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Abstract
Learning to order events at discourse-level is a
crucial text understanding task. Despite many ef-
forts for this task, the current state-of-the-art meth-
ods rely heavily on manually designed features,
which are costly to produce and are often specific to
tasks/domains/datasets. In this paper, we propose a
new graph perspective on the task, which does not
require complex feature engineering but can assim-
ilate global features and learn inter-dependencies
effectively. Specifically, in our approach, each
document is considered as a temporal graph, in
which the nodes and edges represent events and
event-event relations respectively. In this sense, the
temporal ordering task corresponds to constructing
edges for an empty graph. To train our model,
we design a graph mask pre-training mechanism,
which can learn inter-dependencies of temporal re-
lations by learning to recover a masked edge fol-
lowing graph topology. In the testing stage, we
design an certain-first strategy based on model un-
certainty, which can decide the prediction orders
and reduce the risk of error propagation. The ex-
perimental results demonstrate that our approach
outperforms previous methods consistently and can
meanwhile maintain good global consistency.

1 Introduction
Learning to order events at discourse-level is a crucial text
understanding task, which is necessary for many applica-
tions including event timeline construction [Do et al., 2012;
Reimers et al., 2016], time-aware summarization [Yan et al.,
2011], temporal commonsense reasoning [Zhou et al., 2019],
and others. Consider the example in Figure 1. Given a docu-
ment marked with events, a system should assign a tempo-
ral link, i.e., TLINK [Allen, 1984], between every pair of
events. For example, a TLINK of BEFORE should be as-
signed between [E2 assistance] and [E4 fallen], denoted by
[E2] BEFORE−−−−−→ [E4], indicating that [E2] occurs before [E4].

The challenge of discourse-level event temporal ordering
derives from the appearance of long contexts. To succeed in
the task, a system should be able to reason over global fea-
tures and meanwhile maintain document-wide consistency.

It's [E1 turning] out to be another very bad financial week. The 

financial [E2 assistance] from the World Bank is not [E3 helping]. 

… 3 sentences are omitted … 

The value of the Indonesian stock market has [E4 fallen] by twelve 

percent. The Indonesian currency has [E5 lost] twenty six percent 

of its value.  In Singapore, stocks [E6 hit] a five year low.

Temporal Graph with TLINKs

[E2]

[E5]

[E4]

AFTER

SIMULTANEOUS

?

Figure 1: Illustration of framing discourse-level event temporal or-
dering as a graph completion problem, where the nodes and edges
indicate events and their temporal relations respectively.

For example, if a model has predicted [E2] BEFORE−−−−−→ [E4] and
[E4] SIMULTANEOUS←−−−−−−−−→ [E5], it should also figure out that [E2]
BEFORE−−−−−→ [E5]. It is generally difficult to learn such patterns

from texts solely, and the state-of-the-art methods usually re-
sort to human-designed rules [Do et al., 2012; Ning et al.,
2017; Ning et al., 2018; Han et al., 2019a; Han et al., 2019b].
Despite many progresses, these rules are usually costly to
produce and often specific to tasks/domains/datasets, which
limit the applicability of previous methods.

In this paper, we provide a new perspective for the event
temporal ordering task — framing it as a graph completion
problem. As noted in Figure 1 (Below), in our approach
each document is considered as a temporal graph, in which
each node has a one-to-one mapping relationship to an event.
In this graph view, the event temporal ordering task corre-
sponds to predicting/constructing the edges of the graph —
which designate event-event temporal relations. By adopt-
ing this graph view, we can directly leverage the recent ad-
vances in graph representation learning [Chen et al., 2020]
to enhance training, which endows our model the ability of
global reasoning and meanwhile mining the underlying inter-
dependencies of temporal relations effectively.

We devise an uncertainty-guided graph completion (UC-
Graph) framework. For training, our framework employs
a graph mask pre-training strategy, in which we randomly
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mask a portion of edges out and then learn to reconstruct
them following the remaining graph topology. This graph
view enables our model to assimilate document-level features
for reasoning and meanwhile learn the sense of global logical
consistency. Nevertheless, a gap may exist in the inference
stage as we would begin with an empty graph (instead of a
masked graph), and the early predictions can have great im-
pact on the late predictions. To mitigate this problem, we
design a “certain-first” strategy in UCGraph based on model
uncertainty [Gal and Ghahramani, 2016], which can find the
optimal edge prediction orders and therefore minimize error
propagation in the graph completion process (§ 6.2).

