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Abstract
Numerical vector aggregation has numerous appli-
cations in privacy-sensitive scenarios, such as dis-
tributed gradient estimation in federated learning,
and statistical analysis on key-value data. Within the
framework of local differential privacy, this work
gives tight minimax error bounds of O( dsnε2 ), where
d is the dimension of the numerical vector and s
is the number of non-zero entries. An attainable
mechanism is then designed to improve from ex-
isting approaches suffering error rate of O( d

2

nε2 )

or O( ds
2

nε2 ). To break the error barrier in the lo-
cal privacy, this work further consider privacy am-
plification in the shuffle model with anonymous
channels, and shows the mechanism satisfies cen-
tralized (

√
14 ln (2/δ) s·e

ε+2s−1
n−1 , δ)-differential pri-

vacy, which is domain independent and thus scales
to federated learning of large models. We experi-
mentally validate and compare it with existing ap-
proaches, and demonstrate its significant error re-
duction.

1 Introduction
With the enacting of increasingly rigid regulations on data pri-
vacy (e.g., the General Data Protection Regulation [Voigt and
Von dem Bussche, 2017] in the Europe Union, the California
Consumer Privacy Act, and the Civil Code of the People’s
Republic of China), local differential privacy (LDP) has be-
come the de facto notion for data privacy preservation over the
Internet. It originates from the classical notion of differential
privacy in the database community [Dwork, 2008] without the
trust of the data aggregator or other third parties. LDP allows
every user/agent to sanitize their personal data locally (e.g.,
on mobile devices, IoT sensors or edge servers) and provides
information-theoretically rigorous privacy protection. Cur-
rently, many giant internet service providers (such as Apple
[Greenberg, 2016], Google [Erlingsson et al., 2014] and Mi-
crosoft [Ding et al., 2017]) are deploying LDP for regulation
compliance when collecting and analyzing user data. As a
remedy to the unacceptable error barrier due to stringent LDP
∗Corresponding author.

constraints, researchers recently introduce shuffle model [Er-
lingsson et al., 2019] where messages from users are permuted
(by a shuffler, e.g., anonymous channels) before sent to the
aggregator. The linkage between users and their messages are
cutted off and messages could hide in the crowd, [Erlingsson
et al., 2019] show privacy is amplified with shuffling, thus a
lower privacy level can be adopted locally to satisfy a relatively
higher privacy level as in the analogised central model.

Plenty of user data are in the form of numerical vectors.
Let xi denote the numerical vector of user i. For simplic-
ity but without loss of generality, xi can be assumed as
a d-dimensional s-sparse ternary vector [Wen et al., 2017;
Ye et al., 2019; Sun et al., 2019; Gu et al., 2020], that is:

X s = {x | x ∈ {−1, 0, 1}d and ‖x‖0 = s}.

This work studies the problem of numerical vector aggrega-
tion within the local and shuffled differential privacy frame-
work. Many real-world data aggregation tasks could be formu-
lated as this problem, such as gradient estimation in federated
learning and sensitive key-value data aggregation for user
profile/usage analyses in online services.

1.1 Federated Gradient Estimation

Federated learning [Konečnỳ et al., 2016] studies machine
learning systems in the distributed setting so that each party
keeps its own data locally for privacy preserving. At each gra-
dient descent iteration for training/updating a machine learning
model, locally computed gradients xi from participating par-
ties (e.g., from n mobile users) need to be averaged by the
federation server (e.g., a parameter server):

x =
1

n

n∑
i=1

xi. (1)

For communication efficiency, local gradients are usually dis-
cretized and sparsified [Wen et al., 2017; Wangni et al., 2018].

The original work [Konečnỳ et al., 2016] deems sharing
gradient to be more privacy-resistant than sharing raw data,
but a recent work demonstrates that the gradient xi is also
privacy risky [Zhu et al., 2019] and local raw data might be
derived with confidence from several transmitted gradients.
This calls for rigid privacy protection on local gradients.
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1.2 Key-value Data Aggregation
We refer to key-value data as any paired (key, value) mappings,
where the key j ∈ [1, d] is an index and the value xj is nu-
merical. Note that, the value is deemed as 0 when and only
when the corresponding key is missing from or not defined in
key-value data. For any existing or defined keys, their corre-
sponding values are binary as {−1, 1}. For example, a user
might represent preferences on watched movies as key-value
data, in which movies the user likes are assigned with value 1
and movies the user unlikes are assigned with value −1.

