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Abstract

Stock trend prediction is a challenging task due
to the non-stationary dynamics and complex mar-
ket dependencies. Existing methods usually regard
each stock as isolated for prediction, or simply de-
tect their correlations based on a fixed predefined
graph structure. Genuinely, stock associations stem
from diverse aspects, the underlying relation sig-
nals should be implicit in comprehensive graphs.
On the other hand, the RNN network is mainly
used to model stock historical data, while is hard
to capture fine-granular volatility patterns implied
in different time spans. In this paper, we propose
a novel Hierarchical Adaptive Temporal-Relational
Network (HATR) to characterize and predict stock
evolutions. By stacking dilated causal convolutions
and gating paths, short- and long-term transition
features are gradually grasped from multi-scale lo-
cal compositions of stock trading sequences. Par-
ticularly, a dual attention mechanism with Hawkes
process and target-specific query is proposed to de-
tect significant temporal points and scales condi-
tioned on individual stock traits. Furthermore, we
develop a multi-graph interaction module which
consolidates prior domain knowledge and data-
driven adaptive learning to capture interdependen-
cies among stocks. All components are integrated
seamlessly in a unified end-to-end framework. Ex-
periments on three real-world stock market datasets
validate the effectiveness of our model.

1 Introduction

With continual increase of market capitalization, trading of
financial securities like stocks has become an important in-
vestment avenue [Ding et al., 2020]. However, stock trend
prediction is difficult due to the complex dynamics and de-
pendencies of involved corporations. With the rise of artificial
intelligence technology, many works about automatic classi-
fication or regression of stock prices have been proposed to
help investors make better decisions [Feng et al., 2019].
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Figure 1: Temporal-relational views of stock trend prediction. The
stock graph can be built from various relationships, where each node
use historical time series as input.

Traditional approaches for stock trend prediction are based
on time series analyses using machine learning algorithms
such as ARIMA, SVM and Kalman Filters [Nayak et al.,
2015; Khaidem et al., 2016]. Recently deep neural net-
works show promising capability of distilling complicated
hidden features of stock data [Chen et al., 2018; Ding et al.,
2020]. While having exhibited performance improvements,
most current methods face limitations in fully exploiting the
temporal and relational characteristics of stock market.

A basic assumption of stock trend prediction is that clues
of a stock’s future change can be revealed from its historical
dynamic patterns. As a natural choice, RNN structures are
commonly-used to model the stock evolution history (e.g.,
daily technical records) and update memory states sequen-
tially [Qin et al., 2017; Zhang et al., 2017; Wang et al., 2020].
Nevertheless, the RNNs are ineffective to capture long-term
dependences as well as fine-grained feature units of local
time spans (e.g., three time steps). Since stock fluctuations
are not only conditioned on global profiles but on mixtures
of long- and short-term transition regularities, it may hinder
precise discrimination of stock trends without localized fea-
ture perceptions. Besides, the training process of RNN-based
approaches is usually time-consuming and may suffer from
gradient vanishing. In contrast, CNNs are able to model lo-
cal signals and generate high-order representations [Fawaz et
al., 2019], while the parameters will increase rapidly to cover
long-term receptive fields along deep encoding layers.
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On the other hand, different from general time series clas-
sification problems, the evolving trend of stock market has
significant internal dependencies, i.e., related stocks tend
to exhibit synchronous change patterns, furnishing auxiliary
clues to facilitate individual stock prediction. However, cur-
rent studies mostly treat each stock as isolated for predic-
tion [Ding et al., 2020; Wang et al., 2020], or detect their
relations simply based on heuristic rules [Lai et al., 2017] or
a prior-fixed graph structure [Chen et al., 2018]. Genuinely,
stock associations may stem from various aspects. Figure 1
depicts the price curves of stock objects with different rela-
tionships. SIS (Stock-Industry-Stock) and SHS (Stock-Holder-
Stock) refer to stocks belonging to the same industry or held
by the same top shareholders respectively. As a result of
COVID-19 outbreak, Kangtai and Hualan which are biomed-
ical related stocks demonstrate conspicuous upward trends.
Highly similar fluctuation patterns also exist between China
Avionics Systems and Avicopter Plc, both of which are held
by JonHon, a China’s leading aviation manufacturer. More
generally, a stock vertex may connect to multiple neighbors
via different dependency semantics, imposing the necessity
of handling stock correlations with multi-graph settings.