To verify the effectiveness of our approach, we have con-
ducted extensive experiments on the standard benchmark
datasets [Naik et al., 2019]. The experimental results demon-
strate that our approach consistently outperforms previous
methods and sets up a new state-of-the-art. In addition to
its superior performance, our approach also show advantages
over previous methods in maintaining global consistency,
which is a crucial aspect of event temporal ordering. We have
released our code at https://github.com/jianliu-ml/EventTemp
to facilitate further exploration.

To summarize, our contributions are three-fold:

• This paper provides a new graph view on the task of
discourse-level event temporal ordering, which can ef-
fectively assimilate document-level evidence for reason-
ing and learn inter-dependencies of temporal relations
without complex feature engineering.

• We proposes a model consisting of graph mask
pre-training and uncertainty-guided graph completion,
which can learn inter-dependencies of temporal relations
and find optimal prediction orders respectively. To our
best knowledge, this is the first work introducing graph
representation learning and uncertainty modeling to the
task of discourse-level event temporal ordering.

• We set up a new state-of-the-art on the standard bench-
mark datasets, and we will release our code to facilitate
following studies.

2 Related Work
Event Temporal Ordering. Temporal ordering of events
is a crucial text understanding task. Shaped by the proposed
TimeML annotation [Pustejovsky et al., 2003a] and the re-
lated corpora such as TimeBank [Pustejovsky et al., 2003b]
and TimeBank-Dense [Cassidy et al., 2014], most previous
works focus on addressing local temporal relations, i.e., they
focus on events in the same or adjacent sentences [Bethard et
al., 2007; Verhagen et al., 2007; UzZaman and Allen, 2010;
Chang and Manning, 2012; Chambers, 2013; Chambers et al.,
2014; Reimers et al., 2016], Despite many progresses, the re-
liance on local features often restricts their ability to address
global event relations. As a remedy, a few of works have
explored introducing document-structure constraints [Ning et
al., 2017; Han et al., 2019a], entity co-reference patterns
[Do et al., 2012], and event causal clues [Do et al., 2012;
Ning et al., 2018] to learn global dependencies. Neverthe-
less, designing such rules requires substantial domain exper-

tise, which may limit the applicability of previous works. Re-
cently, focusing on global event temporal relations specif-
ically, [Naik et al., 2019] benchmark discourse-level event
temporal ordering by proposing a new corpora TDDiscourse.
As suggested by [Naik et al., 2019], global event temporal
ordering is very challenging, and the previous state-of-the-art
systems underperforms a simple majority-class baseline.
Graph Representation Learning. Recent years have wit-
nessed a surge in exploring graph representation learning
[Chen et al., 2020]. Graph neural networks, including Graph
Convolution Network [Kipf and Welling, 2017] and its vari-
ants [Veličković et al., 2018; Schlichtkrull et al., 2018],
have demonstrated state-of-the-art performance in addressing
many tasks, including semantic role labeling [Marcheggiani
and Titov, 2017], relation extraction [Zhang et al., 2018],
event extraction [Liu et al., 2019], and others. Among all
GCNs variants, Relational Graph Convolutional Networks
(R-GCNs) [Schlichtkrull et al., 2018] is a particular struc-
ture that facilitate relational reasoning. To our best knowl-
edge, this is the first work introducing R-GCNs to the task of
discourse-level event temporal ordering.

3 Approach
Figure 2 schematically visualizes the proposed UCGraph
framework. Specifically, at the training time, a graph mask
pre-training mechanism is employed to learn the underlying
inter-dependencies of edges, by reconstructing an edge con-
ditioned on the remaining graph. At the test time, UCGraph
employs an uncertainty-guided graph completion strategy to
rank each predicted edge and select the most uncertain one as
current prediction. Let a document be D, and the event set be
ED. Let R be the TLINK set. We denote by ei ∈ ED the ith
event, and ri,j ∈R the TLINK between ei and ej . Our model
UCGraph aims to structureD as a complete graphGD, where
the ith node corresponds to ei, and ri,j is the edge connect-
ing ei and ej . Considering the reflexivity of TLINKs (e.g., ei
BEFORE−−−−−→ ej always implies ei

AFTER←−−−− ej), we assert i < j 1. In
this way, the total number of edges in GD is |ED|×(|ED|−1)

2 .