Common analysis on key-value data includes estimating
both unconditional mean statistics and conditional mean statis-
tics. The unconditional mean estimation about the key j is
xj = 1

n

∑n
i=1 x

i
j , and the conditional mean estimation about

the key j is:

xj =

∑n
i=1 x

i
j

#{xij | xij for i ∈ [1, n] and xij 6= 0} . (2)

1.3 Existing Results
Within the framework of ε-LDP, theoretical minimax lower
bounds for many statistical estimation problems have been es-
tablished, such as multinomial distribution estimation [Duchi
et al., 2013], logistic regression/generalized linear model es-
timation [Duchi et al., 2018] and sparse covariance matrix
estimation [Wang and Xu, 2019]. Specifically, the work
of [Duchi et al., 2018] derives minimax lower bounds for
multi-dimensional mean estimation for numerical vectors with
bounded `1-norm or `2-norm. However, an s-sparse numeri-
cal vector with bounded `1-norm or `2-norm is a special case
of [Duchi et al., 2018] with identical absolute non-zero en-
tries. Whether it holds the same bounds as the general case
or has tighter bounds is still an open question. Recently, for a
broad family of ε-LDP estimation problems that can be cast
as a mean estimation one, the work of [Błasiok et al., 2019]
studies sample complexity lower bounds under certain error
tolerance α, but their sample complexity result for s-sparse
numerical vectors has at least a 1/α gap to ours result of
minimax optimal sample complexity.

Practically, plenty of ε-LDP mechanisms have been pro-
posed for statistical data estimation, such as multinomial dis-
tribution estimation on categorical data [Duchi et al., 2013;
Erlingsson et al., 2014; Kairouz et al., 2016; Wang et al.,
2020b], and one-dimensional mean estimation on numeri-
cal values [Wang et al., 2019; Sun et al., 2020]. For ε-LDP
numerical vector or key-value data aggregation, existing ap-
proaches deal with both dense numerical vectors (e.g., in
[Nguyên et al., 2016; Duchi et al., 2018]) and sparse nu-
merical vectors (e.g., in [Ye et al., 2019; Sun et al., 2019;
Gu et al., 2020]). Specifically, the works of [Ye et al., 2019;
Sun et al., 2019] uniform-randomly select one dimension from
[1, d] and transform the multi-dimensional estimation prob-
lem to a one-dimensional numerical/categorical problem. The
work of [Gu et al., 2020] follows a similar paradigm, but ran-
domly selects one non-empty dimension from s dimensions.
However, as we will show in Section 4, these mechanisms are
sub-optimal.

To mitigate the high noise needed for LDP, [Erlingsson et
al., 2019] introduces a trusted shuffler to hide private views

in the crowd. Recent works [Balle et al., 2020; Ghazi et al.,
2020] propose sending multiple unary/binary messages with
distributed noise to the shuffler for achieving centralized dif-
ferential privacy (CDP), while other works [Cheu et al., 2019;
Balle et al., 2019] study privacy amplification effects for
achieving a lower level of LDP and a higher level of CDP
simultaneously via shuffling. Specifically, [Balle et al., 2019;
Wang et al., 2020a; Liu et al., 2021] utilize the tech-
nique of privacy blanket for privacy amplification on bino-
mial/multinomial distribution estimation. This work further
show domain-independent privacy amplification is achievable
for sparse numerical vector.