In this paper, we propose a novel Hierarchical Adaptive
Temporal-Relational Network (HATR) for stock trend pre-
diction. To remedy the drawbacks of vanilla RNNs and
CNNSs in temporal modeling, we encapsulate multi-scale di-
lated causal convolutions [Yu and Koltun, 2016] and gating
paths [Dauphin et al., 2017] in a unified module to extract lo-
cal and long-term volatility patterns of stock history. With
hierarchical layers, the receptive fields grow exponentially
thereby context features across different time spans are grad-
ually grasped. In light of the unique traits of stocks that some
tend to be stable while others are highly volatile, we further
introduce a dual attention mechanism with Hawkes process
and target-specific query to detect significant temporal points
and scales to customize stock representations. For the rela-
tional view, we explore the stock interdependences via multi-
graph diffusion convolution layers, where the adjacency ten-
sors are built from domain knowledge as well as data-driven
automatic learning. All components are integrated seamlessly
in an end-to-end framework, predicting the stock movements
effectively. Our contributions can be summarized as:

* We propose a hierarchical temporal module to capture
multi-grained dynamic patterns of stocks. A time- and
scale-wise dual attention mechanism is designed to iden-
tify salient signals with reference to individual traits.

* We develop a multi-graph interaction module to learn
correlations among stocks, for which a data-driven adap-
tive graph is learned to automatically discover hidden de-
pendencies getting rid of prior domain knowledge.

e The temporal-relational modules are jointly trained to
characterize and predict stock evolutions. Experiments
on three real-world stock market datasets validate the ef-
fectiveness and efficiency of the proposed HATR.

2 Related Work

Technical Analysis Conventional financial models focus
on technical analysis, extract price-volume indicators from
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historical transaction data, and use machine learning al-
gorithms such as HMM, SVM, Random Forest to model
stock dynamics [Kavitha et al., 2013; Nayak et al., 2015;
Khaidem et al., 2016]. However, building effective techni-
cal features usually requires massive expertise, and the hypo-
thetical stochastic process may be not optimal for simulating
the highly non-linear and non-stationary fluctuations of stock
markets. Recently deep neural networks have been employed
for stock prediction, where RNN-based models are widely
used to capture the sequential dependencies [Qin et al., 2017,
Shih et al., 2018]. For instance, Qin et al. [2017] enhanced
LSTM with attention mechanisms to extract driving input sig-
nals and hidden states. Zhang et al. [2017] adapted LSTM
with a state frequency memory to discover and regulate the
multi-frequency patterns of stock price changes. Despite ad-
vanced memory cells, these models only store limited infor-
mation while the fine-grained feature signals implied in local
temporal segments are not well captured.

Fundamental Analysis As web information grows, some
researches exploit alternative data besides technical signals
from social media to facilitate the stock prediction [Ding et
al., 2015; Liu et al., 2018; Wang et al., 2020]. For instance,
Ding et al. [2015] introduced a neural tensor network to ex-
tract event embeddings of news to predict stock movement.
Zhao et al. [2016] filtered stock-related microblogs based on
LDA and used a domain lexicon to derive public emotions.
Liu ef al. [2018] improved bi-directional GRU network with
complementary attentions to identify important segments in
financial news. Wang et al. [2020] devised an expert mining
procedure to detect high-quality investment opinions.
Market Relation Modeling A new line of work explores
graph-structured data to capture the interdependencies among
stocks. Lai er al. [2017] figured out related stocks by querying
collaboration and competition on search engines, then used a
graph-cut algorithm for inference based on unary and binary
potentials. Chen et al. [2018] built a corporation graph based
on the shareholding relationship, and turned stock prediction
into node classification issue with Graph Convolutional Net-
work (GCN) [Kipf and Welling, 2017]. Feng et al. [2019]
augmented GCN with LSTM cells to model stock dynamics
and interrelations for investment ranking. Despite progresses
made in graph-based stock trend prediction, they mainly de-
tect stock relations based on heuristic rules or simplistic graph
structures, heavily relying on fixed prior knowledge.

