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Abstract

The study of multi-type Protein-Protein Interaction
(PPI) is fundamental for understanding biological
processes from a systematic perspective and reveal-
ing disease mechanisms. Existing methods suf-
fer from significant performance degradation when
tested in unseen dataset. In this paper, we investi-
gate the problem and find that it is mainly attributed
to the poor performance for inter-novel-protein in-
teraction prediction. However, current evaluations
overlook the inter-novel-protein interactions, and
thus fail to give an instructive assessment. As a re-
sult, we propose to address the problem from both
the evaluation and the methodology. Firstly, we
design a new evaluation framework that fully re-
spects the inter-novel-protein interactions and gives
consistent assessment across datasets. Secondly,
we argue that correlations between proteins must
provide useful information for analysis of novel
proteins, and based on this, we propose a graph
neural network based method (GNN-PPI) for bet-
ter inter-novel-protein interaction prediction. Ex-
perimental results on real-world datasets of differ-
ent scales demonstrate that GNN-PPI significantly
outperforms state-of-the-art PPI prediction meth-
ods, especially for the inter-novel-protein interac-
tion prediction.1

1 Introduction
Protein-protein Interactions (PPIs) play an important role
in most biological processes. In addition to direct physi-
cal binding, PPI also has many other, indirect ways of co-
operation and mutual regulation, such as exchange reaction
products, participate in signal relay mechanisms, or jointly
contribute toward specific organismal functions [Szklarczyk
et al., 2016]. It can be said that the study of PPIs and their in-
teraction types are essential toward understanding cellular bi-
ological processes in normal and disease states, which in turn
facilitate the therapeutic target identification and novel drug

1Codes are available at https://github.com/lvguofeng/GNN PPI
Extended version https://arxiv.org/abs/2105.06709

Figure 1: Results of PIPR (baseline) and GNN-PPI (ours) when
trained on the smaller dataset SHS148k and tested on the larger
STRING dataset. The metric is micro F1 score for multi-label PPI
type prediction. Avg is the overall result of the testset. For further in-
vestigation, we divide the testset into BS, ES and NS subsets, where
BS denotes Both of the pair proteins in interaction were Seen during
training, ES denotes Either (but not both) of the pair proteins was
Seen, and NS denotes Neither proteins were Seen during training.
We regard ES and NS as inter-novel-protein interactions.

design [Skrabanek et al., 2008]. There are many experimen-
tal methods to detect PPI, where the most conventional and
widely used high-throughput methods are yeast two-hybrid
screening [Fields and Song, 1989]. However, the experiment-
based methods are expensive and time-consuming, but more
importantly, even if a single experiment has detected PPI, it
cannot fully interpret its types [De Las Rivas and Fontanillo,
2010]. Evidently, we urgently need reliable computational
methods that are learned from the accumulated PPI data to
predict the unknown PPIs accurately.

Despite long-term research works [Guo et al., 2008;
Hashemifar et al., 2018; Chen et al., 2019] make notice-
able progress, existing methods suffer from significant perfor-
mance degradation when tested on unseen dataset. Take the
state-of-the-art model PIPR [Chen et al., 2019] as an exam-
ple, compared tested on trainset-homologous SHS148k test-
set with on a larger STRING testset, micro F1 score drops
from 92.42 to 53.85. For further investigation, we divide the
STRING testset into BS, ES and NS subsets, where BS de-
notes Both of the pair proteins in interaction were Seen during
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training, ES denotes Either (but not both) of the pair proteins
was Seen, and NS denotes Neither proteins were Seen dur-
ing training. As clearly shown in Figure 1, poor performance
in the ES and NS subsets (collectively termed as inter-novel-
protein interactions in this paper) is the main reason for the
performance degradation.

On the other hand, current evaluations on the trainset-
homologous SHS148k testset apply a protein-irrepective per-
interaction randomized strategy to divide the trainset and test-
set, and consequently, BS comprises over 92% of the whole
testset1 and dominates the overall performance. The evalu-
ations overlook the inter-novel-protein interactions, and are
thus not instructive for the performance when tested on other
datasets. As a result, in this paper we firstly design a new
evaluation framework with two per-protein randomized data
partition strategies. Instead of simple protein-independent
randomization, we take also into consideration the distance
between proteins and utilize Breadth-First and Depth-First
Search methods to construct the testset. Comparison exper-
iments between the trainset-homologous testset and the un-
seen STRING testset demonstrates the proposed evaluation
can give consistent assessment across datasets.