1.4 Our Contributions
Minimax Lower Bounds. The MSE lower bound of ε-LDP
s-sparse numerical vector mean estimation is O( dsnε2 ). Our
proof considers s-sparse numerical vectors that are decom-
posable, hence reduces the bounding procedure to cases of
multiple multinomial distribution estimations.
An Optimal Mechanism. Since existing approaches are
sub-optimal, we design a mechanism that matches the mini-
max lower bound. The mechanism has computational com-
plexity of O(s) and communication complexity of O(log s).
Domain-independent Privacy Amplification. For the
shuffle model of s-sparse numerical vector aggregation,
the proposed optimal mechanism satisfies centralized

(
√

14 ln (2/δ) s·e
ε+2s−1
n−1 , δ)-differential privacy. The privacy

loss εc in CDP is independent of domain size d, thus fits feder-
ated learning of large models. In turn, when privacy budget
εc is given, we derive local parameter for optimal utility and
show the proposed mechanism is asymptotic near-optimal in
terms of user population.

The remainder of the paper is organized as follows. Sec-
tion 2 provides preliminary knowledge on local differential
privacy and minimax risk framework of statistical estimation.
The minimax lower bound on the ε-LDP numerical vector
aggregation problem is then given in Section 3. Next, Sec-
tion 4 reviews the design of existing mechanisms and shows
their sub-optimality, and then propose a new mechanism and
prove its optimality. Section 5 shows the proposed mecha-
nism enjoys domain-independent privacy amplification in the
shuffle model, and prove its asymptotic optimality. Later, Sec-
tion 6 demonstrates the superior performance of the proposed
mechanism against existing mechanisms. Finally, Section 7
concludes the paper.

2 Preliminaries
2.1 Differential Privacy
For datasets D, D′ that are of the same size and differ only
in one element, they are called neighboring datasets. The
centralized differential privacy with budget/level (ε, δ) is as
follows.
Definition 1 ((ε, δ)-CDP [Dwork, 2008]). Let DK denote
the output domain, a randomized mechanism K satisfies ε-
differential privacy iff for any neighboring datasets D,D′,
and any outputs z ⊆ DK ,

P[K(D) ∈ z] ≤ exp(ε) · P[K(D′) ∈ z] + δ.
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Let K denote a randomized mechanism for sanitizing a
single user data, the LDP with privacy budget ε is as follows.
Definition 2 (ε-LDP [Duchi et al., 2013]). Let DK denote
the output domain, a randomized mechanism K satisfies local
ε-differential privacy iff for any data pair x,x′ ∈ X s, and any
output z ∈ DK ,

P[K(x) = z] ≤ exp(ε) · P[K(x′) = z].

2.2 Local Private Minimax Risks
Assuming samples {x1, x2, ..., xn} that are n i.i.d. drawn
from a distribution P ∈ P . Let Kε denote the set of all pos-
sible mechanisms K = {K1, ...,Kn} that satisfy ε-LDP for
every sample in {x1, x2, ..., xn}. Taking as input the samples,
some mechanism K ∈ Kε produces a list of sanitized views
{z1, z2, ..., zn}. If the parameter estimator:

θ̂ = θ̂({z1, z2, ..., zn})
is derived from these private views while having no access to
input samples {xj}nj=1, the minimax MSE risk (under privacy
budget ε) is then:

Mn(θ(P), || · ||22, ε)
:= inf

K∈Kε
inf
θ̂

sup
P∈P

Ep,K[||θ̂(z1, z2, ..., zn)− θ(P )||22].

3 Minimax Lower Bounds
The Assouad’s method [Yu, 1997] is a common tool for lower
bounding via multiple hypothesis testings. It defines a hyper-
cube V = {−1, 1}d (d ∈ N), then defines a family of distribu-
tions {Pν}ν∈V indexed by the hypercube, where each Pν is de-
fined on one common space. It’s said that the distribution fam-
ily induces a 2τ -Hamming separation for the loss ||·||22, if there
exists a vertex mapping (a function κ : θ(P) 7→ {−1, 1}d)
satisfying:

||θ − θ(Pν)||22 ≥ 2τ

d∑
j=1

1{[κ(θ)]j 6= νj}.

