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Abstract

Intent detection and slot filling are two main tasks
for building a spoken language understanding (S-
LU) system. Since the two tasks are closely related,
the joint models for the two tasks always outper-
form the pipeline models in SLU. However, most
joint models directly incorporate multiple intent in-
formation for each token, which introduces inten-
t noise into the sentence semantics, causing a de-
crease in the performance of the joint model. In this
paper, we propose a Dynamic Graph Model (DGM)
for joint multiple intent detection and slot filling, in
which we adopt a sentence-level intent-slot interac-
tive graph to model the correlation between the in-
tents and slot. Besides, we design a novel method
of constructing the graph, which can dynamical-
ly update the interactive graph and further allevi-
ate the error propagation. Experimental results on
several multi-intent and single-intent datasets show
that our model not only achieves the state-of-the-art
(SOTA) performance but also boosts the speed by
three to six times over the SOTA model.

1 Introduction
Spoken language understanding (SLU) is a critical compo-
nent in task-oriented dialogue systems. It aims to form a se-
mantic frame that captures the semantics of user utterances
or queries. SLU consists of two typical subtasks, intent de-
tection and slot filling [Tur and Mori, 2011]. Intent detection
captures the intention of the user and slot filling extracts ad-
ditional information or constraints provided by the users. As
shown in Figure 1, taking the utterance “Book a brasserie for
me” for example, the intent detection can be formulated as
a classification task to classify the intent label while the s-
lot filling as a sequence labeling task to predict the slot label
sequence.

Considering that pipeline approaches usually suffer from
error propagation, the joint model has been proposed to im-
prove sentence-level semantics via mutual enhancement be-
tween two tasks [Guo et al., 2014; Hakkani-Tür et al., 2016].
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Figure 1: An example with intent and slot annotation (BIO format),
which indicates the slot of restaurant and party size from an utter-
ance with an intent BookRestaurant.

Existing researches on joint method can be mainly classi-
fied into two classes. One makes use of sharing parame-
ters to model the relationship between intent and slot [Bing
and Lane, 2016; Zhang and Wang, 2016] and other explicitly
leverages intent information to guide slot filling task [Goo et
al., 2018; Li et al., 2018; Qin et al., 2019].

Despite their success, existing joint models only focus on
single intent scenarios, i.e. these models are trained based
on the assumption that each utterance only has one single
intent. However, in real-world scenarios, users usually ex-
press multiple intents in an utterance. For example, giv-
en a user’s utterance, “Book a brasserie for me at four pm
and what is the weather in neighboring”, the user expresses
his intentions (BookRestaurant and GetWeather) in one ut-
terance. Unlike the prior SLU models, Gangadharaiah and
Narayanaswamy [2019] adopted a multi-task framework with
the slot-gated mechanism (Joint Multiple ID-SF) for multiple
intent detection and slot filling. Their model uses an inten-
t context vector to incorporate the information of multiple
intents, where each token is guided with the same complex
intents information.

Although Joint Multiple ID-SF proposes an effective strat-
egy to incorporate multiple intent information, it always in-
troduces intent noise into the sentence semantics. To alleviate
the noise issue, Qin et al. [2020] proposed an adaptive graph-
interactive framework for multiple intent detection and slot
filling, which builds token-level interactive graph for each to-
ken in the utterance by using all predicted intents. However,
different tokens appearing in the utterance have various im-
portance for representing the intent. For instance, in the ut-
terance “Book a brasserie for me at four pm” , “me” is not
important to the judgment of the intention(BookRestaurant).
Their model incorporates multiple intent information to all
tokens including those without contribution to intent repre-
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sentation, which introduces noise into the sentence semantics
and decreases in the performance of the model to some extent.

In this paper, we propose a dynamic graph network that
focuses on the interactive information of intent and slot to
address above two issues. The core module is the dynam-
ic graph module, which consists of a generation graph layer
and a graph attention network. The generation graph layer
automatically constructs sentence-level intent-slot interactive
graph by connecting the tokens with the relevant intents. To
alleviate introduction of noise, the graph only incorporates in-
tent information for tokens that play an important role in judg-
ing sentence intents. Besides, we design a novel method of
constructing the graph, which can dynamically update the in-
teractive graph until the tokens in the utterance match the cor-
rect intents. To encode multiple intents information, we intro-
duce the graph attention network (GAT) to model the inter-
active graph. GAT leverages masked self-attention layers to
assign different importance to neighbouring nodes. It makes
a part of tokens incorporated with relevant intent information
and provides prior information for slot filling. In contrast to
prior work which directly incorporate multiple intents infor-
mation statically, our model captures relevant intent informa-
tion to construct intent-slot interactive graph. Furthermore,
compared with token-level interactive graph, the sentence-
level graph can achieve a 3-6 times speed gain.