3 Proposed Method

3.1 Problem Formulation

We formulate stock prediction as a binary node classifica-
tion task — discretizing future price movement into Rise or
Fall via synthetic temporal-relational modeling. Let S =
{s1,82,...,8n} denote N individual stocks, the topological
graph is represented as G = (S, &), where & is the set of stock
adjacency relations, €7} € £ indicates the correlated intensity

between s; and s; w.r.t. the m?"-type relation. For each node,
its historical technique signals with lag size of AT constitute
a input tensor X € RAT%ds where d, is the initial feature
dimension. The aim is to predict the label y = I(p;1¢e > p¢),
where p; is stock close price at time step .
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Figure 2: Multi-Scale Temporal Representation module.

The proposed HATR consists of two major modules, i.e.,
a temporal module to customize stock representations from
historical volatilities; the learned node feature matrix is fed
into a relational module to capture stock dependencies. We
present detailed mechanisms in the following sections.

3.2 Multi-Scale Temporal Representation

We introduce a multi-scale temporal representation module to
extract volatility patterns of stock history. The architecture is
shown in Figure 2, which comprises a self-attention layer and
stacked gated causal convolution layers with different dilation
rates. A Hawkes process is adapted to identify salient points
of time axis at each representation layer, and a target-specific
attention query is used for scale-wise aggregation.

Encoding Layers

Given the input time series X7.; of a stock object, we first
adopt a self-attention layer to model intra step-wise depen-
dencies. Each step in X" (query) could be enhanced by attend-
ing to other distant similar steps (keys), where the similarity
is calculated via scaled dot product [Vaswani et al., 2017]:

Q T
Att(Q, K, V) = softmax( VL

where @, K, V are the same tensors as X, a row Att(4) is
a fused vector of the feature sequence weighted by relevance
coefficients with the i-th step. We add residual connection to
update X; = X; + Att(i).

We then consolidate dilated causal convolutions [Yu and
Koltun, 2016] and gated linear units (GLU) [Dauphin et al.,
2017] in skip-connected layers to capture the features of local
contexts. Unlike standard convolution that convolves a con-
tiguous subsequence of input, dilated convolution receives
wider receptive fields by skipping interval “holes”. Given a
kernel K ¢ of size 2w+1, the dilated convolution is:

WV, ey

Kf*Xk:Kf@inp(S’ (2)

p=0

where @ is vector concatenation, ¢ is the dilation rate to con-
trol skipping distance. As depicted, by hierarchically stack-
ing the convolution layers with wider dilation rates, the re-
ceptive field expands exponentially (e.g., [3-7-15] for kernels
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Figure 3: Architecture of Multi-graph Stock Interrelation module.

with size of 3 and dilation rates of [1-2-4]), while the num-
ber of parameters grows only linearly. Thereby the informa-
tion across multi-scale time spans can be gradually harvested
with less layers, which is beneficial to save computational
consumptions and avoid information loss caused by down-
sampling operations. Inspired by the success of gating mech-
anism in RNN structures, we further employ GLU to parcel
the convolutional operations, which provides both linear and
non-linear computational paths to enable effective informa-
tion flow through tiered layers:

GLU(Xk) = (@1 *Xk+b1)®0(@2*)(k+b2), 3)

where ®;, ® are a group of kernels, b; and b, are biases, *
is dilated convolution operator, o is sigmoid function control-
ling the ratio of transmitted information, and ©® is element-
wise product between matrices. Starting with § =1 (equals
to standard convolution) to ensure no loss of coverage on the
input, we devise the dilation rates of L layers based on the
performance in validation. The feature output of layer [ is de-

noted as h(!) = [hﬁl_)nﬂ, .. hY| € Rmxde where d, is
the number of gated convolutions applied per layer.

Time and Scale-wise Dual Attention

Intuitively, historical fluctuation patterns have different rele-
vance on stock’s future evolution. The literature of tempo-
ral point process (e.g., Hawkes process [Laub et al., 2015])
suggests that previous events excite subsequent changes in
continuous time. Studies show that in stock markets, the
impacts of event stream (i.e., release of earning report, pro-
duction reform) decay as time goes [Bacry et al., 2015;
Sawhney et al., 2021]. To this end, we adapt Hawkes pro-
cess for time-wise attention to aggregate sequential features
of each encoding layer. The weight of time step & at the [-th
layer is:

exp(h\"TWh")
> exp (b TWh{")

where W is a harmony matrix, € is excitation coefficient, 7 is
a decay rate and Aty is the lag of time k to current step. The

I-th layer features are summarized as b; = 3 e Ml H)h,(gl).