Besides the evaluation, for the methodology existing works
take PPIs as independent instances. Correlations between
proteins have long been ignored. Intuitively, for predicting
the type of interaction between protein A and B, the inter-
action between protein A and C, as well as B and C must
provide useful information. The correlations can be naturally
modeled and excavated with a graph, where proteins serve
as the nodes and interactions as the edges. In this paper, the
graph is processed with a graph neural network based model
(GNN-PPI). As demonstrated in Figure 1, the introduction of
correlations and the proposed GNN-PPI model have largely
narrow the performance gap between BS, ES and NS subsets.

In summary, the contribution of this paper is three-fold:

1. We design a new evaluation framework that fully re-
spects the inter-novel-protein interactions and give con-
sistent assessment across datasets.

2. We propose to incorporate correlation between proteins
into the PPI prediction problem. A graph neural network
based method is presented to model the correlations.

3. The proposed GNN-PPI model achieves state-of-the-art
performance in real datasets of different scales, espe-
cially for the inter-novel-protein interaction prediction.

2 Related Work
The primary amino acid sequences are confirmed to con-
tain all the protein information [Anfinsen, 1972] and are ex-
tremely easy to obtain. Thus, there is a longstanding in-
terest in using sequence-based methods to model protein-
related tasks. The research work of PPI prediction and clas-
sification can be summarized into two stages. The early re-
search is based on Machine Learning (ML) [Guo et al., 2008;
Wong et al., 2015; Silberberg et al., 2014; Shen et al.,
2007]. These methods provide feasible solutions, but their
performance is limited by the PPI feature representation and
model expressiveness. Deep Learning (DL) has recently been

widely used in bioinformatics problems due to its power-
ful expressive ability, including PPI prediction and classifi-
cation. These works [Li et al., 2018; Hashemifar et al., 2018;
Chen et al., 2019; Sun et al., 2017] typically use Convolu-
tion Neural Networks or Recurrent Neural Networks to ex-
tract features from the amino acid sequence of the protein.

More recent work has focused on the feature representation
of proteins. [Saha and others, 2020] proposes a novel deep
multi-modal architecture, which extracts multi-modal infor-
mation from protein structure and existing text information
in biomedical literature. [Nambiar et al., 2020] proposes a
Transformer based neural network to generate proteins pre-
trained embedding. In the latest research, [Yang et al., 2020]
considers the correlation of PPIs and first proposed to use
GCN[Kipf and Welling, 2016] to learn protein features in the
PPI network automatically. However, their work cannot be
extended to the multi-label PPI classification.

To the best of our knowledge, the current work of PPI has
not been concerned with the problems of inter-novel-protein
interactions. However, In the field of Drug-drug Interaction
(DDI), [Deng et al., 2020] mentioned that the testset is di-
vided according to whether the drug was seen during training,
and the results show that the performance for the inter-novel-
drug interactions is extremely degraded, but the original pa-
per does not propose a solution.

3 Methodology
3.1 Problem Formulation
Suppose we have protein set P = {p0, p1, ..., pn} and PPI set
X = {xij = {pi, pj}|i 6= j, pi, pj ∈ P , I(xij) ∈ {0, 1}}. I
is the PPI indicator function, if I(xij) = 1, then it means
that protein pi interacts with protein pj . Note that when
I(xij) = 0, it may mean that protein pi and pj will not
interact, or they have a potential interaction while it has
not been discovered so far. In order to avoid unnecessary
errors, we will not do any operation on unknown protein
pairs (default ∀xij ∈ X , I(xij) = 1). We define PPI la-
bel space as L = {l0, l1, ..., ln} with n possible interac-
tion types. For each PPI xij , its labels is represented as
yij ⊆ L. In summary, the multi-type PPI dataset is defined
as D = {(xij , yij)|xij ∈ X}. Considering the correlation of
PPIs, we use protein as nodes and PPIs as edges to build the
PPI graph G = (P,X ).

