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Abstract
Code summarization aims to summarize code func-
tionality as high-level nature language descrip-
tions to assist in code comprehension. Recent ap-
proaches in this field mainly focus on generating
summaries for code with precise identifier names,
in which meaningful words can be found indicat-
ing code functionality. When faced with lexically
confusing code, current approaches are likely to
fail since the correlation between code lexical to-
kens and summaries is scarce. To tackle this prob-
lem, we propose a novel summarization framework
named VECOS. VECOS introduces an erosion
mechanism to conquer the model’s reliance on pre-
cisely defined lexical information. To facilitate
learning the eroded code’s functionality, we force
the representation of the eroded code to align with
the representation of its original counterpart via
variational inference. Experimental results show
that our approach outperforms the state-of-the-art
approaches to generate coherent and reliable sum-
maries for various lexically confusing code.

1 Introduction
Code summaries, also called code comments that summa-
rize code functionality in natural language, are essential soft-
ware components assisting in program comprehension. Due
to developing time constraints, developers cannot write use-
ful summaries for every code snippet, which leads to strong
demand for automatic source code summarization.

As a hot topic in software engineering, many research
works have been conducted for automatic code summariza-
tion. Conventional approaches mainly rely on manually
crafted rules [Moreno et al., 2013] and information retrieval
(IR) [Wong et al., 2013]. With the development of neural ma-
chine translation, more researchers try to model code summa-
rization as a translation from code to natural language. Co-
deNN [Iyer et al., 2016] and CodeAttention [Zheng et al.,
2019] utilize attention LSTM for code encoding and gener-
ating summaries. Approaches like SBT [Hu et al., 2018] at-
tempt to extract structural semantics by taking abstract syntax
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tree as input. The aforementioned approaches, although ef-
fective, have a reliance on the correlation between code iden-
tifier tokens and summary words. To generate meaningful
summaries, meaningful tokens must be observed in the code,
which requires the code to be lexically precise.

However, code is not always lexically precise with well-
defined identifier names. Firstly, source code files in the
real-world are often obfuscated in which identifier names
are replaced with short, opaque, and meaningless symbols
(e.g. Figure 1(a)). Such obfuscation maintains the program
semantics but diminishes code readability to hide business
logic and prevent software plagiarism [Bavishi et al., 2018;
Tran et al., 2019]. Secondly, it is nontrivial for develop-
ers, especially inexperienced developers, to choose appro-
priate identifier names (e.g. Figure 1(b)). What is worse,
identifier names are subject to decay during software evolu-
tion [Deissenboeck and Pizka, 2006]. The concept they refer
to may be altered or abandoned during the software evolution,
which may mislead the summarization model to extract incor-
rect semantics. Such lexically confusing code places signif-
icant challenges for current approaches since the correlation
between code tokens and summary words becomes implicit.
What makes the challenge bigger is that lexically confusing
code has few useful human-written summaries [Deissenboeck
and Pizka, 2006], which causes a lack of data to learn to adapt
to those circumstances.

One question arises here: how can we generate high-
quality summaries for lexically confusing code? One
straightforward way is to replace all the identifier names with
a single ‘<OTHER>’ token and learns to map the replaced
code to summaries [LeClair et al., 2019]. Such an approach
can reduce the model’s dependence on user-defined identifier
names. However, collapsing all the identifiers to only one
token changes the functional semantics without alleviating
the difficulty in essence, which yields poor evaluation perfor-
mance. Intuitively, every lexically confusing code snippet is
like an eroded version of a lexically precise one, in which the
functional semantics remains the same but the lexical seman-
tics are eroded. Suppose that the model can learn the erosion
process explicitly and restore the eroded semantics in a latent
feature space, it is possible to generate reliable summaries
even without precise lexical information.

This paper proposes a novel code summarization frame-
work called VECOS (Variational Eroded COde Summariza-
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public static int method1745(byte[] var0, int var1, 
CharSequence var2) {

int var3 = var2.length();
int var4 = var1;
for(int var5 = 0; var5 < var3; ++var5) {

char var6 = var2.charAt(var5);
………

(a) An obfuscated code snippet from a reverse engineer-
ing project whose identifiers are replaced with mean-
ingless symbols.