Assume that the nature first uniform-randomly chooses a vec-
tor V ∈ {−1, 1}d, and the samples {x1, ...,xn} are drawn
from the distribution Pν with V = ν. These samples are
then taken as input into ε-LDP mechanisms K. The litera-
ture [Duchi et al., 2018] gives an ε-LDP version of Assouad’s
method as follows.
Lemma 1 (Private Assouad bound [Duchi et al., 2018]). Let
P+j = 1

2d−1

∑
ν:νj=1 Pν and P−j = 1

2d−1

∑
ν:νj=−1 Pν , we

have

Mn(θ(P), || · ||22) ≥ d · τ [1− (
n(eε − 1)2

2d
FB∞(X s),P)

1
2 ],

where B∞(X s) denote the collection of function γ with supre-
mum norm bounded by 1 as:

B∞(X s) := {γ : X s 7→ R | ||γ||∞ ≤ 1},
and maximum possible discrepancy FB∞(X s),P is defined as:

sup
γ∈B∞(X s)

d∑
i=1

(

∫
X s
γ(x)(dP+j(x)− dP−j(x)))2.

We consider numerical vectors that can be decomposed
the into s buckets, each bucket has d

s indexes with only one
non-zero entry. We then define a hypercube of length d and
construct a class of 2δ2s2

d2 -hamming separated probability dis-
tributions. Guided by Lemma 1, we bound the maximum
possible marginal distance FB∞(X s),P under the value of 8δ2s

d .
Theorem 1 gives the final lower bounds for the problem of
local private numerical vector mean estimation.
Theorem 1. For the numerical vector aggregation problem,
for any ε-LDP mechanism, there exists a universal constant
c > 0 such that for all ε ∈ [0, 1],

Mn(θ(P), || · ||22, ε) ≥ c ·min{s
2

d
,
ds

nε2
}.

To understanding the minimax rate, we can consider the
non-private error rate of decomposable numerical vector aggre-
gation, which is E||θ̂− θ||22 ≤

∑d
i=1 E||θ̂i− θi||22 ≤ 4s

n . Thus
the enforcement of local ε-LDP causes the effective sample
size decreasing from n to nε2/d.

4 Optimal Mechanism
Let j− and j+ denote events that the j-th element of x (i.e. xj)
equals to −1 and 1 respectively, a numerical vector x could
be represented in the set form as:

Yx = {j− | j ∈ [1, d] and xj = −1}
⋃
{j+ | j ∈ [1, d] and xj = 1}.

Existing works on ε-LDP numerical vector aggregation can
be categorized into two types, they do dimension sampling in
a data-agnostic manner (e.g., the PrivKV in [Ye et al., 2019;
Sun et al., 2019]) or a data-dependent manner (e.g., the PCKV
in [Gu et al., 2020]).
The PrivKV Mechanism. The seminal work [Ye et al.,
2019] on ε-LDP key-value data aggregation propose to firstly
randomly sample a dimension (from the domain of keys)
j ∈ [1, d], then applies an ε-LDP categorical mechanism on
the corresponding (key,value) pair that takes a value from
{(j, 0), (j, 1), (j,−1)}, where (j, 0) means that the key is
empty in the key-value data. Essentially, the PrivKV mech-
anism is equivalent to dividing the population of n into d
groups, and each group is employed to estimate [j+ ∈ Yx]
and [j− ∈ Yx] for each j ∈ [1, d] with privacy budget ε. Since
the minimax lower error bound for estimating frequencies on
population of n′ with privacy budget ε and domain size d′ is
Θ( d′

n′ε2 ) [Duchi et al., 2018], the estimation error of [j+ ∈
Yx] and [j− ∈ Yx] is hence Θ( d

nε2 ), as n′ = n
d and d′ = 3.

Therefore, its total estimation error of frequencies or mean val-
ues of d-dimensional vector is O( d

2

nε2 ). It has a gap of ds from
the optimal error rate in Theorem 1. Similar methodology and
result also hold for the following-up works in [Sun et al., 2019;
Liu et al., 2021].
The PCKV Mechanism. The work of [Gu et al., 2020]
proposes to sample one key from existing s keys in a key-
value data. Afterwards, an ε-LDP categorical mechanism is
applied to the corresponding 1-sparse numerical vector, which
is equivalent to categorical data with domain size of around
2d. Recall that the minimax lower error bound for estimating
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frequencies on population of n′ with privacy budget ε and
domain size d′ is Θ( d′

n′ε2 ), the total estimation error of scaled
[j+ ∈ Yx] and [j− ∈ Yx] in the PCKV mechanism is hence
Θ( d

nε2 ), as n′ = n and d′ = 2d. Due to the previous sampling
procedure, the scale factor is s and the total variation error is
amplified by s2, thus the total estimation error of [j+ ∈ Yx]

and [j− ∈ Yx] in the PCKV mechanism is O( ds
2

nε2 ). It has a
gap of s from the optimal error rate in Theorem 1.

4.1 Our Design
The paradigm of dimension sampling & categorical random-
ization fails to achieve optimal statistical rate for ε-LDP numer-
ical vector aggregation. Therefore, we consider randomizing
the numerical vector as a whole with the exponential mecha-
nism [McSherry and Talwar, 2007], and propose the Collision
mechanism.

If defining event domain as: Y =
{1−, 1+, 2−, 2+, ..., d−, d+}, we have Yx as a subset of Y
with size s. Define the output domain as Z = {1, 2, ..., t},
the Collision mechanism probabilistically outputs one item
z ∈ Z . The outputting probabilities are based on whether
each item has collision with hashed events in Yx. The
Collision mechanism is formally given in Definition 3.
Definition 3 ((d, s, ε, t)-Collision Mechanism). Given a
random-chosen hash function H : Y 7→ Z , take an s-sparse
numerical vector Yx ⊆ Y as input, the Collision mechanism
randomly outputs an element z ∈ Z according to following
probability design:

P[z|x] =

{
eε

Ω , if ∃y ∈ Yx, z = H(y);
Ω−eε·#{H(y) | H(y) for y ∈Yx}
(t−#{H(y) | H(y) for y ∈Yx})·Ω . otherwise.

The normalization factor is Ω = s · eε + t− s. An unbiased
estimator of indicator [jb ∈ Yx] for b ∈ {−1, 1} and j ∈
[1, d] is (for s ≥ 2):

̂[jb ∈ Yx] =
[H(jb) = z]− 1/t

eε/Ω− 1/t
.

The privacy guarantee of the mechanism is given in Propo-
sition 1, which is obvious as s ≥ #{H(y) | H(y) for y ∈
Yx}. The utility-optimality guarantee of the mechanism is
given in Theorem 2. For ε = O(1), its computational com-
plexity is bounded by t∗ ≈ s+ 2s− 1 + s · eε = O(s), and
communication complexity is log2(2s−1+s ·eε) = O(log s).
Proposition 1. The (d, s, ε, t)-Collision mechanism in Defini-
tion 3 satisfies ε-LDP for numerical vector data.
Theorem 2. Given privacy budget ε = O(1), with opti-
mal choice of the parameter t∗, the mean estimation error
of (d, s, ε, t)-Collision mechanism for numerical vector is
O( dsnε2 ).

Proof. Since [H(jb) = z] are Bernoulli random variables, we
have the mean squared error:

V ar[x̂] ≤ 2
d∑
j=1

∑
b∈[−1,1]

V ar[ ̂[jb ∈ Yx]]

≤ 2

n
· s · e

ε/Ω(1− eε/Ω) + (2d− s) · 1/t(1− 1/t)

(eε/Ω− 1/t)2
.

Taking the previous formula as a function of continuous t,
actually the function is convex when d ≥ t ≥ s. Choosing
approximate optimal t∗ at around 2s− 1 + s · eε, we then
have (with eε ≈ ε+ 1):

V ar[x̂] ≤ 2d ·Θ(s3) + ε ·Θ(s3)

n · ε2 · (−1 + (2 + ε) · s)2
≤ O(

ds

nε2
).