Ae(l;0) =

X (1 + eeXp(—’yAtk)) , @)
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In light of different dynamic amplitude and frequency of
individual stocks, the transition regularities of different long-
and short-term scales also exhibit varied impacts. We propose
a target-specific attention mechanism to identify the scale-
wise importance. For each stock s, we employ an embedding
layer upon its unique ID to tailor a specific query:

g, = ReLU(V 4 x €5 + by) ®)

where e1.y € RV*9u ig a trainable look-up table randomly
initialized in [-0.1,0.1]. The weights of stacked representation
layers with different feature scales are adaptively computed
with the guidance of target-specific stock query:

eXp(qs h’l)
L AN
> i1 exp(qThy;)

Then the compact representation of each stock is customized
as z = Zle Bihy, all stocks form the tensor Z € RV *dv,

hy = tanh(V by + by), B = (6)

3.3 Stock Interrelation Modeling

Using the tensor derived from temporal module as inputs of
graph nodes, next we present the relational module to spread
information among stocks via multi-aspect relationships.

Graph Construction of Various Relations

As shown in Figure 3, we extract cross effects among a clique
of stocks from three perspectives based on prior knowledge
and automatic learning. For each type of relationship r € R,
an adjacency matrix A, = (a;;) nx n is built for the graph G,.,
indicating the correlated intensity between stock pairs.

(1) Industry Graph Gy The industry concept is essential in
stock markets. Stocks in the same industry usually display a
pronounced lead-lag structure, i.e., some systematically lead
or lag others in the change of returns [Lo and Mackinlay,
2015]. This effect can be explained by the information dif-
fusion hypothesis [Kewei and Hou, 2007] — industry leaders
are more responsive to new messages, which mainly depends
on the firm size and is rather weak for inter-industry. We use
registered capital (C) and turnover (T) to measure the firm
size, and set a;; = C’ + ; between intra-industry stocks.

(2) Topicality Graph Gr: As web information grows, more
hidden topicality associations of listed companies can be
found from online resources. The first- and second-order
linkages on Wikidata [Feng et al., 2019] provide useful clues.

The schema A 2 B indicates that stocks A and B has rela—

tion R such as supplier-consumer, while A By &2
denotes that stocks A and B are connected to entity M,
revealing relations such as owned by the same top share-
holder. Moreover, many social websites enable millions of
investors to post and discuss their portfolios and trading opin-
ions. Stocks co-mentioned in the same review text conform to
user-perceived relevance. We follow [Wang er al., 2020] and
adopt a financial lexicon to discover stock pairs with consis-
tent bullish/bearish semantics, and retain stable correlations
with high co-occurrences. An edge is attached to two match-
ing stocks, weighted by the number of related topicalities.
(3) Self-Adaptive Graph Gy, Inspired by Wu et al. [2019],
predefined graphs that require expert domain knowledge may
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be insufficient for characterizing sophisticated entity relation-
ships. To discover the hidden dependencies of stocks, we fur-
ther introduce two ID embedding dictionaries E,,1, E,5 €
RN *de which are randomly initialized and then tuned during
model training to represent the source and target stock nodes.
In this way, a self-adaptive adjacency matrix is constructed
by judging and normalizing the node similarities:

Agpt = Softmax(ReLU(EnlE%)) - )

Diffusion Graph Convolution

The graph convolutional network (GCN) distributes informa-
tion of neighboring nodes along structured connections. The
state-of-the-art formulation of a GCN propagation layer is:

z® = oAz wg), ®)
where A = D 2AD"%, A = A+ Iy is the adjacency

matrix added with self-loop connections from the identity
matrix, D;; = Zj Aij, W(gk_l) is a layer-wise trainable
weight, and g(-) is the activation operation. Nevertheless, this
function can not handle the relational modeling on multiple
graphs as well as the Industry Lead-Lag graph with asym-
metric adjacency weights. Li et al. [2018] proved that the
stationary distribution of graph signal diffusions can be ex-
pressed as a combination of power series of the transition
matrix. Therefore, the GCN layers can be replaced by dif-
fusion convolutions with K finite steps. Specifically, we
follow [Wu et al., 2019] and divide two transition matrices
with forward and reverse directions Py = A/rowsum(A),

P, = AT /rowsum(AT) for the case of a directed graph,

otherwise we set P = A/rowsum(A). Both hand-crafted
and self-adaptively learned relationships are then jointly en-
coded as follows:

7 - 0| of, PLEWP | v € Ry 1y mapn s ©)

where Pw is the k-power series of the transition matrix of re-
lation type R, & means row-wise concatenation of matrices,
and Oy is the parameter used for a linear mapping.