………
while(tmp1 != null && flag){

if(tmp2.getX() == tmp1.getX() 
&& tmp2.getY() == tmp1.getY()){

tmp1.setNum(tmp1.getNum()+tmp2.getNum());
flag = false;

………

(b) Poorly written loop code with inappropriate identi-
fier names whose lexical semantics is deficient.

Figure 1: Lexically confusing code examples.

tion) for lexically confusing code summarization. VECOS
first simulates the lexical erosion process by converting ev-
ery code snippet to a unified eroded version to adapt to var-
ious confusing identifier naming styles, in which the original
identifiers are replaced with some pre-defined symbols. To
learn the erosion process explicitly, we force the learned se-
mantics representation of the eroded code to align with its
lexically precise counterpart by variational reference. By do-
ing that, VECOS learns how to “de-erode” code by restoring
the eroded lexical semantics in a latent feature space. Exper-
imental results show that VECOS can generate high-quality
summaries for various lexically confusing circumstances.

The main contribution of this paper lies in two folds:

• We propose an erosion mechanism for code summariza-
tion to conquer the model’s reliance on precise lexical
information, and hence the problem of summarizing lex-
ically confusing code can be formalized as learning from
lexically precise code with an erosion process.

• We design a novel generative code summarization
framework named VECOS for lexically confusing code
summarization.

The rest of this paper is organized as follows: the second
section explains our approach VECOS in detail. The third
section shows the experiments together with some analysis.
The fourth section introduces some related work. Finally, we
conclude the whole paper.

2 Our Approach: VECOS
Let D = {(c1,y1), (c2,y2), ..., (cn,yn)} denotes a lexically
precise code-summary corpus, where ci stands for a code
snippet whose identifiers are well specified and yi stands for

private void func0
(String para0){

Host var0=this.getHost();
if (var0 != null) {

var0.showFeedback(
para0);

}
………

private void showFeedback
(String message){

Host myHost=this.getHost();
if (myHost != null) {

myHost.showFeedback(
message);

}
………

Erosion

Figure 2: An example of code erosion τ : the left part is the original
code, the right part is the eroded code with user-defined identifier
names replaced but code functionality remained.

the related summary. Let M = (τ, ψ) represents our sum-
marization framework VECOS, where τ is a rule-based ero-
sion function which maps ci to its unified eroded version:
c̃i = τ(ci), and ψ is a tree-based neural summarization
model generating code summaries ỹ′i = ψ(c̃i), where the
generated summary is expected to be similar to the human-
written one: ỹ′i ' yi. The training goal is, for any test case
c′j , no matter how confusing the lexical information of c′j is,
the generated summary ỹ′j is always reliable.

Unlike existing approaches, we take a code erosion process
τ as the first step for code summarization. τ replaces user-
defined identifiers with pre-defined symbols without chang-
ing functionality: c̃i = τ(ci). For the training phase, such
replacement forces the summarization model to learn seman-
tics from the eroded code, cutting off the dependence on user-
defined identifier tokens. For the testing phase, τ acts as a
process of data standardization by converting various lexi-
cally confusing code to a unified eroded version, which is
beneficial to improve the generalization ability.

We take the abstract syntax tree of eroded code c̃i as the
input for ψ’s encoder. We assume there exists a continuous
latent feature space Z for code functionanlity representation,
from which ψ infers the latent variable zi with given c̃i, i.e.
pψ(zi|c̃i). Then zi together with c̃i will be used to guide the
summary decoding, i.e. p(yi|zi, c̃i). To learn the erosion pro-
cess explicitly, we leverage the origin lexically precise code
ci and corresponding summary yi to pre-train an auxiliary
model φ. Since ci and c̃i share the same functionality, we
force the distribution pψ(zi|c̃i) inferred by ψ to assimilate
pφ(zi|ci) inferred by auxiliary model φ using variational in-
ference. By doing that, the eroded semantics is expected to
be restored in the latent feature space Z.