3.1 Graph Mask Pre-Training
To learn the underlying inter-dependencies of temporal rela-
tions, UCGraph employs a graph mask pre-training strategy.
Random Edge Masking. Given a training documentD and
its temporal graph, we first adopt a random mask strategy to
exclude some edges2 inGD (inspired by the masked language
modeling objective in BERT [Devlin et al., 2019]), and then
employ a graph model to re-construct these edges conditioned
on the remaining graph. Assume a masked edges is ri′,j′ ,
which connects two end nodes e′i and e′j . Then in the edge re-
construction phase, our goal is to recover ri′,j′ by exploring
the remaining graph’s structure. This graph formulation en-
ables our model to learn the dependency of the masked edge
on other edges, and assimilate global features for reasoning.

1Note this setting is in line with previous evaluations [Ning et
al., 2018; Naik et al., 2019].

2The optimal portion is set to 5%, which is based on a grid search
on the development set (c.f., § 6.1).
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Figure 2: The overview of UCGraph. Up: A graph mask pre-training mechanism is adopted to learn the underlying inter-dependencies of
edges. Down: An uncertainty-guided strategy is devised at the testing time to learn prediction orders for graph completion.

ReLU

Figure 3: Graph representation learning via R-GCNs.

Graph Representation Learning via R-GCNs. To recover
a masked edge ri′,j′ (with two end nodes e′i and e′j), we
adopt Relational Graph Convolutional Networks (R-GCNs)
[Schlichtkrull et al., 2018], involving two major procedures:

1) Node Representations Learning, in which we first
learn the node representation of each node in the graph. Par-
ticularly, we use the event’s within-sentence representation as
the initialized node representation, which is computed using
Bi-directional LSTM (BiLSTM) [Hochreiter and Schmidhu-
ber, 1997] and BERT [Devlin et al., 2019]. Accordingly, the
initialized node representation of e′i is denoted by h

(0)
e′i

.
2) Graph Representations Learning, in which we further

learn the graph-aware representation of a node via R-GCNs.
As shown in Figure 3, the graph-aware representation of e′i
(and e′j) is learned by assimilating representations of its di-
rect neighborhoods, and many R-GCNs layers are stacked to
model long-range inter-dependencies. Particularly, the graph
representation of e′i at the l+1th layer is computed as:

h
(l+1)
e′i

= σ(
∑
r∈R

∑
ek∈N r(e′i)

1

ce′i,r
W (l)

r h(l)
ek

) (1)

where σ denotes the ReLU activate function; r denotes a par-
ticular TLINK label3 in the pre-defined label set R; N r(e′i)
denotes the set of neighbor nodes of e′i under relation r; ce′i,r
is a normalization constant, and W

(l)
r is the parameter re-

garding r at the lth layer. The graph representation of e′i is set

3Including a NA label to denote “no-relation”.

as R-GCNs’ output, denoted as He′i
, and the representation

of e′j is computed in a similar way, denoted by He′j
.

Edge Prediction and Optimization. Based on He′i
and

He′j
, we conduct a multi-class classification to predict the

masked edge:

oe′i,e
′
j

= softmax(Wout[He′i
;He′j

] + bout) (2)

where oe′i,e
′
j

is an output vector containing the predictive
probabilities of different TLINK labels, and the predicted re-
sult is the label having the largest value in oe′i,e

′
j
; [; ] indicates

concatenation computation; Wout and bout are model param-
eters. We train our model with cross-entropy loss:

L(Θ) = −
∑

(e′i,e
′
j)∈T

p(re′i,e′j |(e
′
i, e
′
j)) (3)

where (e′i, e
′
j) ranges over each masked edge; re′i,e′j denotes

the ground-truth TLINK label; p(re′i,e′j |(e
′
i, e
′
j)) is the predic-

tive probability of re′i,e′j in oe′i,e
′
j
. We adopt Adam rules

[Kingma and Ba, 2015] for model optimization.