3.4 Prediction Layer

We integrate the temporal-relational modules in an end-to-
end framework. The stock trend prediction is then reformu-
lated as a node classification problem, which passes the graph
output to dense layers to derive rise/fall probabilities:

Js = o(WhHReLU(W Z, + b)) +by),  (10)

where o is the sigmoid function. Parameters are learned by
minimizing the cross entropy loss over M training samples:

M |S|
- Z Z [Yiv 10g(Jiv) + (1 — i) log(1 — gip)] - (11)
i=1 v=1
4 Experiments

4.1 Dataset and Experimental Setting

We verify HATR on three real-world datasets for comprehen-
sive evaluation. Table 1 shows the detailed statistics. The first
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CSI (China) SPX (US) Topix (Japan)

# Stocks 300 485 95

# Period 2016.05-2020.06  2015.07-2020.02 2015.11-2020.08

# Split Records 683:171:139 787:197:169 814:204:144

Gr Sparsityt 0.9453 0.9474 0.9419

Avg/Max Degree 16.36 /43 25.47/42 546/11

Gr Sparsityt 0.9759 0.9789 0.9178

Avg/Max Degree 7.18 /44 10.23/39 7.72129
#edges

Table 1: Dataset statistics. fComputed by 1 — Frodesx (Fnodes—T)"

dataset comprises stocks from the well-know CSI-300 Com-
posite Index, which replicates the large-cap corporations with
good liquidity in Shanghai & Shenzhen stock exchanges;
The second dataset is targeted at stocks from popular S&P-
500 Composite Index spanning NASDAQ and NYSE mar-
kets that have continuous trading records between 07/2015
and 02/2020; The third dataset [Li et al., 2020] is from Tokyo
Stock Exchange, including 95 stocks with the largest market
capitalization in Japan from the TOPIX-100 Index.

We collect the daily quote data, industry and capital in-
formation from Wind-Financial Terminal'. To mine topical-
ity relations, we detect co-occurrence stock pairs in user re-
views from a popular Chinese investment forum Xuegiu?® for
the CSI dataset, and collect first- and second-order linkages
from Wikidata® for the SPX and Topix datasets. The train-
ing/validation/test sets are strictly split in chronological order
to avoid data leakage problems. For each sample, we look
back 60 consecutive days and predict price change on the next
week. Features used in all datasets consist of split-adjusted
daily open, high, low, close prices and trading volume, which
are normalized following [Feng er al., 2019].

In our experiments, a 4-layer stacking hierarchy with the
dilation list of {1-2-3-4} is employed for temporal represen-
tations. The window size and the number of gated convo-
lution kernels at each layer were set to 3 and 32. The di-
mensions of randomly initialized stock ID embeddings and
node embeddings were set to 20 for Topix and 30 for CSI
and SPX, the target-specific query for attending to important
temporal scales has a dimension of 16. The finite step K for
graph diffusions is set to 2. We apply dropout [Srivastava et
al., 2014] at the end of each layer to mitigate overfitting and
the drop rate is 0.3. Parameters are tuned using Adam opti-
mizer [Kingma and Ba, 2014] on a single NVIDIA TitanXp
GPU for 100 epochs, the learning rate is 0.0005 and the batch
size is 200. We independently repeated each experiment for
5 times and reported average results on ACC, AUC, F1-score
and Matthews Correlation Coefficient (MCC).

4.2 Performance Evaluation
We compare the proposed HATR with following baselines:

* SVM & RF [Nayak et al., 2015; Khaidem et al., 2016]
are two widely used machine learning algorithms applied
for stock prediction based on numeric price indicators.

"https://www.wind.com.cn/en/wft.html
Zhttps://www.xueqiu.com/
*https://www.wikidata.org/
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* DA-RNN [Qin et al., 2017] extracts driving inputs and
relevant states using LSTM with attention mechanisms.

* SFM [Zhang et al., 2017] adapts RNNs with state fre-
quency memory to discover multi-frequency trading pat-
terns leveraging Discrete Fourier Transform (DFT).