The overall framework of VECOS is shown in Figure 3.
An auxiliary model φ is first trained with the translation cross
entropy loss. Since the input for φ is lexically precise, we take
pφ(zi|ci) as the lexical enriched prior of pψ(zi|c̃i). Our sum-
marization model ψ is trained by exploiting both the trans-
lation supervision and the divergence between the prior and
posterior distribution via variational inference.

2.1 Code Erosion
The code erosion part τ is responsible for converting arbitrary
code snippets to a unified eroded version by replacing user-
defined identifiers with ordered symbols. We introduce code
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Figure 3: The overall framework of our approach: VECOS.

obfuscation techniques to complete the erosion process τ . An
example is provided in Figure 2. With function granularity,
user-defined identifiers (the referenced external API names
are not included) can be divided into function names, param-
eter names, and local variables. We take ‘func’, ‘para’,
and ‘var’ together with an order suffix to make the replace-
ment. Our method preserves complete functional semantics
and part of the identifier type information, which avoids am-
biguity in functionality representation.

We design τ for two reasons. Firstly, most code snippets
of the current code-summary corpus have well-defined iden-
tifiers correlated to code functionality. For example, for the
Java code-summary corpus in [Hu et al., 2018] and [Husain
et al., 2019], the identifier tokens can be found in the sum-
mary directly for more than 65% code-summary pairs. To
prevent the model from relying on such lexical correlation,
we introduce τ to conduct the erosion process to avoid ex-
posing sufficient lexical information directly to the model.
Secondly, the identifier naming of lexically confusing code
is quite flexible since identifiers can be arbitrarily chosen and
elude automated analysis. Various confusing naming styles
can be unified as a single eroded version with the erosion
process, which alleviates the summarization model’s learning
burden and enhances generalization towards unseen data.

2.2 Code Summarization
We propose a generative tree-based model ψ for code summa-
rization. Previous discriminative neural summarization mod-
els usually rely on the attention mechanism to identify seman-
tics alignment between code fragments and summary tokens.
The functional semantics is learned implicitly. However, such
alignment may deviate when the lexical correlation between
the code and the summary is weak, which is common under
lexically confusing circumstances. To tackle this problem,
we introduce a latent variable z to represent code functional
semantics explicitly. z is inferred from the given eroded code
c̃i, and used as a global semantics indicator for summariza-

tion. The encoder of ψ learns to approximate pψ(z|c̃i) while
the decoder learns to approximate pψ(yi|z, c̃i). The genera-
tive process can be formulated as Equation 1:

pψ(yi|c̃i) =
∫
z

pψ(yi|z, c̃i)pψ(z|c̃i)dz (1)

Tree-based Encoder with Latent Variable
The tree-based encoder takes the abstract syntax tree (AST)
of code as input. As shown in previous works [Hu et al.,
2018; Wan et al., 2018; LeClair et al., 2019], AST is capable
of representing complex structural semantics of source code.
We build our encoder based on Tree-LSTM [Tai et al., 2015],
which is a generalization of LSTM to tree-structured network
topologies, traversing a single tree from leaf nodes to the root
node. [Tai et al., 2015] propose two kinds of Tree-LSTM:
N-ary and Child-Sum. Considering the order of child nodes
is necessary, we choose N-ary and set N as 2, in which N is
the number of child nodes. Since traditional AST does not
restrict the number of child nodes, we transform the original
AST to a binary left-child-right-sibling tree.

Tree-LSTM outputs encoding for every node of AST, in
which the encoding of the root node her is the synthesis of
the whole tree. We parameterize the approximate posterior as
pψ(z|c̃i) = N (µ, σ2), in which the mean and variance vector
is calculated from the encoding of the root node her:
µ = tanh(Wµh

e
r + bµ); log σ2 = tanh(Wσh

e
r + bσ) (2)

