have
a more global view, while the frequently updated lower lay-
ers can better capture short-term intentions. Intuitively, dif-
ferent layers are likely to have different importance for the
prediction task. We thus devise a structure attention mech-
anism to merge all representations of behavior sequences
F), F,, ..., F’, into adistilled representation. The definitions
of a structure attention mechanism are as follows.

e = tanh(W, F} + b,) )

= exp(er)
>roy exp(er)

L

!

z = g a F
=1

where W, and b, are the trainable weight matrix and bias,

respectively. a; is the attention weight for the corresponding
behavior sequence, and z denotes the final representation of
multi-scale behavior sequences generated by SAH-LSTM.

Model Training

The obtained final representation z is then fed into a fully
connection layer with a sigmoid unit, and the predicted fraud
probability is calculated as follows.

10)

an

p:U(w;z—&—bp) (12)

where w,, and b,, are the weight vector and bias, respectively,

and p is the predicted fraud probability. Finally, our model
is trained with the negative log-likelihood function, which is
defined as follows.

L=-% 3 (logp) +(1-y)loa(1 - p))

(X,y)€D

13)

where D is the training dataset, the input X is the users’
multi-scale behavior sequences, and y is the ground truth.

4 Experiments

4.1 Dataset

To verify the effectiveness of SAH-RNN in the real-world
industrial applications, we conduct extensive experiments on
a large-scale dataset® from Alibaba platform (www.alibaba.
com), one of the most popular e-commerce platforms in
China. According to the general definition in financial sce-
narios, we define the positive samples as the fraudulent trans-
actions and the negative samples as genuine transactions. The
details of the dataset is summarized in Table 1. For the behav-
iors over different structure granularities, we did some neces-
sary preprocessing like clustering, and selected top frequent
behavior categories as our vocabulary. The detailed statistical
information are shown in Table 2.

Dataset  # Positive  # Negative  # Positive Rate

Training 31,216 2,353,543 1.31%

Testing 6,269 4,54,155 1.36%

Table 1: Statistics of datasets.
Category Examples

Action 300 edit message/view image/add to cart/. ..
Block 100 message box/search bar/products block/. ..
Page 30 homepage/search page/cashier page/. ..

Table 2: Category statistics of multi-scale behaviors.

3only includes website browsing behaviors permitted by the user.
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Methods AUC R@Po.1
All (0,100] | (100,200] | (200,300] | (300,400] | (400,500] All (0,100] | (100,200] | (200,300] | (300,400] | (400,500]

GRU 0.8690 0.6120 0.8272 0.9064 0.9057 0.8916 0.7387 0.4695 0.6311 0.8750 0.8808 0.8038
LSTM 0.8711 0.6672 0.8438 0.9084 0.9139 0.8938 0.7520 0.4695 0.6524 0.8667 0.9025 0.8172
Stacked GRU 0.8728 0.6929 0.8498 0.9001 0.9171 0.8906 0.7510 0.4974 0.6667 0.8625 0.8843 0.8098
Stacked LSTM | 0.8766 0.7056 0.8403 0.9029 0.9064 0.8913 0.7625 0.5103 0.6168 0.8583 0.8929 0.8188
TextCNN 0.8801 0.6384 0.8513 0.9099 0.9149 0.9029 0.7588 0.5082 0.6830" 0.8764 0.8964 0.8403
Transformer 0.8872 0.6837 0.8517 0.9067 0.9149 0.9042 0.7885" | 0.5146 0.6838 0.8750 0.8964 0.8425*
CW-LSTM 0.8779 0.6730 0.8298 0.9016 0.9156 0.8956 0.7577 0.5082 0.6111 0.8444 0.8912 0.8180
Dilated LSTM 0.8852 | 0.7210" 0.8549* 0.9135" 0.9210 0.8958 0.7673 | 0.5275" 0.6795 0.8764* 0.9067 0.8196
ON-LSTM 0.8880" | 0.6973 0.8496 0.9129 0.9236" 0.9102* 0.7741 0.5189 0.6481 0.8736 0.9086" 0.8411
SAH-LSTM 0.9090 0.7334 0.8820 0.9256 0.9393 0.9266 0.8229 0.5596 0.7179 0.8972 0.9240 0.8843

Table 3: Performance of different methods. Column “All” indicates the results on the whole testing dataset, and the others are on different
testing subsets grouped by behavior sequence length. The * indicates the best performance among the compared methods, and the best results
of all methods are indicated in bold face. Five-run-average values on testing set are reported.

4.2 Compared Methods

(1) Sequence-based Methods

* LSTM is a widely used RNN variant [Hochreiter and
Schmidhuber, 1997]. Here we consider both single-layer
LSTM and 3-layer Stacked LSTM.

* GRU simplifies the gates in LSTM [Chung et al., 2014].
Both single-layer and 3-layer Stacked GRU are com-
pared.

¢ TextCNN uses multiple one-dimensional convolutional
layers with different kernel sizes to capture the depen-
dencies among behaviors [Kim, 2014].

e Transformer is an essentially attention based

model [Vaswani et al., 2017].

(2) Hierarchical RNN-based Methods

¢ CW-LSTM separates the hidden layer into several mod-
ules for processing inputs at different temporal granular-
ity to better capture long-term dependencies [Koutnik er
al.,2014].

* Dilated LSTM is constructed by stacking multiple re-
current layers with multi-resolution dilated recurrent
skip connections [Chang er al., 2017]. We consider 3-
layer Dilated LSTM for comparison.

* ON-LSTM integrates tree structures into recurrent neu-
ral networks by ordered neurons to obtain hierarchical
representations [Shen et al., 2019]. We consider 3-layer
ON-LSTM for comparison.

4.3 Implementation Details

All the models are implemented with Tensorflow [Abadi et
al., 2016]. For fair comparisons, we conduct experiments
with different configurations on the number of layers and hid-
den units in various compared models. For each transaction,
we backtrack the user’s behaviors in the last 7 days before
making payment. We limit the maximal length of the behav-
ior sequence to 500 and paddings are performed for too short
behaviors. For all the experiments, we under-sampled the
negative examples to lift the ratio of positive samples (fraud
transactions) at 10% in the training dataset. We randomly
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extract 10% samples from the original training set for valida-
tion, and perform early stopping if the validation performance
is not improved for 10 epochs. Moreover, we choose Adam
[Kingma and Ba, 2015] as optimizer and decide the initial
learning rate from {0.01,0.001,0.0001} via validation. We
set the batch size to 512 and deliberately optimize the param-
eters in other compared methods according to their literatures.

4.4 Metrics

Since the positive rate in the online payment scenario is re-
ally low in general, we evaluate the performance of the ap-
proaches with AUC and R@Py ;. The AUC is the area un-
der the ROC curve, which reflects the ranking ability. The
R@Py ; is the recall when the precision equals to 10%, which
indicates the ability to detect top-ranking positive samples. In
summary, the higher both two evaluate metrics are, the better
performance the results have.

4.5 Main Results

Table 3 demonstrates the main results. The major findings
from the results can be summarized as follows:

(1) Compared with the single-layer RNN variants, our
proposed model facilitates the hierarchical RNN architec-
ture to fully exploit multi-scale behavior sequences, and we
can clearly observe that our model significantly outperforms
single-layer LSTM or GRU by a large margin, e.g., SAH-
LSTM outperforms GRU with about 4.00% increased AUC
and 8.42% increased R@P, ;. Meanwhile, the usage of
different update frequencies at different layers makes our
models more advantageous than stacked RNN variants. For
instance, SAH-LSTM gets 3.24% higher AUC and 6.04%
higher R@P,; than 3-layer stacked LSTM. Furthermore,
SAH-LSTM is also more advanced than the CNN-based and
attention-based methods, i.e., TextCNN and Transformer,
with 6.41% and 3.44% increased R@P,, 1, respectively.

(2) The explicit boundary information extracted from the
structure of web page enables SAH-LSTM to achieve a bet-
ter performance than other hierarchical RNN models. CW-
LSTM and Dilated LSTM update each layer with a fixed
but different rate without considering that non-stationarity
is prevalent in behavior sequences. ON-LSTM dynamically
adapts the update frequencies for different neurons, and its
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performance is better than CW-LSTM and Dilated LSTM, but
still worse than SAH-LSTM. These observations demonstrate
that our proposed models are more effective than other hier-
archical RNN models due to taking advantage of structural
information and the dual attention mechanism.

(3) Among these baseline methods, we can find that ON-
LSTM performs the best on AUC metric while Transformer
is the best on R@P ; metric. We conjecture their improve-
ments mainly come from the consideration of the global in-
tention. In more detail, Transformer treats the entire se-
quence as a whole and utilizes the self-attention mechanism
to model the interactions within the sequence. ON-LSTM, on
the other hand, adopts the high-ranking ordered neurons to
encode long-term information. However, without the consid-
eration of structural information among multi-scale behavior
sequences, they can hardly maximize the performance when
the sequence is short, and it is the key factor that SAH-LSTM
can outperform these two methods.

4.6 Ablation Test

We perform the ablation study and the results are shown in
Table 4. Specifically, we compare SAH-LSTM with its three
variants, namely SAH-LSTM\ g¢q4¢ (Without sequence at-
tention), SAH-LSTM\ g¢rycta¢¢ (Without structure attention)
and SAH-LSTM\ 1,qyerrnter (Without layer interaction, i.e.,
the upper layers will not receive the summarized representa-
tion from the lower layers). The results show that both AUC
and R@Py ; get worse by removing any of these three de-
signs, which reflects that all three designs are important. The
sharply decreased R@Py ; in SAH-LSTM\ g¢4 44+ and SAH-
LSTM\ g¢ructat+ indicates the effectiveness of the dual atten-
tion layers. The SAH-LSTM, 14y errnter performs worse than
other variants, which illustrates that the information transmis-
sion between RNN layers has a more significant impact on
detecting fraudulent transactions in our dataset.

Sequer.lce Structl.lre Laye? AUC R@Pg,
Attention  Attention Interaction
X Vv Vv 0.8981  0.7884
vV X Vv 0.8978  0.7895
Vv Vv X 0.8877  0.7830
Vv Vv Vv 0.9090 0.8229

Table 4: Ablation analysis of SAH-LSTM.

4.7 Further Discussion

Impact of Behavior Sequence Length

We divide the testing set into 5 groups by the interval of 100
to analyze the impact of different behavior sequence lengths,
as shown in Table 3. We further put the sequences whose
length more than 500 as a group separately, and the AUC and
R@Py ; curves are shown in Figure 4. The results indicate
that all models’ performance improve obviously with the in-
crease of behavior sequence length at the beginning. How-
ever, the performance of the other compared baseline meth-
ods begins to deteriorate as the sequence length further in-
creases, while the curves trend of SAH-LSTM are flatter, and
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Figure 4: Performance on different sequence lengths.

achieve better results on both shorter and longer sequences
than other compared models. It gives us an encouraging re-
sult that our proposed models can better distinguish the fraud
patterns for both new customers with few behaviors and ma-
ture customers with more complex behaviors.

Effect of Structure Attention Layer

We next visualize the distribution of structure attention
weights for the transactions in testing set, as shown in Fig-
ure 5. It can be observed that the fraudulent transactions have
higher attention weights on action-level behaviors, which are
modeled by the frequently updated lower layer and can better
capture the local mutational behavior patterns. While the be-
nign transactions pay more attention to page-level behaviors
which have a more comprehensive view. We conjecture the
possible reason for these phenomena is the structure attention
layer can perceive users’ global and local intentions.

0.8 4

074 B Benign
E 0-6 BN Fraudulent
op 0.6 1
2051
§ 0.4
= 0.3
8
= 024

0.1

action block page

the behavior sequences over different granularities

Figure 5: The boxplot of structure attention weights.

5 Conclusion

In this paper, we proposed an SAH-RNN to model multi-scale
behavior sequences derived by web page structures. The sub-
ordinate relations of web page structures guided the update
strategy of the network. A dual attention mechanism was
devised to learn interactions among the multi-scale behav-
iors and simultaneously capture users’ global and local in-
tentions. Experimental results on the large-scale real-world
dataset demonstrate the effectiveness of the proposed model.
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