3.2 Uncertainty-Guided Graph Completion
A gap max exist between training and testing, as in the test-
ing stage we should build a temporal graph from the ground
up (i.e., all the edges are masked), and previous predictions
affect the following predictions. To minimize error propaga-
tion, we propose a “certain-first” strategy to explore the edge
prediction orders, as visualized in Figure 2.
Uncertainty Modeling. Assume our model’s prediction is
r for a masked edge. We next estimate our model’s uncer-
tainty of r via MC-Dropout [Gal and Ghahramani, 2016].
Specifically, we conduct K forward passes with dropout lay-
ers being activated and get K output values r̃ = [r̃1, r̃2, ...,
r̃K]4. According to [Gal and Ghahramani, 2016], the uncer-
tainty of r empirically equals to the variance of r̃. Consid-
ering r is a categorical value, we adopt Shannon’s entropy to

4The values may be different due to the activated dropout layers.
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Algorithm 1 Certain-First Graph Completion
Input: A test document D annotated with a set of events ED

Output: A complete graph G
1: Transfer D as an empty graph G with nodes being ED

2: while G is not completed do
3: Predict TLINKs for all the missing edges in G
4: Estimate uncertainties of TLINKs via Eq. (4)
5: Select TLINK with minimal uncertainty value as cur-

rent prediction, and insert the edge into G
6: end while

model the variance of r̃:

Unc(r) = −
K∑
i=1

p(r̃i) log p(r̃i) (4)

where p(r̃i) = N(r̃i)
K and N(r̃i) is the frequency of r̃i in r̃.

Note lower Unc(r) indicates smaller uncertainty of r, which
also implies a more reliable prediction.
Certain-First Graph Completion Strategy. We design a
certain-first graph completion strategy to decide prediction
orders, as shown in Algorithm 1. Specifically, our algorithm
starts with an empty graph G, which corresponds to a test
document, and then conducts the following steps:
• Step 1: Pseudo-predict TLINK labels for all the missing

edges in G.
• Step 2: Estimate the uncertainty value for each edge pre-

diction using E.q. (4).
• Step 3: Select an prediction with the minimal uncer-

tainty value, and add the corresponding edge into G.
• Step 4: Repeat the above steps until G is completed.

Note in Step 3, when a new edge is added into the G, the
graph structure will change, and thus the next predictions may
be different from the current ones. The above algorithm will
repeat |ED|×(|ED|−1)

2 times exactly, which equals to the total
number of edges in the graph5. We compare our method with
different graph completion methods in § 6.2.

4 Experimental Setups
Datasets and Evaluation Metrics. We use TDDiscourse,
the largest discourse-level event temporal ordering bench-
mark, as the test bed [Naik et al., 2019]. It includes two
subsets: 1) TDD-Man, which augments TimeBank-Dense
(TBDense) [Cassidy et al., 2014] by manually annotating
TLINKs between event pairs that are more than one sentence
apart. 2) TDD-Auto, which derives new TLINKs in the doc-
ument with automatic inference rules. Table 1 and Table 2
compare the sizes and label distributions of TBDense, TDD-
Man and TDD-Auto. We adopt Precision (P), Recall (R), and
F1 score (F1) as estimation metrics, same as previous works
to ensure comparability [Ning et al., 2017; Naik et al., 2019;
Han et al., 2019b].

5The computation complexity of our method (for inference) is
O(K× N2), where K is the number of forward passes in uncertainty
computing, and N is the number of events in a document.

Dataset Train Dev Test
TBDense [Cassidy et al., 2014] 4,032 629 1,427
TDD-Man [Naik et al., 2019] 4,000 650 1,500
TDD-Auto [Naik et al., 2019] 32,609 1,435 4,258

Table 1: Number of temporal relations in TBDense, TDD-Man, and
TDD-Auto. In TBDense, only event-event TLINKs are counted.

Dataset a b s i ii
TBDense 18% 22% 2% 5% 6%
TDD-Man 13% 27% 3% 38% 19%
TDD-Auto 28% 32% 16% 11% 13%

Table 2: Distribution of TLINKs in different datasets. Assume two
events are e1 and e2. The TLINK of a defines e1 occurs after e2;
b defines e1 occurs before e2; s defines e1 occurs simultaneously as
e2; i defines e1 includes e2; ii defines e1 is included by e2.

Implementation Details. The hyper-parameters of our
model are tuned on the development set of TDDiscourse. Fi-
nally, for graph mask pre-training, the mask portion is set as
5% (chosen from 1% to 50%, c.f., § 6.1). The number of R-
GCN layers is set at 3 (chosen from [1, 2, 3, 4, 5]), and we
use DEEP GRAPH LIBRARY6 (DGL) to implement graph
convolution algorithm. To learn the node representations, for
BERT encoder, we use BERT-Base architecture; for BiLSTM
encoder, we use Glove embeddings [Pennington et al., 2014]
and set the hidden dimension to 256 (chosen from [64, 128,
256, 512]). In uncertainty modeling, we set K to 20 to bal-
ance speed and efficiency. For testing, we consider event pairs
which are 15 or fewer sentences apart following [Naik et al.,
2019] (The evaluation is not changed).