In Equation 2, we introduce tanh as the activation func-
tion. For one thing, tanh increases the non-linearity of the
model to improve the representation capability. For another,
tanh’s lower bound prevents the value of σ from being so
small that the model degenerates into a discriminative model.
To ensure the gradient can be transferred to the encoder, z
needs to be reparameterized using µ and σ:

z = µ+ σ � ε (3)
Equation 3 is the Reparameterize Technique, in which �
refers to the element-wise product and ε is a variable sam-
pled from standard Gaussian distribution: ε ∼ N (0,1).
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Sequential Decoder with Attention
We take the vanilla sequential LSTM with the dot attention
mechanism to decode the encoded information to code sum-
maries. The decoding process can be formulated as:

hdi , s
d
i = LSTM([xi, ci−1], h

d
i−1, s

d
i−1)

oi = Softmax(Wo · [hdi , z] + bo)
(4)

In Equation 4, hdi , s
d
i are the hidden state and cell state

of LSTM at time step i. oi is the output word distribution
of next generated summary token. Square brackets expres-
sion like [hdi , z] means concatenation of two vectors. As
shown in the last equation of 4, latent variable z is feed
into the output layer together with current decoding hidden
state hdi at every time step for generating summary tokens.
ci−1 is the attentional weighted sum of encoders outputs:
ci−1 =

∑N
j=1 α

T
ijh

e
j , in which αij is the attention score of

previous decoding hidden state hdi−1 and encoding output hej :

αij =
exp ((hej )

Thdi−1)∑N
j=1 exp ((hej )

Thdi−1)
.

2.3 Training via Variational Alignment
Since the user-defined lexical information is eroded, it is non-
trivial for the summarization model ψ to learn a well-formed
semantics distribution of z for the eroded code c̃i. Thus we
propose to pre-train an auxiliary summarization model φ. φ
shares the same network structure as ψ and is trained with the
original lexically precise code corpus D = {(ci,yi)}:

Lφ = E(ci,yi)∼D
[
Ez∼pφ(z|ci) [− log pφ(yi|z, ci)]

]
(5)

We train the auxiliary model φ by minimizing the cross-
entropy loss Lφ. For one thing, φ can learn the underlying
semantic distribution more effectively with ci since it con-
tains more lexical information than c̃i: pφ(z|ci) ' p(z|ci).
For another, the erosion process τ does not change function-
ality. Thus the distribution of z should be the same given c̃i
or given ci: p(z|c̃i) = p(z|ci). As a result, pφ(z|ci) can
be treated as a lexical-enriched prior guiding the learning of
pψ(z|c̃i).

Inspired by stochastic gradient variational Bayes [Kingma
and Welling, 2013], we propose a variational training frame-
work to align pψ(z|c̃i) with pφ(z|ci) by approximating max-
imum likelihood estimation of log pψ(yi|c̃i):

log pψ(yi|c̃i) ≥ Ez∼pψ(z|c̃i)
[
log

{
pψ(yi, z|c̃i)
pψ(z|c̃i)

}]
= Ez∼pψ(z|c̃i) [log pψ(yi|z, c̃i)]
−KL [pψ(z|c̃i)||p(z|c̃i)] (6)

Equation 6 is the ELBO (Evidence Lower BOund) of the
log likelihood. The encoder and decoder of ψ are used
to model pψ(z|c̃i) and pψ(yi|z, c̃i) respectively. The first
term of Equation 6 is the negative cross-entropy of gener-
ating target sequences yi. The second second term is the
Kullback-Leibler(KL) divergence between learned pψ(z|c̃i)
and its prior p(z|c̃i), which is assigned as pφ(z|ci). For clar-
ity, we use L(i)

ce and L(i)
kl to represent cross entropy and KL

divergence for a given pair (c̃i,yi):

L(i)
ce = Ez∼pψ(z|c̃i) [− log pψ(yi|z, c̃i)] (7)

L(i)
kl = KL [pψ(z|c̃i)||pφ(z|ci)] (8)

The overall training objective for ψ is to minimize:

L(i)
ψ = L(i)

ce + λkl · L(i)
kl (9)

In Equation 9, we introduce a λkl to balance the transla-
tion loss and KL loss as a hyperparameter. Since variational
encoder-decoder framework is tricky with RNN models, λkl
is used to anneal the KL divergence to balance the value of
the two terms [Bowman et al., 2015; Bahuleyan et al., 2018].
The training process of ψ can be regarded as a combination of
a translation task by reducing cross entropy and distribution
aligment by reducing KL divergence.