* GCN [Kipf and Welling, 2017] takes time series data as
the input of nodes to spread information on stock graph.

e TPA-LSTM [Shih et al., 2018] transforms time-invariant
features of stock dynamics in the frequency domain by
combining attentive LSTM and convolution operations.

* TGC [Feng er al., 2019] uses LSTM to encode stock his-
tory and feeds the last states to GCN to explore relations.

* InceptionTime [Fawaz er al., 2019] is a deep ensemble
of CNN models simulating the Inception-v4 architecture
to extract hierarchical time-series features.

* HMG-TF [Ding et al., 2020] enhances the encoder of
Transformer with Gaussian prior and trading gap splitter
to model the sequential data of each stock.

¢ HATR-MT is a variant of HATR encoding stock time se-
ries by LSTM, w/o multi-scale temporal representations.

* HATR-MR is a variant of HATR, w/o the multi-graph
relational module for capturing stock interdependencies.

The evaluation results of different methods are shown in
Table 2, from which we have several observations: 1) Neural-
based methods (e.g., DA-RNN, HMG-TF, TGC) generally
outperform traditional machine learning models (e.g., SVM
and RF), proving that deep learning frameworks with the abil-
ity to detect complex hidden features are promising for mod-
eling financial data. Note that the advantage of Inception-
Time which adopts deep layers of standard CNNs is not al-
ways significant. As the patterns of stock time series are not
as distinct and regular as in images, using a too huge ensem-
ble architecture may aggravate the problem of overfitting. 2)
Our model achieves conspicuous improvements in terms of
most metrics on all datasets. Compared with the RNN-based
models and those harvesting multiple local features as well
as employing additive attention to learn informative signals,
HATR is about 6.4x faster than DA-RNN, 18.2x faster than In-
ceptionTime and 1.5x faster than HMG-TF in training, which
exhibits the efficiency of the proposed architecture. More-
over, decomposing HATR into HATR-MT and HATR-MR re-
sults in performance degradations, which indicates the syn-
thetic contributions from temporal and relational modules. 3)
Exploiting stock interrelations could usually impose positive
effect on individual trend predictions. GCN directly feeds
time-series indicators as node input for graphs, which is in-
competent without capturing the dependencies cross temporal
steps. Meanwhile HATR-MT generally surpasses 7TGC with
the guidance of multi-relational graphs. Besides, HATR-MR
excels most RNN and CNN adaptations with the help of cus-
tomized multi-scaled temporal representations.

4.3 Analysis

In this section, we conduct further experimental analyses to
understand how different components and hyper-parameters
affect the performance of proposed HATR.


https://www.wind.com.cn/en/wft.html
https://www.xueqiu.com/
https://www.wikidata.org/
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Methods CSI Dataset SPX Dataset Topix Dataset
ACC AUC Fl1 MCC | ACC AUC F1 MCC | ACC AUC F1 MCC
SVM 55.87 5426  54.56 629 | 5427 5215 51.05 455 | 5428 5145 5322  3.68
RF 56.94 5397  56.28 747 | 55.01 5157 5095 4.61 | 5402 5065 54.03 392
DA-RNN 6451 58.17 5872 1205 | 61.18 5534 5552 1330 | 5889 54.66 5629 8.84
SFM 5945 5698  56.90 9.12 | 57.53 5493 5638 988 | 56.51 5332 5569 6.05
TPA-LSTM 63.63 61.23 5849 10.64 | 59.77 57.08 5541 897 | 59.71 56.11 57.23 10.08
InceptionTime || 58.46  56.17  57.16 7.82 | 56.46 5444 56.12  7.07 | 5628 54.04 5871 721
HMG-TF 65.13  59.87 59.03 1327 | 59.06 56.81 57.04 11.50 | 61.55 5623 57.57 9.66
GCNft 6128 59.01 5737 10.89 | 56.78 5428 5397 622 | 57.54 5378 5724 17.03
TGCY 6456 61.26 59.07 12.11 | 5921 5620 5626 10.03 | 61.67 57.83 5821 10.17
HATR-MT 6522 62.06 59.60 1221 | 59.84 5697 5659 11.81 | 63.86 56.87 59.08 9.56
HATR-MR 6597 6228 60.15 1433 | 61.10 5728 57.16 12777 | 62.05 5569 5811 995
HATR 67.70* 63.64* 62.59* 15.19* | 61.47 57.78* 57.80* 13.03 | 65.78" 57.77 62.06* 10.86

Table 2: Evaluation results (x 10~2) on the datasets.  We examine each single type of relational graphs (G 5 91, Gr) in experiments and
report the optimal performance. * The improvement to the best baseline is statistically significant (t-test with p-value <0.01).
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(a) Temporal module ablation (b) Relational module ablation

Figure 4: Component settings in temporal and relational modeling.
Blue- and red-shade stand for results on ACC and F1 separately.