Baselines. We compare our method with the following
baselines: Majority, which assigns the majority-class label
to each event pair. Despite its simplicity, Majority outper-
forms most existing state-of-the-art methods on TDD-Man
[Naik et al., 2019]. CAEVO [Chambers et al., 2014], a pre-
vious state-of-the-art method for identifying sentence-level
TLINK which heuristic rules. BiLSTM [Cheng and Miyao,
2017], which introduces BiLSTM to learn representation of
events to predict TLINKs. SP+ILP [Ning et al., 2017], which
adds global constraints via integer linear programming (ILP),
aiming to mitigate the problem that CAEVO and BiLSTM
make separate local decisions that may result in global incon-
sistency. Deep SSVM [Han et al., 2019a], which leverages
structured support vector machine to make global predictions.
Mult-Task [Han et al., 2019b], which jointly predict events
and relations. BERT, which adopts BERT [Devlin et al.,
2019] to learn event representations (same as our method in
learning node representations), but it conducts a pair-wise
classification and ignores inter-dependencies. Our approach
is denoted by UCGraph. We use UCGraph+BiLSTM and
UCGraph+BERT to designate learning node representations
via BiLSTM and BERT respectively.

6https://www.dgl.ai/
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TBDense TDD-Auto TDD-Man

Method P R F1 P R F1 P R F1
Major Voting 40.5 40.5 40.5 34.2 32.3 33.2 37.8 36.3 37.1
CAEVO [Chambers et al., 2014] 49.9 46.6 48.2 61.1 32.6 42.5 32.3 10.7 16.1
SP [Ning et al., 2017] 37.7 37.8 37.7 43.2 43.2 43.2 22.7 22.7 22.7
SP + ILP [Ning et al., 2017] 58.4 58.4 58.4 46.4 45.9 46.1 23.9 23.8 23.8
Deep SSVM [Han et al., 2019a] - - 63.2 65.6† 53.3† 58.8† 41.2† 40.8† 41.0†

Multi-Task [Han et al., 2019b] - - 64.5 64.2† 51.4† 57.1† 41.0† 41.1† 41.1†

BiLSTM 63.9 38.9 48.4 55.7 48.3 51.8 24.9 23.8 24.3
UCGraph + BiLSTM 60.0 46.5 52.4∗ 61.2 52.6 56.6∗ 32.7 32.9 32.8∗

BERT 61.1 54.1 57.4 64.8 52.3 57.9 39.1 39.5 39.9
UCGraph + BERT 62.4 56.1 59.1∗ 66.1 56.9 61.2∗ 44.5 42.3 43.4∗

Table 3: Performance of different models on TBDense, TDD-Auto and TDD-Man. P, R, and F1 denote Precision (%), Recall (%), and
F1-score (%). The shaded lines indicate our method. † denotes our re-implementations. ∗ indicates significance test at a level of p=0.05.

5 Experimental Results
5.1 Overall Performance
Table 3 compares the performance of different models on
TDD-Auto and TDD-Man. We also study the performance
of different models on the local event temporal relation
dataset TBDense7. From the results, our approach (UC-
Graph+BERT) achieves the best performance on TDD-Auto
and TDD-man, outperforming the other methods by consider-
ation margins (+2.4% in F1 on the average). This has justified
the effectiveness of our approach. While, our approach under-
performs Deep SSVM and Multi-Task on TBDense, where
the reason might be TBDense focuses on local event tempo-
ral ordering, which may not fit with our method as the con-
structed temporal graph is too small for feature learning. We
also note that both BiLSTM representations and BERT rep-
resentations are effective (e.g., +8.5% and +3.5% in F1 on
TDD-Man). This suggests that the effectiveness of our ap-
proach is independent of the initialized node representations.