The task of multi-type PPI learning is to learn a model
F : x → ŷ from the training set Xtrain. For any protein pair
xij ∈ Xtest, the modelF predict ŷij as the set of proper labels
for xij . The above-mentioned Xtrain and Xtest are obtained
from X based on the evaluation, where Xtrain + Xtest = X .
Further, according to whether protein pwas seen during train-
ing, the protein set P is divided into known Pv =

⋃
Xtrain

and unknown Pu = P − Ptrain. Moreover, as mentioned
in section 1, Xtest can be divided into XBS,XES, and XNS,
which defined as follows:

XBS = {xij |xij ∈ Xtest, pi, pj ∈ Pv}
XES = {xij |xij ∈ Xtest, pi ∈ Pu, pj ∈ Pv

or pj ∈ Pu, pi ∈ Pv}
XNS = {xij |xij ∈ Xtest, pi, pj ∈ Pu}
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Figure 2: Development and evaluation of the GNN-PPI framework. Pairwise interaction data are firstly assembled to build the graph, where
proteins serve as the nodes and interactions as the edges. The testset is constructed by firstly selecting the root node and then performing
the proposed BFS or DFS strategy. The model is developed by firstly performing embedding for each protein to obtain predefined features,
then processed by Convolution, Pooling, BiGRU and FC modules to extract protein-independent encoding (PIE) features, which are finally
aggregated by graph convolutions and arrive at protein-graph encoding (PGE) features. Features of the pair proteins in interaction are
multiplied and classified, supervised by the trainset labels.

Since inter-novel-protein interactions are the main bottle-
necks, we require the testset Xtest of the evaluation frame-
work to meet condition |XBS| � |XES|+ |XNS|. Our goal is
that under this evaluation, the model F learned from Xtrain

can accurately predict the multi-label label of PPI in Xtest.

3.2 Overview
The GNN-PPI framework and evaluation are shown in Fig-
ure 2. We will introduce GNN-PPI from the following three
aspects. First is Evaluation Framework. We propose two
sets of heuristic data partition schemes based on the PPI net-
work, and the generated testset meets the conditions |XBS| �
|XES|+ |XNS|. Secondly, Protein feature encoding. We de-
sign Protein-Independent Encoding (PIE) and Protein-Graph
Encoding (PGE) modules to encode protein features. The last
is Multi-label PPI prediction. For unknown PPIs, we com-
bine their protein feature encoded by the previous process,
calculate their scores in different PPI types, and output its
multi-label prediction.

3.3 Evaluation Framework
Generally, existing machine learning algorithms usually ran-
domly divide part of the dataset as a testset to evaluate the per-
formance of the model. However, in the PPI-related tasks, we
have the following Corollary, derived from Erdős–Rényi(ER)
random graph model. [ERDdS and R&wi, 1959; Erdős and
Rényi, 1960]:
Corollary 1. Randomly divide the PPI dataset, select t ≤ 0.2
as the testset, then most of the proteins in the testset were seen
in training.

Root node

(b) BFS
Root node

(c) DFS

Unknown Protein

𝒳!"#$%
𝒳&'

𝒳('
𝒳)'

(a) Random

Known Protein

Figure 3: Examples of different testset construction strategies. Ran-
dom is the current scheme, while Breath-First Search (BFS) and
Depth-First Search (DFS) are the proposed schemes.

The detailed proof of the corollary is elaborated in the ex-
tended version1. It can be inferred from this corollary that the
performance of the testset obtained by random division only
reflects the predictive ability of the PPI between known Pv .
In the real world, there are still many proteins and their PPIs
that have not been discovered. We perform empirical stud-
ies by comparison of two different time points, 2021/01/25
and 2020/04/11, of the Homo sapiens subset of BioGRID
database. We found that the newly discovered proteins exhibit
some BFS-like or DFS-like local patterns. Even if the PPIs
have been discovered, most of their types remain relatively
unexplored. Therefore, we need a brand-new evaluation that
can reflect the model’s predictive performance on the inter-
novel-protein interactions. The next content will introduce
the evaluation framework we design.