Effect of Temporal and Relational Components. We first
compare ablation variants of the temporal module in HATR,
including using LSTM network as the feature extractor (w/o
stacked encoding layers), alternating max pooling operations
for time-wise aggregation (w/o Hawkes Process), and pre-
serving the output of the last representation layer as input for
graph modeling (wW/o scale-wise attention). From Figure 4a,
the stacking hierarchy and the dual attention mechanism to
focus on salient temporal points and scales jointly contribute
to the performance. Besides, in our experiments the initial
skip-connected self-attention layer in the temporal module
realizes slight enhancements in generating more stable pre-
dictions. As convolutions are able to derive segment features
by local interactions, the self-attention helps to encode global
dependencies among distant time steps in the sequence.

We then investigate ablation effects on the relational mod-
ule with different adjacency configurations. Figure 4b shows
the results of discarding Gy, Gr and G,;,:. We find that mod-
els fed with the adaptive-learned relationship achieve better
performance, and the gain is even more significant than prior-
knowledge based graphs. It inspires us that data-driven graph
modeling could introduce useful information of object hidden
dependencies, especially when prior structure is unavailable
or facing sophisticated scenarios like stock market.

Parameter Analysis. We examine the dimension of ID em-
beddings used to distinguish different stocks for scale-wise
temporal attention and the construction of adaptive adjacency
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Figure 5: Influence of hyper-parameter settings.

matrix. From Figure 5a, the performance first increases with
larger dimension since the traits of stock individuals can be
encoded more sufficiently, then begins to decrease probably
due to overfitting. Figure 5b exhibits the influence of apply-
ing varied numbers of graph layers. The results reveal that the
optimal setting of diffusion steps on all datasets is 2. With the
increment of interaction layers, a node could receive infor-
mation from higher-order neighbors to enhance its represen-
tation. Nevertheless, the situation reverses with a continuous
increment since every nodes in the graph may become over-
smooth. Figure Sc shows the change of F1 score on SPX with
respect to the dilated CNN hierarchy with different numbers
of stacked layers and filters. Given filter channels per layer,
the score improves significantly when the stacked depth is
less than 4. A similar trend exists with increasing number of
filters since more feature patterns may be captured, then the
score declines due to possible overfitting of noise patterns.

Case Study. To understand what is of importance that the
dual attention mechanism learns for temporal representation,
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Figure 6: Visualization of time- and scale-wise dual attention distri-
butions in temporal modeling (snapshot of a training sample).

we further visualize the time- and scale-wise weight distri-
bution in Figure 6. As shown, the highlighted historical pat-
terns as well as latest time steps which exhibit conspicuous
periodic regularities of stock price change received more at-
tentions through the Hawkes process. Specifically, the lower
embedding layers capture short-term dynamic patterns and
higher layers work for detecting long-term trends (e.g., down-
trend at the end of the timeline). Comparing the attentions
payed to different feature scales, the 153" layers were as-
signed higher weights, while the 4‘" layer investigating large-
span temporal signals produced weaker impacts on character-
izing the traits of target stock during the sample period.

5 Conclusion

In this paper, we propose a hierarchical adaptive temporal-
relational network for stock trend prediction. For temporal
view, multi-scale volatility patterns of stock evolution history
are extracted by stacking gated convolution layers with dif-
ferent dilation rates. Important temporal points and scales are
detected via dual attention mechanism conditioned on stock
individual traits. For relational view, we build three types
of graphs based on domain knowledge as well as data-driven
adaptive learning to learn stock correlations. All components
are jointly trained in an end-to-end way. Experiments on three
real-world stock market datasets validate the effectiveness of
our model. In future, we shall explore dynamic heteroge-
neous stock graphs fusing multi-source information like news
events to learn time-evolving market dependencies.
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