5.2 Maintaining Global Consistency
Maintaining global consistency is an important aspect for
discourse-level event temporal ordering. For example, if e1
BEFORE−−−−−→ e2 and e2

BEFORE−−−−−→ e3, an ideal system should make
a globally consistent prediction e1

BEFORE−−−−−→ e3. Following
[Naik et al., 2019], we evaluate global consistency of differ-
ent models by enumerating every possible triples and check
whether the TLINKs are consistent. From the results in Ta-
ble 4, adding ILP constraints8 improves both the F1 score
and global consistency for feature-based model (e.g, adding
ILP constraints leads to a 3-point gain in F1 and a 1.2 point
in consistency over SP). However, for neural network based
methods (e.g., BiLSTM and BERT), though ILP constraints
improves consistency, they generally harm the F1 score. This
may show the difficulty in injecting prior knowledge into neu-
ral network based models. Our model achieves the highest F1
score and meanwhile can maintain good global consistency,

7Note, on TBDense, we only build local graph and we also dis-
card the VAGUE TLINKs following [Naik et al., 2019].

8We use PuLP (https://github.com/coin-or/pulp) to implement
ILP algorithm and adopt global constraints.

TDD-Auto TDD-Man

Method F1 Cons. F1 Cons.

SP 43.2 52.7 22.7 53.5
SP + ILP 46.3 (↑) 53.6 (↑) 23.8 (↑) 54.7 (↑)
BiLSTM 51.8 41.9 24.3 40.0
BiLSTM + ILP 50.9 (↓) 42.4 (↑) 24.4 (↑) 41.1 (↑)
BERT 57.9 53.2 39.9 51.7
BERT + ILP 58.1 (↑) 56.1 (↑) 39.2 (↓) 53.8 (↑)
Deep SSVM 58.8 56.0 41.0 54.2
Multi-Task 57.1 55.8 41.1 54.8

UCGraph 61.2∗ 56.9∗ 43.4∗ 55.9∗

Table 4: Results of maintaining global consistency (Cons.). ↑ de-
notes a positive impact by adding ILP; ↓ denotes a negative impact.
∗ indicate the significance test with p=0.05.

which justifies the effectiveness of assimilating document-
level features via graph representation learning.

6 Ablation and Discussion
We next conduct a series of studies to further explore the ef-
fectiveness of our model. The experiments are based on the
development set of TDD-Auto, considering that it is much
larger than TDD-Man and its annotation quality is also good.

6.1 Impact of the Graph Masking Pre-Training
We compare different edge masking strategies to explore
which is the most effective way to learn edge inter-
dependencies: 1) One-edge mask. At each step, only one
edge is masked, and the goal is to recover the masked edge
based on the remaining graph. 2) Random mask. At each
step, a portion (ranging from 1% to 50%) of edges are ran-
domly masked. Figure 4 shows the results. Particularly, the
random strategy is better than one-edge strategy when a rela-
tive small portion (e.g., 5% to 15%) is adopted. A plausible
explanation is that the temporal graph is dense, so only mask-
ing one edge may prevent the model to learn the underlying
patterns. While, when a lot of edges are masked (i.e., when
the portion is over 15%), it is also difficult for a model to
capture edge inter-dependencies.
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Figure 4: The impact of graph masking pre-training. The experi-
ments are based on the development set of TDD-Auto.

Setting Method P R F1

Pair-wise BERT + Ind. 60.0 55.4 57.6

Graph View

Graph + Seq 60.6 56.2 58.3
Graph + Rand. 62.9 53.8 58.0
Graph + Logits 62.2 53.8 57.7
Graph + UC 64.2 57.0 60.4

Table 5: The impact of certainty-first graph completion strategy. The
experiments are based on the developing set of TDD-Auto.

6.2 Impact of the Certain-First Strategy
We take a closer look at our certainty-first graph completion
strategy, by comparing it with other strategies: 1) BERT+Ind.,
which makes independent pair-wise predictions based on
BERT representations; 2) Graph+Seq., which adopts graph
view but predicts edges sequentially (e.g., following the or-
dering (e1, e2), (e1, e3), ...); 3) Graph+Rand., which also
adopts graph view but randomly predicts an edge at each step;
4) Graph+Logits, which is similar to our model but ranks all
of the edge predictions based on their softmax probabilities,
and at each step considers the edge having the highest soft-
max probability as prediction. Table 5 shows the results.

From the results, approaches adopting graph view gen-
erally yield better performance than pair-wise methods,
which justifies the necessity of graph representation learn-
ing. While, the prediction orders affect the results seriously.
For example, Graph + