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Abstract
When demand increases beyond the system capac-
ity, riders in ride-hailing/ride-sharing systems often
experience long waiting time, resulting in poor cus-
tomer satisfaction. This paper proposes a spatio-
temporal pricing framework (AP-RTRS) to allevi-
ate this challenge and shows how it naturally com-
plements state-of-the-art dispatching and routing
algorithms. Specifically, the pricing optimization
model regulates demand to ensure that every rider
opting to use the system is served within reason-
able time: it does so either by reducing demand to
meet the capacity constraints or by prompting po-
tential riders to postpone service to a later time. The
pricing model is a model-predictive control algo-
rithm that works at a coarser temporal and spatial
granularity compared to the real-time dispatching
and routing, and naturally integrates vehicle relo-
cations. Simulation experiments indicate that the
pricing optimization model achieves short waiting
times without sacrificing revenues or geographical
fairness.

1 Introduction
Transportation Network Companies (TNCs) like Uber and
Lyft have fundamentally transformed mobility in many cities,
providing on-demand door-to-door transportation through
mobile applications. While such ride-hailing/ride-sharing
services provide new mobility options for a range of cus-
tomers, they also face many operational challenges. This pa-
per considers one of these critical challenges: how to address
an imbalance between demand and supply due to a surge in
the number of requests. When such an imbalance is present,
riders often experience long waiting times. This hurts both
the platform and riders: potential riders incur an opportunity
cost by waiting and the platform receives poor customer re-
views. Idle vehicle relocation (e.g., [Iglesias et al., 2017;
Sayarshad and Chow, 2017; Braverman et al., 2019; Ma et al.,
2019b; Riley et al., 2020]) is one way to alleviate this issue:
empty vehicles are relocated preemptively to places where
they will be most needed to reduce waiting times. Another
way to tackle the imbalance is to build mobility systems that
utilize ride-sharing systematically. A study by Alonso-Mora

Peak Demand Percentage
17% 24% 31% 38%

Average Waiting Time 7.86 10.70 13.93 15.34
Standard Deviation 3.75 6.30 8.24 8.45

Table 1: Waiting Times in Minutes Under Various Demand Peaks

et al. [2017] showed that systematic ride-sharing may sig-
nificantly reduce the number of vehicles needed to serve re-
quests. Their results indicate that 98% of the historic demand
for taxi services in NYC could be served with a much smaller
taxi fleet, while maintaining short wait times. However, ve-
hicle relocation and ride-sharing on their own are not always
sufficient to address the imbalance. Consider a state-of-the-
art ride-sharing framework A-RTRS ([Riley et al., 2020])
when applied to a 90-minute Yellow Taxi instance in New
York City [NYC, 2019a]. A-RTRS routes and dispatches ve-
hicles every 30 seconds, and it uses a model-predictive con-
trol algorithm to perform vehicle relocation every 5 minutes.
Table 1 reports the average waiting times when a 30-minute
peak with 17%, 24%, 31%, and 38% more requests is inserted
into the instance. The results show that average waiting times
rise dramatically as the peak becomes stronger.

Pricing is also commonly used to address demand and sup-
ply imbalances: for instance, Uber’s surge pricing and Lyft’s
Prime time pricing both raise prices to curtail excessive de-
mand. While this may upset some customers, empirical ev-
idence shows that it is effective at restoring demand-supply
balance in the market [Hall et al., 2015]. It is not clear, how-
ever, how these pricing schemes affect average waiting times
and whether they introduce unfairness in quality of service
for various regions.

This paper is a first step in understanding the relationship
between demand and supply imbalances, pricing, average
waiting times, and geographical quality of service. It extends
A-RTRS with a real-time spatio-temporal pricing mecha-
nism to restore service quality during peak times. The goal of
the framework, called AP-RTRS, is to decrease or postpone
the demand to ensure that each rider is served within a reason-
able amount of time and, ideally, that there are no significant
regional differences in quality of service. More specifically,
AP-RTRS features a novel optimization model for its Model
Predictive Control (MPC) component that jointly optimizes
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pricing and relocation over time. The AP-RTRS framework
makes three key contributions. First, while many existing
works explore the effect of pricing in the long term (e.g.,
at market equilibrium), very few studies examines its real-
time consequences when demand fluctuates both spatially and
temporally. This paper thus provides a detailed analysis of
the real-time effects of pricing when integrated into an end-
to-end ride-sharing framework. Second, while many papers
study trip throughput rate, revenue, and buyer/seller surplus,
to our knowledge, AP-RTRS is the first pricing framework
that focuses on controlling waiting times and request comple-
tion rate. Third, AP-RTRS includes a novel dynamic pricing
mechanism that also encourages riders to use the service at a
later time through discounting. Discounting is appealing as
it enables AP-RTRS to level small peaks off without pricing
out customers. These benefits of AP-RTRS are demonstrated
on large-scale NYC taxi instances.

This rest of the paper is organized as follows. Section 2
specifies the problem. Section 3 gives an overview of the
existing literature. Section 4 introduces the overall architec-
ture of AP-RTRS. Section 5 introduces the novel pricing and
relocation model and Section 6 presents a simulation study
using real data from New York City.

2 Problem Definition
Operating a real-time ride-sharing system requires the solving
of large-scale dial-a-ride and pricing problems. Each request
corresponds to a trip for a number of riders from an origin to a
destination that must take place after a specified pickup time.
In addition, riders are only willing to wait for a certain period
of time after which they seek another mode of transportation.
The goal of AP-RTRS is to regulate demand with pricing so
that all riders choosing to use the service are picked up in a
given time span. The platforms studied in this paper either
use a fixed fleet of autonomous vehicles or their own pool of
drivers who follow routing instructions exactly. The system
can thus relocate the vehicles at will in order to anticipate de-
mand. It is assumed that significant historical data is available
and can be used to forecast demand.

3 Literature Review
The impact of spikes in demand in a ride-hailing market is
highlighted in Hall et al. [2015] using Uber data. When surge
pricing was disactivated during New Year’s Eve, rider waiting
time and driver enroute time increased significantly and trip
completion rates dropped dramatically. This phenomenon
was further studied by Castillo et al. [2017] who modeled the
ride-sharing system as a steady-state queuing network. The
authors demonstrated that, when demand exceeds supply ca-
pacity, drivers from distant areas are dispatched, resulting in
long enroute time and low utilization rates (the so-called Wild
Goose Chase phenomenon). The paper shows that dynamic
pricing can prevent the market from entering to this inefficient
state by balancing demand and supply.

Among the vast literature on dynamic pricing in ride-
hailing, many papers study optimality of different pricing
policies and their impact on revenue and trip throughput rates.

…… ……
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Figure 1: The AP-RTRS Framework.

However, most of the discussions are restricted to a simpli-
fied setting where demand is homogeneous over time (e.g.,
[Banerjee et al., 2015; Cachon et al., 2017; Zha et al., 2017;
Bimpikis et al., 2019; Ozkan, 2020]). Others consider de-
mand to be invariant over both time and space (e.g., [Castillo
et al., 2017; Chen and Hu, 2020]). In comparison, relatively
few papers focus on a real-time setting where demand fluctu-
ates both spatially and temporally. Ma et al. [2019a] pro-
posed a spatio-temporal pricing mechanism (STP) that in-
duces the drivers to always follow the platform’s dispatch de-
cisions. Their model maximizes system benefits in a finite
time horizon and determines both dispatching and pricing for
drivers and riders, assuming complete knowledge about the
future. Lei et al. [2019] modeled the interaction between the
platform’s dispatching and pricing decisions and traveler’s
choice as a Stackelberg leader-follower game. They formu-
lated a multi-period mathematical program with equilibrium
constraints (MPEC) to derive idle vehicle relocation and path-
based pricing decisions and solved it by approximate dynamic
programming (ADP). Qiu et al. [2018] also employs dynamic
programming approach to find optimal pricing policies with
stochastic demand arrival. Their goal is to determine a price
for each travel mode offered by the platform to maximize ex-
pected operating profit in a given time horizon. Although
these works are developed in a real-time setting, there is no
explicit control of the waiting times or the request completion
rate. The MPC optimization proposed in this paper guaran-
tees service quality, distinguishing it from prior work. The
most related work to this paper is the A-RTRS framework of
Riley et al. [2020] where a MPC model is developed to re-
locate idle vehicle in real-time. AP-RTRS replaces the MPC
component of A-RTRS with a new optimization model that
jointly decides idle vehicle relocation and pricing for each re-
gion over the MPC time horizon. Because of pricing, the de-
mand becomes a variable in AP-RTRS. Moreover, the MPC
model in AP-RTRS keeps track of waiting times to capture
the behaviour of riders and discounting.

4 The Real-Time Ride-Sharing Framework
AP-RTRS, depicted in Figure 1, is composed of two main
components: an optimization model for vehicle dispatching
and routing and an MPC optimization for pricing and reloca-
tion. The vehicle dispatching and routing matches vehicles
and riders, and chooses the vehicle routes. It operates at the
request level and takes place in real time (e.g., every 30 sec-
onds). Because of the tight time constraint, the routing and
dispatching optimization is usually myopic, taking into ac-
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count only current demand and supply information
Pricing and idle vehicle relocation, on the other hand, are

forward-looking and performed at a lower frequency (e.g., ev-
ery 5 − 20 minutes). The two decisions are also interdepen-
dent: the relocation decisions depend on the demand, and the
requests to admit depends on the vehicle availabilities. As a
result the MPC jointly optimizes them.

5 Pricing and Relocation
The MPC for pricing and relocation operates over a rolling
time horizon and optimizes the decisions over a fixed time
window for every epoch. Specifically, time is discretized into
epochs of equal length and, during each epoch, the MPC
performs three tasks: (1) it predicts the demand and supply
for the next T epochs; (2) it optimizes decisions over these
epochs; and (3) it implements the decisions of the first epoch.
Due to potentially large number of vehicles and riders in real-
time, deriving pricing and relocation decisions on the individ-
ual level is computationally challenging. The MPC operates
at a coarser temporal and spatial granularity: it partitions the
geographical area into zones (not necessarily of equal size
or shape) and considers pricing/relocation decisions on the
zone-to-zone level. The resulting model is scale-invariant
with respect to the number of individual riders and vehicles.

Terminology and Notations. The time when a rider con-
nects to the platform and observes the price is called the
emerging time. The time selected by a rider to use the ser-
vice is called the realization time. It is either the emerging
time or a later time selected by a rider due to discounting.
The realization time is also when the platform schedules the
request. The service time is the time when a rider is picked
up. The difference between realization time and service time
is the waiting time. A rider not served after s epochs from
their realization time is called a dropout. The length of one
epoch is denoted by l and the set of epochs in the MPC time
horizon T = {1, ..., T}. The set of zones is denoted by Z.

Price Offers and Price/Demand Feedback. At each
epoch t ∈ T , AP-RTRS determines the price offers
(p̄ijtt, p̄ijt(t+1), ..., p̄ijtT ) of requests between zone i and
zone j for all epochs in [t, T ]. A rider emerging at epoch t
(i.e., between [(t − 1)l, tl]) observes the price offer, and de-
cides whether and when to use the service. If the rider decides
not to use the service, she is assumed to exit the market and
does not return. Otherwise, she reveals the realization time
to the platform which commits to the price. For instance, a
rider traveling from i to j, emerging at t, and deciding to use
the service at τ will be charged p̄ijtτ , even though the price
for τ may change between epoch [t, τ ]. Note that τ is the
epoch when the rider starts to be scheduled and not necessar-
ily the epoch in which she is picked up. Given a price offer
~pijt = (p̄ijtt, p̄ijt(t+1), ..., p̄ijtT ), the platform can estimate
the corresponding demand pattern, i.e., the expected demand
~dijt = (dijtt, dijt(t+1), ..., dijtT ) between epoch [t, τ ]. The
focus of this paper is not on how to estimate the demand pat-
tern from historical data; rather the paper describes how to
select the optimal demand pattern in the MPC.

Service Constraints. In the MPC, vehicles only pick up
riders in the same zone. Once a vehicle starts to serve rid-
ers or relocate, it must finish the trip before taking another
assignment. These assumptions are chosen so that the MPC
approximates how the underlying routing/dispatch algorithm
works, but the dispatch algorithm does not necessarily obey
these constraints.

5.1 The MPC Model Formulation
The overarching goal of the MPC model is to regulate de-
mand such that all riders who choose to use the mobility sys-
tem are served. One way to meet this goal is to constrain
all such riders to be served in the MPC time horizon. How-
ever, this might be impossible since those arriving near the
end would have little flexibility. For this reason, the MPC fo-
cuses on serving those riders emerging in the first T − s + 1
epochs: these riders have at least s epochs available to be
served if not postponed. The goal of the MPC model is thus
to choose a demand pattern for each zone and epoch to meet
these service guarantees. When there are multiple (combina-
tion of) demand patterns to achieve this goal, the MPC model
selects the combination serving the most people. This is the
fundamental design philosophy behind the MPC model.

The optimization model is presented in Figure 2. In the
model, i, j denote zones and t, τ, ρ epochs. The model inputs
are as follows. Vit is the number of vehicles that will become
idle in zone i during epoch t: those vehicles are busy now but
will become available in t. {~dkijt}

Nij

k=1 is the set of available
demand patterns for O-D pair (i, j) at t. Wij is ride-sharing
coefficient: it represents the average number of passengers
traveling from i to j that a vehicle typically carries accounting
for the fact that a request may have multiple passengers and
that a vehicle may pick up multiple requests. ηij is the travel
time from i to j in seconds, and λij is the same travel time but
in epochs. Inputs ηij and λij depend on traffic condition and
can be estimated in real-time. In addition, the optimization
model uses qp(t, τ, ρ) to weight a customer served at ρ who
emerges at t and decides to use the service at τ . This weight
is chosen to drive the model to serve people as early as pos-
sible and qp should be decreasing in ρ. Riders who emerge
and realize early should carry larger reward since uncertainty
about the future grows over time. qr(t) is the per-second re-
location penalty for epoch t and should be decreasing in t for
the same reason.

Decision variable pkijt captures the pricing decision: it is a
binary variable indicating whether demand pattern k, ~dkijt, of
O-D pair (i, j) and epoch t is selected. Decision variable xrijt
captures the other important decision: it denotes the num-
ber of vehicles starting to relocate from i to j during epoch t
(j 6= i). Auxiliary variable xpijtτρ denotes the number of ve-
hicles that start to serve riders from i to j in ρ who emerge at
t and decide to use the service in τ . Auxiliary variable vijtτ
denotes the number of vehicles needed to serve all expected
passengers traveling from i to j who emerge in t and decide
to use the service in τ . Auxiliary variable zit denotes num-
ber of vehicles in zone i that are assigned to remain in the
zone from t − 1 to t. The model only implements the deci-
sions of pij1 and xrij1; the other variables serve to provide an
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max
∑
i,j

∑
t,τ,ρ

qp(t, τ, ρ)Wijx
p
ijtτρ −

∑
i,j

∑
t

qr(t)ηijx
r
ijt

s.t.

Nij∑
k=1

pkijt = 1 (2a)

vijtτ =

Nij∑
k=1

⌈
dkijtτ
Wij

⌉
pkijt t ≤ τ (2b)∑

ρ

xpijtτρ = vijtτ t ≤ T − s+ 1 (2c)

∑
ρ

xpijtτρ ≤ vijtτ t > T − s+ 1 (2d)

zi1 = 0 (2e)∑
j,te,τ

xpijteτt +
∑
j

xrijt + zi(t+1) =∑
j,te,τ

xpjiteτ(t−λji)
+

∑
j

xrji(t−λji)

+ zit + Vit (2f)
xpijtτρ, x

r
ijt, vijtτ ∈ Z+ (2g)

zit ∈ Z+ 1 ≤ t ≤ T + 1 (2h)

pkijt ∈ {0, 1} (2i)

Figure 2: The MPC Optimization with Pricing and Relocation.

approximation of the future.
It is important to mention that the variables are only defined

for a subset of the subscripts given that riders drop out if not
served in reasonable time. In particular, the valid subscripts
for variables xpijtτρ must satisfy the constraint

1 ≤ t ≤ τ ≤ ρ ≤ min(T, τ + s− 1).

Similar considerations apply to vijtτ . These conditions are
implicit in the model for simplicity.

The model is a mixed integer linear program (MILP). Its
objective maximizes the weighted sum of customers served
and minimizes the relocation cost. Constraint (2a) ensures
that the model selects exactly one price offer (and hence one
demand pattern) for each O-D pair and epoch. Constraint
(2b) derives the number of vehicles needed to serve the de-
mand from i to j emerging at t and realized at τ as a function
of the price selected (captured by variable pkijt). Constraint
(2c) enforces the service guarantees: it makes sure that pas-
sengers emerging in the first (T − s + 1) epochs are served
in the time horizon, regardless of their realization time. Con-
straint (2d) makes sure that served demand does not exceed
the true demand. Constraint (2e) and (2f) are the flow balance
constraint for each zone and epoch: They make sure that, at
every epoch t, the number of vehicles departing from zone i
in t or staying idle in zone i is equal to the number of vehicles
arriving in zone i plus the number of idle vehicles. Note that
vehicles need to depart from zone j in t−λji to arrive at zone
i in t. Constraints (2g) - (2i) specify range of the variables.
Constraint (2a) is for all (i, j, t), (2b) - (2d) for all (i, j, t, τ ),
(2e) for all i and (2f) for all (i, t), where the subscripts are

in the specified range. The model is always feasible when
demand vijtτ can be reduced to 0.
Discussion. The formulation assumes that the platform can
postpone customers to any epoch within the time horizon. If
the horizon is long, the platform may choose to postpone only
a few epochs by restricting the range of τ to [t, t + u] in the
variables xpijtτρ and uijtτρ, where u is the maximum num-
ber of epochs a rider can be postponed. The case u = 0
corresponds to surge pricing which only assigns a price to
the current epoch. Another important consideration is model
complexity. In theory, longer time window and more demand
patterns enable finer control and yield better results. How-
ever, they also increase size of the model which needs to be
solved in real time.

6 Simulation Study
The performance of AP-RTRS is evaluated using Yellow
Taxi trip data in Manhattan, New York City [NYC, 2019a].
The Manhattan area is partitioned into a grid of cells of 200
squared meter, and each cell represents a pickup/dropoff lo-
cation. Travel time between the cells are queried from [Open-
StreetMap, 2017]. The fleet is fixed to be 1500 vehicles with
capacity 4, distributed randomly among the cells at the be-
ginning of the simulation. The test data is generated based
on Yellow Taxi trip data on 12/30/2015, 7.00am to 8.00am,
scaled up proportionally to the number of requests between
each Origin-Destination (O-D) cells to contain on average
1400 requests per 5 minutes. Peaks of various kinds are in-
serted into the instance as discussed later on, in order to test
the AP-RTRS’s ability to enforce the service guarantees and
serve riders in reasonable time.
Simulation Environment. The end-to-end simulation to
evaluate AP-RTRS is based on [Riley et al., 2020]. The ve-
hicle routing and dispatching is run every 30 seconds. It is
solved by a column generation approach that iterates between
solving a restricted master problem (RMP), which assigns a
route to each vehicle, and a subproblem, which generates fea-
sible routes for the vehicles satisfying vehicle capacity and
ride duration constraints [Riley et al., 2019]. The MPC mod-
ule has two components: the pricing/relocation model and
a vehicle assignment model. The pricing/relocation model
(Figure 2) is run every 5 minutes and given 30 seconds of
solving time (it needs to output relocation decisions before
the next dispatch). The pricing decisions are implemented
in terms of percentages instead of absolute magnitude. For
example, if the model decides to postpone 20 expected cus-
tomers out of 50, the simulation will randomly select 40% ob-
served requests in the next epoch to be postponed. The reason
is that the model works with predicted demand and there may
not be 50 customers in the next epoch. The relocation deci-
sions are implemented by the vehicle assignment optimiza-
tion, which is run immediately after the pricing/relocation
model. It determines which actual vehicles to relocate by
minimizing total traveling distances. Each request in the sim-
ulation is given a maximum scheduling time of 5 minutes and
a maximum waiting time of 15 minutes. A request for which
one of these deadlines is not met are considered a dropout and
removed from the simulation.
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Configuration of The Pricing Model. The Manhattan area
is partitioned into |Z| = 73 zones and each cell is assigned
to the closest zone. The travel times λij (in epochs) between
the zones are computed by averaging travel times between all
cell pairs in the two zones. Time is discretized into epochs
of l = 5 minutes. The pricing model is run every 5 minutes
and has a time horizon of T = 4 epochs. Demand predic-
tions for each O-D pair in each epoch is generated by adding
white noise to the true demand. The white noise is normally
distributed with zero mean and a standard deviation equal to
2.5% of the true demand. The forecasting module is agnostic
about the peak until the second period of the peak and about
the end of the peak until the second period after the peak. This
captures the fact that peaks cannot always be anticipated. The
number of idle vehicles in each period is estimated by the
simulator based on current route of each individual vehicle
and the travel times. Ride-share ratio is set to be Wij = 1.4
for all i, j ∈ Z. Service weight and relocation penalty func-
tions are as follows: qp(t, τ, ρ) = 0.5t0.75τ−t0.67ρ−τ , and
qr(t) = 0.001 ∗ 0.5t. The model is solved (optimally or near
optimally) by Gurobi 9.0 in 30 seconds with 32 CPU cores
[Gurobi Optimization, 2020].

Tested Models. The experiments compare three MPC mod-
els: RELOCATION, SURGE, and SURGE+POSPTPONE. RE-
LOCATION is the baseline and has no pricing component: it
implements the formulation in Figure 2 with demand fixed to
the predicted demand and without requiring that the demand
emerging in the first T − s + 1 periods be served. SURGE
is the MPC optimization where price is only determined for
one epoch. This is similar to the strategy adopted by TNCs
in practice where the platform increases the price for the cur-
rent epoch and customers either take the ride or leave it. Five
demand patterns {d1

ijt, 0.9d
1
ijt, 0.8d

1
ijt, 0.5d

1
ijt, 0} are avail-

able for each O-D pair (i, j) and epoch t, and d1
ijt is the pre-

dicted demand between i and j in period t under the base
price. The factors {1.0, 0.9, 0.8, 0.5, 0.0} are demand mul-
tipliers decided at the zone level, i.e., they act on the de-
mand for O-D pairs with the same origin and emerging epoch.
In other words, the demand multiplier is based on the trip
origin only and does not discriminate against destinations.
SURGE+POSPTPONE adds to these demand patterns the op-
tion of discounting prices in future epochs to postpone riders.
The experiments assume that 20%/30%/40% of the riders
can be postponed for 2 or 3 periods for each O-D pair (i, j)
and epoch t. The demand pattern is also decided at the zone
level.

6.1 Long Peaks
Consider the case where a 30-minute peak is inserted into
a single zone to simulate a demand surge after a special
event such as a sports game or a concert. The experi-
ments consider instances with four different peaks that con-
tain 17%/24%/31%/38% more requests respectively. Table
2 reports the dropout rate, the number of riders served, and
the waiting times. RELOCATION sees increasing numbers of
dropouts as the peaks become stronger, with 17% dropping
out in the largest instance. SURGE and SURGE+POSPTPONE,
on the other hand, exhibit a zero dropout rate, while serving

approximately the same number of riders. The pricing models
also achieve lower waiting time averages and standard devi-
ations. They perform more relocations than RELOCATION,
most likely because there are fewer requests waiting to be
scheduled, giving more opportunities for vehicles to relocate.
Table 3 shows that postponed riders are served quickly, meet-
ing the quality of service goals of the platform. Overall, these
results show that the pricing MPCs provide service quality
guarantees.

It is important to compare the revenues of the MPCs, which
are computed based on price elasticity of demand. The price
p1
ijt that corresponds to d1

ijt is computed in a standard way
using travel times [NYC, 2019b]. The prices for the other de-
mand patterns are derived from the price elasticity of demand

ε = ∆d%
∆p% =

(dkijt−d
1
ijt)/d

1
ijt

(pkijt−p1ijt)/p1ijt
. The model evaluation consid-

ers three elasticity levels: −0.5, −1.0, and −2.0 for SURGE.
SURGE+POSPTPONE assumes an elasticity of −1.0 for its
surge component and offers a x% discount in order to post-
pone x% of the demand, for x ∈ [20, 30, 40]. Table 4 presents
the revenue results: The revenues are noticeably higher for
SURGE than for RELOCATION when ε ∈ {−0.5 − 1.0} and
about the same when ε = −2.0. The SURGE+POSPTPONE’s
revenues are about the same as RELOCATION and not as high
as SURGE’s revenues, since giving a discount to some is typi-
cally not as profitable as charging everyone a higher price, al-
though this depends on the exact price-demand relationships.
Overall, the results show that the pricing MPCs provide ser-
vice guarantees without sacrificing revenues.

To understand which riders are priced out, Figure 3 dis-
plays the percentages of demand kept by SURGE (demand
multipliers) and the original demand for two epochs: one
during the peak and one after the peak. In both cases, the
regions where people are priced out are spread out and are
not solely concentrated in the low-demand or remote regions.
This shows that the pricing decisions are not biased with re-
gards to demand or geographical locations.

The above experiments were conducted without rideshar-
ing but similar results were obtained when the platform used
ridesharing. The main difference is an increase in the num-
ber of served riders and revenues. For SURGE, ridesharing
increases the number of riders by 2%, 3%, 4%, and 3% and
the revenues by 1%, 1%, 4%, and 4% for the peak instances.

6.2 Short Peaks
The benefits of SURGE+POSPTPONE did not materialize dur-
ing long peaks, since the model had no ability to postpone
customers for very long periods. Instead consider short peaks
of 10-minutes with 17%/24%/31%/38% surges in demand
and assume that the forecasting algorithm can predict the
start and end of the peak. The demand forecast is obtained
by adding white noise with a 2% standard deviation of the
true demand. Table 5 reports the number of riders priced
out by SURGE and SURGE+POSPTPONE with and without
ridesharing. While both models achieve a zero dropout rate
on all instances, SURGE+POSPTPONE prices out fewer rid-
ers, especially during small peaks in the ridesharing setting.
A possible explanation is that, when the peak is not too in-
tense, more vehicles are available in the future to serve post-
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Peak Demand Passengers Served Dropout Percentage Wait Time Avg (mins) Relocation
Percentage Reloc Surge Post Reloc Surge Post Reloc Surge Post Reloc Surge Post

0% 25664 25153 25196 0.0 0.0 0.0 4.1 3.5 3.5 2510 2852 2863
17% 25237 25484 25470 11.1 0.0 0.0 5.8 4.3 4.3 1670 2117 2152
24% 25176 25297 25346 13.8 0.0 0.0 6.1 4.2 4.3 1638 2264 2158
31% 25640 25078 25188 15.4 0.0 0.0 5.5 4.1 4.3 1860 2363 2270
38% 26172 25094 25154 17.0 0.0 0.0 6.3 4.2 4.2 1800 2514 2513

Table 2: Quality of Service Statistics for Long Peaks (No Ridesharing).

Statistics Peak Demand Percentage
17% 24% 31% 38%

Percentage Served (%) 100 100 100 100
Wait Time Avg 5.4 5.3 5.1 5.2
Wait Time Std 1.3 1.1 1.4 1.2

Table 3: Quality of Service for Postponed Riders and Long Peaks.

Peak Demand Revenue
Percentage Reloc Surge Surge Surge Post

(-0.5) (-1.0) (-2.0)

0% 74972 75808 74564 73942 73200
17% 73994 83245 78807 76587 75648
24% 74123 84890 79599 76953 76712
31% 74875 83360 78306 75779 75057
38% 76021 82039 77261 74871 74394

Table 4: Revenues for Long Peaks (No Ridesharing).

Peak Demand Model
Percentage Rideshare No Rideshare

Surge Post Surge Post

17% 827 675 1423 1205
24% 1161 839 1836 1761
31% 1704 1721 2078 2101
38% 1789 1835 2235 2200

Table 5: Number of Passengers Priced Out.

poned demand. When the peak is strong or ridesharing is not
available, fewer vehicles can be used to serve the postponed
demand. These observations imply that postponing is most
helpful when surge is relatively small.

7 Conclusion
This paper proposed AP-RTRS, a real-time framework for
ride sharing that features dynamic pricing scheme. To our
knowledge, AP-RTRS is the first framework that provides
service guarantees and short waiting times for ride-sharing
platforms during peak times. This is achieved by prompt-
ing people to use the service at a later time or admitting
fewer customers. AP-RTRS combines a real-time dial-a-
ride optimization to dispatch and route vehicles with a MPC
component for pricing and relocation. Experimental results
on the Yellow Taxi instances in New York City with peaks
of increasing intensities demonstrate that AP-RTRS meets
its performance guarantee targets and achieves short waiting

(a) During Peak

(b) After Peak

Figure 3: Demand Multipliers and Demand.

times, while not sacrificing revenues or creating any major
geographical fairness issues. The results also show that dis-
counting is effective for short peaks where it improves the
number of riders served significantly, especially when ride-
sharing is considered. Future work will focus on generalizing
AP-RTRS with fairness guarantees and taking into account
the supply side.
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