We design two heuristic evaluation schemes based on the
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Algorithm 1 Data Partition Algorithm
Input: Protein set P; PPI set X ; Testset size N ; Root node
selection threshold t; Search order S ∈ {BFS,DFS};
Output: Xtrain; Xtest;

1: Build PPI graph G = (P,X )
. Root node selection

2: repeat
3: Randomly select a protein as root node proot.
4: until |N (proot)| < t . N returns the neighbors
. Testset construction

5: Xtest = ∅, pcur = proot
6: repeat
7: Xcur = {{pcur, pk}|pk ∈ N (pcur)}
8: Xtest = Xtest ∪ Xcur

9: pcur = Search Next(G, pcur,S)
10: until |Xtest| ≥ N

. Trainset construction
11: Xtrain = X − Xtest

12: return Xtrain,Xtest

PPI network, namely BFS and DFS. They simulated two sce-
narios of unknown proteins Pu in reality:

1. Pu interact tightly with each other, and they exist in the
form of clusters in the PPI network (See Figure 3 (b)).

2. Pu are sparsely distributed in the PPI network and have
little interaction with each other (See Figure 3 (c)).

We select a root node proot, fix the size of the testset N , and
then use the Breadth-First Search (BFS) algorithm in the PPI
network to obtain the proteins Pu that meet the scenario 1.
All PPIs related to these proteins are the generated testset.
For scenario 2, we just need to simply randomly select pro-
teins to form Pu. However, in order to maintain the PPI net-
work connectivity of Xtrain and Xtest, we use the Depth-First
Search (DFS) algorithm to simulate. The details of the data
partition algorithm are shown in Algorithm 1, where we will
not show the details of the BFS and DFS algorithms but use
the Search Next function to return the next protein of the
current protein pcur in different search algorithms. TheN (p)
returns all neighbors of protein p. And we controls the degree
of the root node |N (proot)| < t to simulate newly discovered
proteins (Usually few proteins interact with them).

3.4 Protein Feature Encoding
Previous work [Chen et al., 2019] has proved that protein
features based on the amino acid sequence are beneficial to
the performance improvement of PPI-related tasks. There-
fore, we design a Protein-Independent Encoding (PIE) mod-
ule, which contains Conv1d with pooling, BiGRU, and fully
connected (FC) layer, to generate protein feature representa-
tions as input to the PPI network.

The subsequent Protein-Graph Encoding (PGE) module is
the core of GNN-PPI. Inspired by PPI network being widely
used in bioinformatics computing, we construct PPI network
G = (P,X ), and convert the original independent learning
tasks F(xij |pi, pj , θ)→ ŷij into graph-related learning tasks
F(xij |G, θ) → ŷij . Recently, GNN is the most effective

graph representation learning method, its main idea is the re-
cursive neighborhood aggregation scheme, where each node
computes a new feature by aggregating the previous features
of its neighbor nodes. After k iterations, a node is represented
by its transformed feature, which captures the structural infor-
mation within the node’s k-hop neighborhood. More specifi-
cally, the GNN of the k-th iteration is

akp = Agg
(
{gk−1p′ |p′ ∈ N (p)}

)
, gkp = Update

(
{gk−1p , akp}

)
where gkp is the feature of node p at the k-th iteration. The
design of Agg(·) and Update(·) are the keys to different GNN
architectures. In this paper we use Graph Isomorphism Net-
work (GIN) [Xu et al., 2018], where the sum of the neighbor
node features is used as the aggregation function, and multi-
layer perceptrons (MLPs) is used to update the aggregated
features. Then, GIN updates node features as

gkp = MLPk
(
(1 + εk) · gk−1p +

∑
p′∈N (p)

gk−1p′

)
where ε can be a learnable parameter or a fixed scalar.

3.5 Multi-Label PPI Prediction
With the feature of protein learned from the previous stages
for the PPI xij , we use the dot product operation to combine
the features of pi and pj , and then use a fully connected layer
(FC) as classifier for multi-label PPI prediction, expressed as
ŷij = FC(gpi · gpj ). The PIE and PGE modules are jointly
training in an end-to-end way. Given a training set Xtrain and
its ground-truth multi-label interaction Ytrain, we can use the
multi-task binary cross-entropy as the loss function:

L =

n∑
k=0

( ∑
xij∈Xtrain

−ykij log ŷkij − (1− ykij) log(1− ŷkij)
)
.

Different from the algorithm that considers PPI indepen-
dently, GNN-PPI learns to combine protein neighbors to gen-
erate feature representations. Therefore, for the Xtest con-
structed by our proposed BFS or DFS, GNN-PPI can also be
based on its neighbors to generate suitable feature represen-
tations for multi-type PPI prediction. On the other hand, even
if the PPI network G′ = (Pv,Xtrain) used in the training pro-
cess is constructed with only Xtrain, it can perform well for
unknown PPI xij ∈ Xtest. (See details in Table 4)

4 Experiment
4.1 Dataset
We use multi-type PPI data from the STRING database2

[Szklarczyk et al., 2019] to evaluate our proposed GNN-PPI.
The STRING database collected, scored, and integrated most
publicly available sources of protein-protein interaction infor-
mation and built a comprehensive and objective global PPI
network, including direct (physical) and indirect (functional)
interactions. In this paper, we focus on the multi-type classifi-
cation of PPI by STRING. It divides PPI into 7 types, namely
reaction, binding, post-translational modifications (ptmod),

2https://string-db.org/
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Dataset Partition Methods
Scheme SVM RF LR DPPI DNN-PPI PIPR GNN-PPI

SHS27k
Random 75.35±1.05 78.45±0.88 71.55±0.93 73.99±5.04 77.89±4.97 83.31±0.75 87.91±0.39

BFS 42.98±6.15 37.67±1.57 43.06±5.05 41.43±0.56 48.90±7.24 44.48±4.44 63.81±1.79
DFS 53.07±5.16 35.55±2.22 48.51±1.87 46.12±3.02 54.34±1.30 57.80±3.24 74.72±5.26

SHS148k
Random 80.55±0.23 82.10±0.20 67.00±0.07 77.48±1.39 88.49±0.48 90.05±2.59 92.26±0.10

BFS 49.14±5.30 38.96±1.94 47.45±1.42 52.12±8.70 57.40±9.10 61.83±10.23 71.37±5.33
DFS 58.59±0.07 43.26±3.43 51.09±2.09 52.03±1.18 58.42±2.05 63.98±0.76 82.67±0.85

STRING
Random - 88.91±0.08 67.74±0.16 94.85±0.13 83.08±0.11 94.43±0.10 95.43±0.10

BFS - 55.31±1.02 50.54±2.00 56.68±1.04 53.05±0.82 55.65±1.60 78.37±5.40
DFS - 70.80±0.45 61.28±0.53 66.82±0.29 64.94±0.93 67.45±0.34 91.07±0.58

Table 1: Performance of GNN-PPI against comparative methods over different datasets and data partition schemes. The reported results are
mean±std micro-averaged F1 score over three repeated experiments. Results of SVM on STRING is omitted for unafforable running time.

activation, inhibition, catalysis, and expression. Each pair of
interacting proteins contains at least one of them. [Chen et
al., 2019] randomly select 1,690 and 5,189 proteins from the
Homo sapiens subset of STRING that shares < 40% of se-
quence identity to generate two subsets, namely SHS27k and
SHS148k, which contain 7,624 and 44,488 multi-label PPIs.
At the same time, we use all PPIs of Homo sapiens as our
third dataset, namely STRING, which contains 15,335 pro-
teins and 593,397 PPIs. We will use these three PPI datasets
of different sizes to evaluate GNN-PPI and other PPI methods
in the following content.

4.2 Experimental Details
Experimental Settings and Metrics
We select 20% of PPIs for testing, using our proposed BFS,
DFS, and original evaluation (Random). The BFS or DFS
partition algorithm has completely different results for differ-
ent root nodes. To simulate the realistic scene mentioned in
Section 3.3, the root node’s degree should not be too large.
We set the root node degree threshold t = 5. To eliminate
the influence of the randomness of data partitioning on the
performance of PPI methods, we repeat experimental results
under 3 different random seeds. We use the protein features
based on amino acid sequence, refer to [Chen et al., 2019]
using embedding method to represent each amino acid1. We
adopt Adam algorithm [Kingma and Ba, 2014] to optimize
all trainable parameters. The other hyper-parameters settings
are shown in the extended version1.

We evaluate the multi-label PPI prediction performance us-
ing micro-F1. This is because micro-averaging will empha-
size the common labels in the dataset, which gives each sam-
ple the same importance. Since the different PPI types in the
datasets we used are very imbalanced, micro-F1 may be pre-
ferred.

Baselines
We compare GNN-PPI against a variety of baselines, which
can be categorized as follows:

1. Machine Learning based: We choose three represen-
tative machine learning (ML) algorithms, SVM [Guo et al.,
2008], RF [Wong et al., 2015], and LR [Silberberg et al.,
2014]. The input feature of the algorithms uniformly selects
common handcrafted protein features, AC [Guo et al., 2008]
and CTD [Du et al., 2017], of which CTD use seven attributes
for the division1.

2. Deep Learning based: We choose three representa-
tive deep learning (DL) algorithms in PPI prediction, PIPR
[Chen et al., 2019], DNN-PPI [Li et al., 2018] and DPPI
[Hashemifar et al., 2018]. We construct the same architec-
ture and hyper-parameters settings as the original papers and
modify the output of the original implementation from a bi-
nary class to multi-label. The protein input feature based on
the amino acid sequence is consistent with GNN-PPI.

4.3 Results and Analysis
Table 1 compares the performance of different methods un-
der different evaluations and different datasets. Firstly, con-
sider the impact of different evaluations, we can see that
any method in Table 1 perform well under Random partition.
However, under BFS or DFS partition, except for GNN-PPI,
the performance of other methods declines clearly. Moreover,
the performance under the DFS is generally higher than that
of the BFS, which means that the clustered distribution of un-
known proteins in the PPI network is harder to learn than dis-
crete distribution. Next, observe the performance on different
datasets. Regardless of the evaluations, the performance of
any method will improve as the data size increases. However,
the problems mentioned above will not be trivially solved by
increasing the amount of data. Finally, comparing different
methods, we can see that DL-based methods are generally
better than ML-based, and GNN-PPI can achieve state-of-
the-art performance. However, under the Random partition,
the advantage of GNN-PPI over DL-based methods will be
smaller as the dataset size increases. The most prominent ad-
vantage of GNN-PPI is that under the BFS or DFS partition,
and for the inter-novel-protein interactions, it can still learn
useful feature representations from protein neighbors so as
to obtain good performance in PPI prediction. In summary,
the experimental results show that GNN-PPI can effectively
improve the prediction accuracy of inter-novel-protein inter-
actions. However, how to further push the performance to be
comparable as Random partition is still a problem worthy of
further discussion, and it is also our future work.

We make a more in-depth analysis of performance between
PIPR and GNN-PPI on Xtest, as shown in Table 2. Observ-
ing the proportions of different subsets of the testset, we can
find that under Random partition, more than 92% test sam-
ples belong to XBS, which is consistent with our corollary 1.
PIPR performs well on the randomly divided testset (81.58 in
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Dataset
Partition XBS XES XNS XAvg

Scheme PIPR GNN-PPI PIPR GNN-PPI PIPR GNN-PPI Proportion(BS/ES/NS) PIPR GNN-PPI

SHS27k
Random 83.12 88.31 64.48 74.28 35.29 33.33 92.2 7.5 0.3 81.58 87.11

BFS - - 44.92 68.08 30.34 46.25 0.0 72.6 27.4 40.92 62.10
DFS - - 58.25 72.22 48.77 63.22 0.0 88.6 11.4 57.17 71.19

SHS148k
Random 92.82 92.24 78.80 73.09 40.72 36.36 97.2 2.7 0.1 92.42 91.68

BFS - - 62.80 72.51 73.82 77.02 0.0 69.7 30.3 66.13 73.88
DFS - - 64.17 83.37 55.51 73.08 0.0 91.9 8.1 63.47 82.54

STRING
Random 94.32 95.42 61.65 77.68 33.33 57.14 99.7 0.3 0 94.23 95.37

BFS - - 56.71 83.99 39.87 72.83 0.0 85.8 14.2 54.31 82.41
DFS - - 68.61 90.38 55.22 87.07 0.0 94.3 5.7 67.84 90.19

Table 2: In-depth analysis between PIPR and GNN-PPI over BS, ES and NS subsets.

Methods Trainset Testset Partition Scheme
Random BFS DFS

PIPR
SHS27k-Train

SHS27k-Test 81.58 40.92 57.17
STRING 42.79 48.55 57.44

SHS148k-Train
SHS148k-Test 92.42 66.13 63.47

STRING 53.85 63.74 62.46

GNN-PPI
SHS27k-Train

SHS27k-Test 87.11 62.10 71.19
STRING 66.85 66.39 67.43

SHS148k-Train
SHS148k-Test 91.68 73.88 82.54

STRING 73.12 67.43 70.64

Table 3: Performance comparison of tested on trainset-homologous
testset vs. unseen testset, under different evaluations.

SHS27k, 92.42 in SHS148k, and 94.23 in STRING), but if we
further investigate the testset, we will find that PIPR performs
very poorly for inter-novel-protein interactions (xij ∈ XES or
XNS), but it is dominated by XBS, which has accurate per-
formance and a high proportion. According to the results
of Table 1 and Table 2, with sufficient XES and XNS data,
we can assert that the methods which treats PPI as an in-
dependent sample (represented by PIPR), cannot accurately
predict inter-novel-protein interactions. On the contrary, our
proposed GNN-PPI can still perform well under BFS and
DFS. Moreover, as the data size increases, the performance
of GNN-PPI is better (e.g., 82.41 vs. 54.31 in STRING-BFS
and 90.19 vs. 67.84 in STRING-DFS).

Next, we study the ability of different evaluations to
assess the model’s generalization. We take the trained
model’s test performance on the larger dataset STRING as
the model’s true generalization ability. If the gap between the
trainset-homologous test performance and the generalization
is smaller, then the evaluation can better reflect the model’s
generalization. The experimental results are shown in Ta-
ble 3. It can be seen that the previous evaluation (Random),
whether it is for PIPR or GNN-PPI, the test performance on
the STRING dataset has severely dropped. Like our specula-
tion, it cannot reflect the generalization of the model. On the
contrary, under the evaluation of BFS or DFS, its test perfor-
mance can truly reflect the performance of the model, no mat-
ter it is good or bad (e.g. 66.13 vs. 63.74 in PIPR-SHS148k-
BFS and 71.19 vs. 67.43 in GNN-PPI-SHS27k-DFS). In fact,
the testset obtained by BFS or DFS is theoretically the same
as the sample tested on STRING. The only difference is the
proportion of different types of PPI (BS, ES and NS). Testing

Partition Graph Dataset
Scheme SHS27k SHS148k STRING

BFS GCA 63.81±1.79 71.37±5.33 78.37±5.40
GCT 60.61±5.32 69.56±6.89 73.23±3.93

DFS GCA 74.72±5.26 82.67±0.85 91.07±0.58
GCT 73.42±5.50 80.35±2.20 89.04±1.06

Table 4: Performance of GNN-PPI with different PPI Graph con-
struction method.

On the STRING, the proportion of NS is higher.
Finally, we study the impact of the PPI network graph con-

struction method (mentioned in 3.5) in the GNN-PPI. There
are two graph construction methods, graph construct by all
data (GCA, G = (P,X )) and graph construct by trainset
(GCT, G = (Pv,Xtrain)). The experimental results are shown
in Table 4. It can be seen that the performance of GCA
all exceeds that of GCT, which is reasonable because the
graph construction of GCA accesses more complete informa-
tion than GCT. Compared with BFS, in the case of DFS, the
performance of GCT is closer to GCA, which seems to indi-
cate that the protein neighbors are more complete, the perfor-
mance will be better. What is more noteworthy is that GCT
is still much higher than non-graph algorithms, which shows
the superiority of GNN in processing the few-shot learning
for multi-label PPI prediction task. Moreover, for unknown
proteins, we often cannot know their neighbors in advance.
The effectiveness of GCT shows that the trained model is ro-
bust to newly discovered proteins and their interactions.

5 Conclusion
In this paper, we study the significant performance degrada-
tion of existing PPI methods when tested in unseen dataset.
Experimental results show that this problem is due to the poor
performance of the model for inter-novel-protein interactions.
However, current evaluation overlook the inter-novel-protein
interactions, and are thus not instructive for the performance
when tested on unseen datasets. Therefore, we design a new
evaluation framework with two per-protein randomized data
partition startegies, namely BFS and DFS, and propose a
GNN based method GNN-PPI to model the correlations be-
tween PPIs. Our experimental results show that GNN-PPI
outperforms state-of-the-art PPI prediction methods regard-
less of the evaluation is original or our proposed, especially
for the inter-novel-protein interactions prediction.
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