3 Experiment
To evaluate the effectiveness of VECOS, we conduct exper-
iments on a benchmark dataset and compare it with several
state-of-the-art approaches for code summarization.

3.1 Dataset Preparation
We take the same dataset as [Hu et al., 2018], in which java
code snippets are provided in functional granularity with cor-
responding summaries. For roughly 65% code summary pairs
in this dataset, the identifier tokens can be found in the sum-
mary directly, which indicates the original identifiers are lex-
ically precise to reveal code functionality. We do some fil-
tering to this dataset. The class constructors, setters, get-
ters, tester methods, and code snippets whose summaries are
shorter than four words, are dropped. While our summariza-
tion model takes the tree-based data structure as input for the
encoder, we cannot truncate it to a fixed size. So we filter out
some extremely long code to avoid large zero padding. Code
summaries vary in length. We only take the first sentence
of a single summary and fix the length as 10. All the sum-
mary tokens are stemmed. Consequently, we obtain 274,302
code-summary pairs. We randomly split the dataset as 8:1:1
to construct datasets for training, validating, and testing. We
provide two ways to replace original identifiers in the test set
to simulate lexically confusing circumstances for testing:
• Symbolic replacement: well-defined code identifiers are

replaced with ordered symbols such as ‘var0’, ‘var1’,
which simulates obfuscated circumstances.
• Synonym replacement: sub-tokens of identifiers are re-

placed with synonyms. For example, ‘upStreaming’
being replaced as ‘upFlow’, in which ‘streaming’ and
‘flow’ are similar in general context but different in pro-
fessional domains. Synonym replacement simulates in-
appropriate and flexible variable naming styles. The
synonym is chosen by calculating the neighborhoods of
word embeddings according to pre-trained GloVe em-
bedding [Pennington et al., 2014].

We replace identifiers of each test case according to var-
ied ratios (0%, 25%, 50%, 75%, 100%), where 0% means no
replacement so the code is still lexically precise and 100%
means replacing every identifier. Both symbolic and syn-
onym replacement will not change the functional semantics.
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Model 0% Symbolic Replacement Synonym Replacement
25% 50% 75% 100% 25% 50% 75% 100%

CodeNN 18.33 13.43 11.06 8.12 7.82 12.17 10.61 8.27 7.97
AttnGRU 22.30 15.02 12.61 8.67 8.07 14.67 12.85 9.15 8.57
Transformer 24.41 15.19 12.26 8.57 8.31 14.56 12.25 8.75 8.24
SBT 26.94 13.72 11.50 6.37 5.85 15.51 13.56 8.49 7.88
Tree-LSTM 26.61 21.63 17.69 14.27 14.15 21.04 17.48 15.86 15.79
Tree-COS 29.17 23.00 18.67 13.44 13.09 23.30 21.08 17.45 16.99

AST-AttendGRU 15.77 15.77 15.77 15.77 15.77 15.77 15.77 15.77 15.77
ECOS 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91

VECOS 26.28 26.28 26.28 26.28 26.28 26.28 26.28 26.28 26.28

Table 1: Average BLEU scores of different models with different replacement approaches and ratios. VECOS, ECOS, and AST-AttendGRU
yield stable performance under different δ, since the replacement mechanism of AST-AttendGRU and the erosion process of VECOS and
ECOS replace identifiers with pre-defined symbols aforehand.

3.2 Experimental Settings
We use average BLEU [Papineni et al., 2002] and
Ribes [Isozaki et al., 2010] as evaluation metrics to evaluate
our approach measuring the correspondence between a gen-
erated summary and several output references. BLEU calcu-
lates the average precision over the n-gram mechanism with
a penalty for short sequences, whose value varies from 0 to
100 as a percentage. Ribes takes into account the rank cor-
relation coefficients with word precision, varying from 0 to
1. Higher BLEU and Ribes scores indicate better evaluation
performance.

We choose eight approaches as baselines:

• CodeNN, AttnGRU, and Transformer [Iyer et al.,
2016; Cho et al., 2014; Vaswani et al., 2017]: Sequen-
tial neural approaches which treat code as plain text. Co-
deNN is the first neural-network-based approach based
on LSTM for source code summarization. AttnGRU is a
bi-directional GRU model with an attention mechanism.
Transformer is a famous self-attention model proposed
for neural machine translation.
• SBT [Hu et al., 2018]: SBT is short for Structure-Based

Traversal, a new way of converting an abstract syntax
tree into a node sequence. An attention-based multi-
layer LSTM processes the SBT node sequences to gen-
erate code summaries.
• AST-AttendGRU [LeClair et al., 2019]: A structural

GRU-based model specially designed for code with zero
internal documentation. It replaces identifier names with
a single ‘<OTHER>’ token and takes the SBT sequence
of the replaced AST as input.
• Tree-LSTM [Tai et al., 2015]: A generalization of

LSTM to tree-structured network topologies, which is
used as the encoder to process AST. The decoder is
vanilla attentional LSTM.
• Tree-COS, ECOS: Two variants of VECOS. Tree-COS

refers to the auxiliary model φ described in Section 2.3
without erosion part τ . ECOS shares the same model
structure with VECOS but is trained without variational
semantics alignment.
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Figure 4: Ribes scores for different replacement ratios and ap-
proaches. VECOS and its variants are represented as solid lines.
Other baselines are represented as dashed lines.

For our generative summarization model ψ of VECOS,
both the input size and hidden size of LSTM are set as 256.
The size of the latent variable z is 100. Both the internal
LSTM of the encoder and the sequential LSTM for the de-
coder has only one layer. The initial learning rate is 0.01,
and it will decay on learning plateaus with a decaying speed
of 0.5. We take the sigmoid annealing strategy to adjust the
coefficient λkl dynamically from 1.0 to 0.01 [Bowman et al.,
2015]. The weight decay factor for L2-regularization is set
as 0.00001. The batch size for the training set is set as 100.
The training process will stop when the performance of the
validation set stops increasing for three epochs. For a fair
comparison, the embedding size and hidden size of baselines
are all set as 256. All the experiments are conducted with a
machine equipped with one Intel Xeon E5-2620 CPU, 32GB
RAM, a Nvidia Titan X graphic card with 12GB graphic stor-
age. The operating system is Ubuntu 16.04.

3.3 Results and Analysis
Let δ denotes the replacement ratio. Table 1 and Figure 4
show the BLEU and Ribes scores of different models on test
data with different δ and replacement approaches. From the
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statistics, VECOS significantly outperforms other approaches
for various lexically confusing circumstances (δ > 0 ). When
code is lexically precise (δ=0), VECOS’s performance is still
comparable with previous approaches. The following is a de-
tailed comparative and ablation analysis.

Comparative Analysis
Without any replacement (δ=0), the auxiliary model (Tree-
COS) achieves the best performance. Compared with Tree-
LSTM, Tree-COS improves 2.65 BLEU points, indicating
the effectiveness of introducing latent variable z to represent
functional semantics explicitly. Other approaches that con-
sidering structural information (Tree-LSTM, SBT) performs
better than approaches that treat code as plain text (CodeNN,
AttnGRU, Transformer). Although equipped with the erosion
part, VECOS can still achieve comparable performance with
most of the baselines for lexically precise code.

When we replace parts of the precisely defined identifiers
(δ > 0), the performance of sequential approaches (CodeNN,
AttnGRU, Transformer) drops sharply. Even 25% replace-
ment will result in half of the performance loss. When δ
reaches 100%, their BLEU scores go below 10. Although
SBT considers structural information by taking code’s flat-
ten AST as input, it still performs poorly when δ > 0. We
think this is because the sequential representation of AST is
susceptible to disturbance. It is hard for neural models to
adapt to such unseen data disturbance. Approaches that re-
tain real tree-structured network topologies have better gen-
eralization performance under various lexically confusing cir-
cumstances, like Tree-LSTM and Tree-COS. However, they
still suffer a decline when δ rises.

VECOS, ECOS, and AST-AttendGRU have a stable per-
formance for different δ. This is because the replacement
mechanism of AST-AttendGRU and the erosion process τ of
VECOS and ECOS replace identifier names with pre-defined
symbols aforehand. As δ increases, those approaches’ advan-
tage over other baselines gets more prominent. For the eval-
uation results, VECOS yields much better performance than
AST-AttenGRU for both BLEU and Ribes. We think there are
two main reasons. Firstly, AST-AttendGRU replaces all the
identifiers with a single ‘<OTHER>’ token, which changes
the original code’s functional semantics. Secondly, AST-
AttendGRU attempts to learn the mapping from the replaced
code to summaries directly, which is quite challenging be-
cause of the lack of lexical information and the changed func-
tionality.

Ablation Analysis
We compare the performance of Tree-COS, ECOS, and VE-
COS to verify the effectiveness of each component of our ap-
proach. Taking away the erosion process τ , Tree-COS can
achieve the highest BLEU score of lexically precise code
(δ = 0) but suffers decline when δ goes up. Equipped with
the erosion part τ but without variational alignment train-
ing, ECOS can achieve a stable BLEU score of 23.91. With
the variational alignment training, VECOS can improve the
BLEU score to 26.28, which is a 10 percent increase over
ECOS. In summary, the combination of erosion process and
variational alignment ensures VECOS’s excellent generaliza-
tion towards various lexically confusing circumstances.

4 Related Work
Code Summarization
Automatic source code summarization is a hot topic in soft-
ware engineering. Early studies in this field usually uti-
lize techniques of text summarization or information retrieval
for summary generation [Haiduc et al., 2010]. Approaches
like AutoComment [Wong et al., 2013] try to leverage code-
description mappings collect from StackOverflow and gen-
erate comments via code similarity. These approaches are
usually evaluated by experienced programmers manually.

Since neural networks have achieved remarkable success in
machine translation, researchers start to model this problem
as a translation from programming language to natural lan-
guage. CodeNN [Iyer et al., 2016] and CodeAttention [Zheng
et al., 2019] utilize attention LSTM to generate summaries
sequentially. To extract structural information, [Hu et al.,
2018] propose SBT as a new way to traverse abstract syntax
tree so that sequential models can encode tree-structural data.
Both AST-AttendGRU [LeClair et al., 2019] and Hybrid-
DRL [Wan et al., 2018] try to encode structural and textual
information independently and fuse for later comment decod-
ing. Hybrid-DRL [Wan et al., 2018] introduces reinforcement
learning into this field for decoding to avoid exposure bias
problem. AST-AttendGRU [LeClair et al., 2019] proposes to
generate code summaries without internal documentation.

Variational Neural Model
Variational AutoEncoder (VAE) is the first variational neural
model proposed by [Kingma and Welling, 2013] for image
generation, in which the prior of the latent variable is assigned
as a standard Gaussian. The following works like [Zhang et
al., 2016; Serban et al., 2017] extend it to a general vari-
ational encoder-decoder (VED) form for various NLP tasks
like machine translation, sentence generation, and dialog sys-
tems. With the help of latent variables, those approaches usu-
ally yield better performances than vanilla attentional RNN
models. On their basis, [Bahuleyan et al., 2018] take a step
forward by modeling attention mechanism via variational in-
ferences to avoid bypassing phenomenon.

5 Conclusions
This paper proposes a novel framework called VECOS to
generate reliable summaries for lexically confusing code.
VECOS introduces an erosion process to map arbitrary
source code to a unified eroded version to fit various real-
world circumstances. With the help of variational alignment
training, VECOS learns to extract functional semantics in a
latent space Z by explicitly modeling the erosion process.
The evaluation results show that VECOS is reliable to gener-
ate coherent summaries for various lexically confusing code.
An interesting future work can be applying variational seman-
tics alignment to more general scenarios such as code repre-
sentation learning with data augmentation.
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