5 Privacy Amplification in Shuffle Model
When semi-trusted shufflers lie between users and the aggrega-
tor, the aggregator only observes the multi-set of private views
{z1, z2, ...zn}, thus the privacy level of some LDP mecha-
nisms is amplified (w.r.t. CDP). For binary domain of private
viewsZ = {1, 2} generated from randomized response, [Cheu
et al., 2019; Balle et al., 2019] show the observed frequencies

of z ∈ Z satisfies (
√

14 ln (2/δ) e
ε+1
n−1 , δ)-CDP, since about

2(n−1)
eε+1 users response uniform randomly, they contributed

B( 2(n−1)
eε+1 , 0.5) Binomial random noises to the frequencies.

Similarly, in the Collision mechanism with private view
domain Z = {1, 2, ..., t}, about n−1

s·eε+t−s users response uni-
form randomly, they contributed B( n−1

s·eε+t−s , 1/t) Binomial
random noises to each frequency of z ∈ Z . As a result, the
Collision mechanism also satisfies (

√
14 ln (2/δ) s·e

ε+t−s
n−1 , δ)-

CDP. The formal guarantee of privacy amplification of the
Collision mechanism is presented in Theorem 3.

Theorem 3. In the shuffle model, the (d, s, ε, t)-Collision

mechanism satisfies (
√

14 ln (2/δ) s·e
ε+t−s
n−1 , δ)-differential

privacy when n ≥ 27(eε+t−1)√
14 ln (2/δ) s·e

ε+t−s
n−1

+ 1.

Proof. Since private views with hash functions are randomly
shuffled and the final estimator is derived from them, to
prove the final estimator is (

√
14 ln (2/δ) s·e

ε+t−s
n−1 , δ)-CDP,

it is enough to show that the distribution of observed pri-
vate views with hash functions satisfies CDP. Further because
the hash functions are randomly chosen from some universe,
we only need to show the frequency distribution of observed
private views satisfies CDP. The frequency distribution is
noised by N ∼ B(n − 1, t

s·eε+t−s ) users, each user con-
tributed with uniform-random t-multinomial distribution in
the output domain. Then, according to the tail bounding re-
sult on this noise distribution with multiplicative Chernoff
bound or Bennett’s inequality (the privacy blanket theorem
in [Balle et al., 2019]), such a noise distribution satisfies√

14 ln (2/δ) s·e
ε+t−s
n−1 -CDP with probability at least 1 − δ

when n ≥ 27(eε+t−1)√
14 ln (2/δ) s·e

ε+t−s
n−1

+ 1.

With optimal choice of t ≈ 2s − 1 + s · eε in LDP, the
privacy amplification bound is thus independent of the domain
size d. Alternatively, when the privacy level in the CDP is
given as (εc, δ), we have Ω = s · eε + t− s =

ε2c(n−1)
14 ln 2/δ , then
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Figure 1: TVE results on n = 100, 000 users with dimension d =
256 when sparsity s ranges from 4 to 32.

the numerical vector estimation error bound is a function of t
with constant Ω as:

V ar[x̂] ≤
(2d−s)(t−1)

t2 + (Ω+s−t)(Ω(s−1)−s+t)
Ω2s

Ω+s−t
Ωs − 1

t

.

Choosing t ≈ 4+Ω+s+
√

Ω2+2Ω(7s−8)+s2−16s+16

6 approxi-
mately minimizes the error, which is also independent of the
domain size d.

With the optimal choice of t in terms of CDP, when the
numerical vector is highly sparse (i.e. d � s) and the user
population is large, we have the asymptotic estimation error
in the shuffle setting as:

V ar[x̂] = O(
ds2 ln 1/δ

n2ε2c
·max{1, 14s ln 2/δ

ε2c(n− 1)
}),

which nearly matches the optimal error rate in the centralized
differential privacy setting (the sensitivity is 2s).

6 Experiments
The statistical efficiency of the proposed Collision mecha-
nism for ε-LDP numerical vector aggregation is evaluated
in this section. Competing mechanisms include the PrivKV
mechanism [Ye et al., 2019], the PCKV mechanism with gen-
eral randomized response as the base randomizer (denoted
as PCKV-GRR), and the PCKV mechanism with unary en-
coding as the base randomizer[Gu et al., 2020] (denoted as
PCKV-UE). Since the performances of all these mechanisms
are data-independent, it is enough to utilize synthetic datasets
for fair evaluation. The parameters of synthetic datasets are
listed as follows (default values are in bold form), covering
most cases encountered in real-world applications:

i. Number of users n: 10,000, 100,000.
ii. Dimension d: 256, 1024.

iii. Sparsity parameter s: 4, 8, 16, 32.
iv. Privacy budget ε: 0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1.0, 1.5,

2.0, 2.5, 3.0.

During each simulation, the numerical vector of each user
is independent-randomly generated, the non-zero entries are
uniform-randomly selected from d dimensions, and each di-
mension has an equal probability of being −1 or 1.
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Figure 2: MAE results on n = 100, 000 users with dimension d =
256 when sparsity s ranges from 4 to 32.

6.1 Evaluation Metric
Previous theoretical results focus on the mean squared error:∑
j∈[1,d] ||x̂j − xj ||22. Here we evaluate mechanisms with

metrics on frequency estimators of [jb ∈ YX] (including TVE
and MAE), which are basic statistics for both the unconditional
and conditional mean estimation in Equation (1) and Equation
(2). The total variation error (TVE) is defined as:

TVE =
∑

j∈[1,d], b∈{−1,1}

| ̂[jb ∈ YX]− [jb ∈ YX]|1,

and the maximum absolute error (MAE) is defined as:

MAE = max
j∈[1,d], b∈{−1,1}

| ̂[jb ∈ YX]− [jb ∈ YX]|1.

Since the 1
s -scaled frequencies lie in the d dimensional

probability simplex, the estimated frequencies are projected
into the ∆d-simplex as in [Wang and Carreira-Perpinán, 2013].
All experimental results are the mean natural logarithm value
of 10 repeated simulations.

6.2 Effects of Sparsity s
Assume that there are n = 100, 000 users, and the dimension
is d = 256. When the number of non-zero entries in numerical
vectors varies from 4 to 32, the TVE/MAE error results are
presented in Figure 1 and Figure 2 respectively. The PCKV-
UE mechanism improves upon the PrivKV in the extreme
sparse cases, but for other cases (e.g., s = 32), the PCKV-UE
and the PrivKV mechanism have similar performances. The
Collision mechanism outperforms all competing mechanisms
in all cases significantly, and averagely reduces more than 60%
errors. As the sparsity parameter s gets larger, the performance
gaps get larger.

6.3 Effects of Dimension d
Assume that there are n = 100, 000 users, but the dimension
now becomes d = 1024. When the number of non-zero entries
in numerical vectors still varies from 4 to 32, the results of
TVE and MAE are shown in Figure 3 and Figure 4 respectively.
Compared to cases of d = 256 (i.e. TVE results in Figure 1
and MAE results in Figure 2), it is easy to observe that the
TVE/MAE value grows with around

√
d.
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Figure 3: TVE results on n = 100, 000 users with dimension d =
1024 when sparsity s ranges from 4 to 32.
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Figure 4: MAE results on n = 100, 000 users with dimension d =
1024 when sparsity s ranges from 4 to 32.

6.4 Effects of Number of Users n
Assume that there are only n = 10, 000 users, and the dimen-
sion is d = 256. When the number of non-zero entries in
numerical vectors varies from 4 to 32, the results of TVE and
MAE are listed in Figure 5 and Figure 6 respectively. Com-
pared to the case of n = 100, 000 (i.e. Figure 1 and Figure 2),
the TVE/MAE value is about

√
100000/10000 times larger

(i.e. decreases with around
√
n).

6.5 After Shuffling
Considering the privacy budget is amplified in the shuffle
model, typically when the number of users is n = 100000,
privacy budget in CDP is εc = 0.5 and δ = 1/n, the local pri-
vacy budget in the Collision mechanism is scaled to around 2.0
with optimal t. In these region with large local privacy budget,
the performance of the Collision is far better than other ap-
proaches. Besides, the privacy amplification of PrivKV/PCKV
scales poorly with dependance on the domain size, thus when
CDP budget (εc, δ) is given and the domain is relatively large,
the performance gap grows.

6.6 Experimental Summary
Through experimental evaluation, we can conclude that the
Collision mechanism outperforms existing approaches in all
cases. Their performance gaps also support our previous the-
oretical analysis on error bounds (MAE errors usually have
magnitude proportional to the root of mean squared error).
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Figure 5: TVE results on n = 10, 000 users with dimension d = 256
when sparsity s ranges from 4 to 32.
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Figure 6: MAE results on n = 10, 000 users with dimension d =
256 when sparsity s ranges from 4 to 32.

7 Conclusion
Within the framework of distributed differential privacy, this
paper studied the problem of numerical vector statistical esti-
mation, which has its applications in federated learning and
key-value data aggregation. We provided tight minimax error
bounds of O( dsnε2 ) for local differential private mean estima-
tion on numerical vectors. Our proof relies on a novel decom-
position technique for data domain with sparse structure and
an application of the local private version of Assouad methods.
Given that existing approaches are suffering gaps form the opti-
mal error bounds, we further design an optimal mechanism for
the problem, and then give an efficient implementation with
linear computation/communication complexity. To further
break the error bounds, we consider numerical vector estima-
tion in the shuffled differential privacy, and show the proposed
mechanism has the advantages of domain-independent privacy
amplification and near-optimal utility. Experimental results
show averagely 60% error reduction of the optimal mechanism
when compared with current approaches.
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han, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[Liu et al., 2021] Ruixuan Liu, Yang Cao, Hong Chen,
Ruoyang Guo, and Masatoshi Yoshikawa. Flame: Dif-
ferentially private federated learning in the shuffle model.
AAAI, 2021.

[McSherry and Talwar, 2007] Frank McSherry and Kunal
Talwar. Mechanism design via differential privacy. FOCS,
2007.

[Nguyên et al., 2016] Thông T Nguyên, Xiaokui Xiao, Yin
Yang, Siu Cheung Hui, Hyejin Shin, and Junbum Shin.
Collecting and analyzing data from smart device users with
local differential privacy. arXiv preprint arXiv:1606.05053,
2016.

[Sun et al., 2019] Lin Sun, Jun Zhao, Xiaojun Ye, Shuo Feng,
Teng Wang, and Tao Bai. Conditional analysis for key-
value data with local differential privacy. arXiv preprint
arXiv:1907.05014, 2019.

[Sun et al., 2020] Lin Sun, Xiaojun Ye, Jun Zhao, Chenhui
Lu, and Mengmeng Yang. Bisample: Bidirectional sam-
pling for handling missing data with local differential pri-
vacy. arXiv preprint arXiv:2002.05624, 2020.

[Voigt and Von dem Bussche, 2017] Paul Voigt and Axel
Von dem Bussche. The EU General Data Protection Regu-
lation (GDPR), volume 18. Springer, 2017.

[Wang and Carreira-Perpinán, 2013] Weiran Wang and
Miguel A Carreira-Perpinán. Projection onto the probabil-
ity simplex: An efficient algorithm with a simple proof,
and an application. arXiv preprint arXiv:1309.1541, 2013.

[Wang and Xu, 2019] Di Wang and Jinhui Xu. Lower bound
of locally differentially private sparse covariance matrix
estimation. IJCAI, 2019.

[Wang et al., 2019] Ning Wang, Xiaokui Xiao, Yin Yang, Jun
Zhao, Siu Cheung Hui, Hyejin Shin, Junbum Shin, and
Ge Yu. Collecting and analyzing multidimensional data
with local differential privacy. ICDE, 2019.

[Wang et al., 2020a] Tianhao Wang, Bolin Ding, Min Xu,
Zhicong Huang, Cheng Hong, Jingren Zhou, Ninghui Li,
and Somesh Jha. Improving utility and security of the
shuffler-based differential privacy. VLDB, 2020.

[Wang et al., 2020b] Tianhao Wang, Z Li, N Li, M Lopuhaä-
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