We conducted the experiments on two multi-intent datasets
MixATIS [Hemphill et al., 1990] and MixSNIPS [Coucke et
al., 2018]and results indicate the effectiveness of our method.
Moreover, to verify the generalization of our model, we al-
so constructed the experiments on two single-intent datasets
ATIS [Tur and Mori, 2011] and SNIPS [Coucke et al., 2018].
The results show our method significantly outperforms a se-
ries of joint intent and slot methods and further verify its gen-
eralization.

To summarize, the contributions of this work are as fol-
lows:

1. We propose a dynamic graph model in SLU task, which
can establish the directional interrelated connections for
the two tasks and achieve the best results on several
multi-intent and single-intent datasets.

2. To alleviate the noise issue, we employ sentence-level
intent-slot interactive graph. The graph incorporates in-
tent information only for tokens that play an important
role in judging sentence intents.

3. Different from using external NLP tools to construct
graph, we propose a novel method of graph construc-
tion, which dynamically updates the interaction graph.
This method achieves a 3-6x speed up over the SOTA
model.

To facilitate future research in this area, the codes are pub-
licly available at https://github.com/dzy1011/DGM.

2 Related Work
Traditional pipeline approaches manage the two tasks sepa-
rately. The intent detection can be treated as an utterance
classification problem. Sarikaya et al. [2011] adopted recur-
rent neural networks (RNN) to solve it. Xia et al. [2018] used

a capsule with self-attention for intent detection. Slot filling
is formulated as a sequence labeling task, and the popular ap-
proaches are conditional random fields (CRF) [Raymond and
Riccardi, 2007] and RNN [Xu and Sarikaya, 2013]. Recent-
ly, Zhong et al. [2018] introduced the self-attention mecha-
nism for CRF-free sequential labeling. However, the above
pipeline models always suffer from error propagation prob-
lem.

In consideration of the high correlation between inten-
t detection and slot filling, the tendency is to develop a
joint model [Guo et al., 2014; Hakkani-Tür et al., 2016]
for intent detection and slot filling tasks. Existing method-
s make use of sharing parameters [Bing and Lane, 2016;
Zhang and Wang, 2016] and applying intent information to
guide the slot filling [Goo et al., 2018; Li et al., 2018;
Qin et al., 2019]. However, the above joint models main-
ly focus on the single intent scenario, which can not han-
dle the complex multiple intent scenario. Gangadharaiah and
Narayanaswamy [2019] first adopted a multi-task framework
with the slot-gated mechanism for multiple intent detection
and slot filling. To better incorporate intent information, Qin
et al. [2020] proposed a token-level graph-interactive frame-
work for multiple intent detection and slot filling.

Compared with other work, the main differences are as fol-
lowing: 1) We propose the sentence-level intent-slot interac-
tive graph, which only incorporate intent information for to-
kens that play an important role in judging sentence intents.
2) We design a novel method of constructing the graph, which
can dynamically update the interactive graph to further alle-
viates the error propagation. 3) Our model enhances the di-
rectional interrelated connections for the two tasks and help
them promote each other mutually.

3 Method
In this section, we will describe our dynamic graph model
for SLU task. The architecture of our model is demonstrat-
ed in Figure 2, which consists of a shared encoder, dynamic
graph module and two decoders. First, the shared encoder
(Section 3.1) encodes an utterance to obtain the shared infor-
mation between intent detection and slot filling. Then, the
intent detection decoder (Section 3.2) performs intent detec-
tion. Furthermore, the dynamic graph module (Section 3.3)
leverages intent matrix and the intent output from the inten-
t decoder to construct intent-slot interactive graph, and uses
GAT to encode the graph. Finally, we use slot filling decoder
to predict the slot. Both intent detection and slot filling are
optimized simultaneously via a joint learning scheme.

3.1 Shared Encoder
Following [Qin et al., 2020], our shared encoder consists
of BiLSTM, which leverages temporal features within word
orders, followed by a self-attention mechanism to capture the
contextual information of the sequence.

BiLSTM
To capture contextual information, a bidirectional LST-
M [Hochreiter and Schmidhuber, 1997] is applied to encode
the utterance X = [x1, x2, ..., xn] (n is the number of token
in the input utterance). By concatenating the forward and
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Figure 2: Illustration of our dynamic graph model for joint multiple intent detection and slot filling. It consists of one shared encoder,
dynamic graph module and two decoders (a). (b) is the dynamic graph module. It leverages the intent output from the intent decoder to
construct intent-slot interactive graph, and uses GAT to encode the interactive graph for slot prediction.

backward LSTM hidden states, we obtain the contextual rep-
resentation H = [h1, h2, ..., hn].

Self-Attention
Self-attention [Vaswani et al., 2017] is an effective method
to capture the contextual information. In this case, we em-
ploy self-attention over word embedding to leverage context-
aware features. We first map the matrix of input vectors
X ∈ Rn×d (d represents the mapped dimension) to queries
Q, keys K and values V matrices by using different linear
projections. Then the attention is used to output representa-
tion S ∈ Rn×d based on the following equation:

S = softmax(
QKT

√
dk

)V (1)

For each utterance, we concatenate these two representations
as the final encoding representation:

E = [H ‖ S] (2)

where E ∈ Rn×2d and ‖ denotes concatenation operation.

3.2 Intent Decoder
To better apply multi-intent scenarios, we treat intent de-
tection as the multi-label classification problem. Follow-
ing [Goo et al., 2018], self-attention layer is applied to
E = [e1, e2, ..., en] to capture the contextual information for
each token.

pt = softmax(weet + b) (3)

c =
∑
t

ptet (4)

where we ∈ R1×2d is trainable parameters. c is the weighted
sum of each element et and utilized for intent detection:

OI = σ(Wi(LeakyReLU(Wcc) + bc) + bi) (5)

where Wi, Wc are trainable parameters of the intent de-
coder, σ denotes the nonlinearity activation function. OI =
[oI1, o

I
2, ..., o

I
m] is the intent output of the utterance andm rep-

resents the number of intent labels.

3.3 Dynamic Graph Module
To better incorporate intent information, we design a novel
generation graph layer, which automatically extracts relevant
information to construct sentence-level interactive graphs.

Generation Graph Layer
Considering that tokens may contribute differently to judging
the intent of the utterance, we adopt a multiplicative atten-
tion mechanism for computing relevance between intent and
token. As shown in Figure 2 (b), we embed all the inten-
t types (e.g,GetWeather, BookRestaurant) in the same space
as the word embeddings. We denote the intent that output of
intent decoder as I = [i1, i2, ..., ip], I ∈ Rp×dI , where p is
the number of output intent, dI is the dimension of the intent
embeddings. We express the computation as follows:

tij = eiwI ij (6)

aij =
exp(tij)∑i

k=0 exp(tkj)
(7)

where wI is the trainable parameters, aij is the relevance s-
core between ith intent and ej .

Innovatively, we use hyperparameter α to measure the rel-
evance between intent and token. If aij > α, it means that
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the token play an important role in judging the intent of the
utterance. In this case, this token is directly connected to the
relevant intent. In training process, we allow a token to match
multiple intents, and an utterance to match multiple intents.
As is shown in Figure 2 (b), “brasserie” and “BookRestauran-
t” have the high relevant score. Therefore, we directly con-
nect “brasserie” and “BookRestaurant” to build an intent-slot
interactive graph. During training, the interactive graph is dy-
namically updated according to the relevance score, leading
each token to match with the correct intents. The intent-slot
interactive graph contains intent information to help the sub-
sequent slot filling task.

To represent the edge set, we introduce adjacency matrix to
generation graph layer. The elements of the adjacency matrix
indicate whether pairs of vertices are adjacent or not in the
graph. If the token i is highly correlated with the intent j, the
(i, j)-entry of the interactive graph corresponding adjacency
matrix A will be assigned a value of 1.

To represent the vertex set, we concatenate the contextual
representation and the intent embeddings as the output of this
layer, denoting it as R :

R = [e1, e2, ..., en, i1, i2, ..., im] (8)

Graph Attention Network over Intent-slot Interactive
Graph
We use Graph Attention Networks(GAT) [Veličković et al.,
2018] to model intent-slot interactive graph. The input of
jth layer is an initial node features R = {r1, r2, ..., rN}
rn ∈ RF and an adjacency matrix A ∈ RN×N , where N
denotes the number of the nodes and F is the the dimension
of features at jth layer. The output of jth layer is a updat-
ed node features R′ = {r′1, r′2, ..., r′N}. The graph attention
updating the representation of each node can be written as:

Fk(ri, rj) = LeakyReLU(a>[Whri‖Whrj ]) (9)

αk
ij =

exp(Fk(ri, rj))∑
j′∈Ni

exp(Fk(ri, rj′))
(10)

r′i = ‖Kk=1σ(
∑
j∈Ni

αk
ijW

k
h rj) (11)

where Wh ∈ RF ′×F , a ∈ R2F ′
is the trainable weight

matrix, Ni is the neighborhood of node i (including i) in
the graph, αk

ij is the attention coefficient computed by the
kth function Fk, σ is nonlinear activation function, ‖ denotes
concatenation operation and K is the number of heads.

In this work, we adopt graph attention networks to model
the slot-intent interactive graph. The input node features of
GAT are matrix R, which is shown in Equation 8. The output
node features are denoted as G.

G = GAT (R,A) (12)

3.4 Slot Filling Decoder
For the slot-filling decoder, we similarly use a unidirectional
LSTM as the slot filling decoder. At each decoding step t,
the decoder state dt is calculated by previous decoder state

dt−1, the previous emitted slot label distribution oSt−1 and the
aligned hidden state gt:

di = LSTM(di−1, o
s
i−1, gi) (13)

Similarily, the decoder state di is utilized for slot filling

oSi = softmax(Wsdi) (14)

oSi = argmax(osi ) (15)

where oSi is the predicted slot label of the ith word in the ut-
terance.

3.5 Joint Training
Following [Qin et al., 2020], we adopt a joint model to up-
date parameters by joint optimizing.

Intent Detection
The intent detection objective is:

L1 , −
NI∑
k=1

(ôIklog(o
I
k) + (1− ôIk)log(1− oIk)) (16)

where NI is the number of single intent labels and ôIk is the
gold intent label.

Slot Filling
Similarly, the slot filling task objective is defined as:

L2 , −
M∑
i=1

NS∑
j=1

ô
(j,S)
i log(o

(j,S)
i ) (17)

where NS is the number of slot labels and ôSk is the gold slot
label.

Joint Training
To perform joint training for intent detection and slot filling,
the final joint objective is formulated as:

L = (1− λ)L1 + λL2 (18)

where λ is a hyper-parameter. During training, we set λ to
0.6.

4 Experiments
We conducted the experiments on several multiple intent and
single intent datasets, comparing our method with a range of
joint intent detect and slot filling baselines.

4.1 Datasets
Multiple Intent Datasets
We conducted the experiment on the MixSNIPS and Mix-
ATIS provided by [Qin et al., 2020]. In these two datasets,
the ratio of utterance containing 1-3 intents is [0.3,0.5,0.2].
There are 45,000 utterances for training, 2,500 utterances for
validation and 2,500 utterances for testing on the MixSNIPS
dataset. Similarly, MixATIS has 18,000 utterances for train-
ing, 1,000 for validation and 1,000 for testing.
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Model MixATIS MixSNIP

Slot(F1) Intent(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(F1) Intent(Acc) Overall(Acc)

Attention BiRNN 86.6 - 71.6 38.7 89.4 - 94.1 62.2
Slot-Gated 88.1 - 65.7 38.9 87.8 - 96.0 56.5
Slot-gated Intent 86.7 - 66.2 39.6 87.9 - 94.2 57.6
Bi-Model 85.5 - 72.3 39.1 86.8 - 95.3 53.9
SF-ID 87.7 - 63.7 36.2 89.6 - 96.3 59.3
Stack-Propagation 87.4 79.0 71.9 41.0 93.2 97.6 94.6 71.9
Joint Multiple ID-SF 87.5 80.6 73.1 38.1 91.0 98.2 95.7 66.6
AGIF 88.1 81.2 75.8 44.5 94.5 98.6 96.5 76.4

DGM 88.7* 81.0 76.7* 47.1* 94.7* 98.6 96.7* 78.0*

Table 1: Slot filling and intent detection results on two multi-intent datasets. The numbers with * indicate that the improvement of our model
over all the compared baselines is statistically significant with p < 0.05 under the t-test.

Single Intent Datasets
In addition, we also conducted experiments on two bench-
mark datasets, one is the widely-used ATIS dataset [Hemphill
et al., 1990] containing audio recordings of flight reservation-
s, and the other is the custom-intent-engine dataset called the
Snips [Coucke et al., 2018], which is collected by Snips per-
sonal voice assistant.

4.2 Experimental Settings
Hyperparameters
In our experiments, we choose AGIF [Qin et al., 2020] for
developing the models. To prevent overfitting, we set dropout
rate to 0.4. The graph layer number is 2. All embeddings
are randomly initialized and fine-tuned during training. Our
experiments are conducted on Tesla K80.

Baseline
We compared our model with the baselines including:
Attention BiRNN. Liu and Lane [2016] proposed the
alignment-based RNN models with attention, which provide
additional information to joint intent detection and slot filling.
Slot-Gated Atten. Goo et al. [2018] proposed a slot gate to
learn the relationship between intent detection and slot filling.
Bi-Model. Wang et al. [2018] proposed Bi-model based
RNN semantic frame to consider intent detection and slot fill-
ing cross impact.
SF-ID. Haihong et al. [2019] proposed an SF-ID network to
establish connections for these two tasks. The iteration mech-
anism enhances the bi-directional interrelated connections.
Stack-Propagation Framework. Qin et al. [2019] adopt-
ed a joint model with Stack-Propagation which can use the
token-level intent information as input for slot filling.
Joint Multiple ID-SF. Gangadharaiah and
Narayanaswamy [2019] adopted a multi-task framework
with the slot-gated mechanism for multiple intent detection
and slot filling.
AGIF. Qin et al. [2020] proposed an Adaptive Graph-
Interactive Framework for joint multiple intent detection and
slot filling, which extracts the intents information for token-
level slot prediction. This model achieves the state-of-the-art
performance.

Model Slot(F1) Intent(Acc) Overall(Acc)

Sentence-Level Aug 93.8 95.7 73.9
+Parameters 94.1 95.5 74.8

GCN-based 94.8 95.8 77.2
DGM 94.7 96.7 78.0

Table 2: Ablation Study on MixSNIPS Datasets.

4.3 Main Results
Following [Goo et al., 2018] and [Qin et al., 2019], we e-
valuated the performance of slot filling using F1 score, in-
tent prediction using accuracy, the sentence-level semantic
frame parsing using overall accuracy which represents slots
and intent are both correctly-predicted in an utterance. Table
1 shows the experiment results of the proposed models on the
MixSNIPS and MixATIS datasets.

Performance on Multiple Intent Datasets
We conducted experiments on two public Multiple-intent
benchmarks. Table 1 shows the experiment results of the pro-
posed models on the MixATIS and MixSNIPS datasets. On
the MixATIS dataset, our model achieves 2.6% improvemen-
t in terms of Overall (Acc). On the MixSNIPS dataset, our
model achieves 1.6% improvement on Overall. Results show
that the intent-slot interactive graph constructed by our dy-
namic graph model can match the token to the relevant intent,
so that our model can correctly predict the intent and slot in
an utterance, thereby improving the overall accuracy.

We recorded the average runtime of our method(6,413s)
and that of AGIF(33,528s) on MixATIS datasets. Measured
from the runtime, DGM can increase the speed by about 5.2
times. The reason is that AGIF constructs a graph for each
token in an utterance, while DGM constructs a graph for an
utterance.

Performance on Single Intent Datasets
To prove the generalizability of our model, we conducted ex-
periments on two public single-intent benchmarks. We com-
pared our model with the single-intent state-of-the-art mod-
els including Joint Seq, Attention BiRNN, Slot-gated Atten,
CAPSULE-NLU, SF-ID, Stack-Propagation. Table 3 shows
the experiment results of the proposed models on SNIPS and
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Model ATIS SNIP

Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc)

Joint Seq [Hakkani-Tür et al., 2016] 94.3 92.6 80.7 87.3 96.9 73.2
Attention BiRNN [Bing and Lane, 2016] 94.2 91.1 78.9 87.8 96.7 74.1
Slot-Gated [Goo et al., 2018] 94.8 93.6 82.2 88.8 97.0 75.5
Slot-gated Intent [Goo et al., 2018] 95.2 94.1 82.6 88.3 96.8 74.6
Bi-Model [Wang et al., 2018] 95.5 96.4 85.7 93.5 97.2 83.8
Self-Attentive Model [Li et al., 2018] 95.1 96.8 82.2 90.0 97.5 81.0
CAPSULE-NLU [Zhang et al., 2019] 95.2 95.0 83.4 91.8 97.3 80.9
SF-ID [Haihong et al., 2019] 95.6 96.6 86.0 90.5 97.0 78.4
Stack-Propagation [Qin et al., 2019] 95.9 96.9 86.5 94.2 98.0 86.9

DGM 96.1* 97.4* 87.8* 95.2* 98.2* 88.4*

Table 3: Slot filling and intent detection results on two single intent datasets. The numbers with * indicate that the improvement of our model
over all baselines is statistically significant with p < 0.05 under t-test.

ATIS datasets. On the ATIS dataset, compared with the best
prior joint model, our model achieves 1.3% improvement on
Overall (Acc). On the SNIPS dataset, our model achieves
1.5% improvement on Overall (Acc). This indicates the ef-
fectiveness of our dynamic graph module.

4.4 Analysis

To further analyze the performance of the DGM model, we
explored the effect of dynamic graph module. To better un-
derstand what the dynamic graph module has learned, we vi-
sualized intent attention weights of the intent-slot interactive
graph, which is shown in Figure 3.

Effectiveness of Intent-slot Graph Interaction
Mechanism
To verify the effectiveness of the dynamic graph module, we
conducted experiments with the following ablations. We first
conducted experiments by directly providing the same intent
information for all tokens slot prediction where we concate-
nate the intent embedding and the hidden state of slot filling
decoder. We refer to it as sentence-level augmented. We ap-
ply multiple LSTM layers (2-layers) to slot filling decoder
and we name it as more parameters. The result is shown in
the sentence-level augmented row of Table 2. From the re-
sult, we observe that the performance drops in all metrics in
the MixSNIPS dataset. This indicates that the naive model
of incorporating intent information decreases in the perfor-
mance of the model.

Effectiveness of Graph Attention Mechanism
In another group of experiments, we adopted graph convo-
lution layer instead of graph attention layer to model intent-
slot interactive graph and keep other components unchanged.
We refer to it as GCN-based model. The result is shown in
the GCN-based row of Table 2. From the result, we observe
that the performance drops in all metrics in the MixSNIPS
dataset. This indicates that GAT can better encode intent-slot
interactive graph, and the results of GCN-based also show the
interactive graph can incorporate relevant intent information
for each utterance.

Figure 3: Visualization. Y-axis is the predicted intents and X-axis is
the input utterance. For each column, the darker the color, the more
relevant they are.

Visualization
To better understand what the dynamic graph model has
learned, we visualized intent attention weights of the intent-
slot interactive graph, which is shown in Figure 3. Based on
the utterance “Book a brasserie for me at four pm and what is
the weather in neighboring” and the intents “BookRestauran-
t” and “GetWeather”, we can observe that our model properly
attends the corresponding slot token “brasserie” and “weath-
er” at intent “BookRestaurant”and “GetWeather” where the
attention weights successfully focus on the correct slot, which
means our model can capture the word that has played an im-
portant role in judging the intent of the utterance. This indi-
cates that generation dynamic graph layer can leverage cor-
rect intent to construct the intent-slot interactive graph.

5 Conclusion
In this paper, we propose a dynamic sentence-level interactive
graph model for joint multiple intent detection and slot fill-
ing, which enhances the directional interrelated connections
for the two task. To further alleviate the error propagation,
we design a novel method of constructing the graph, which
boosts the speed by three to six times over the SOTA mod-
el. Experimental results on several multi-intent datasets show
that our model achieves the SOTA performance.
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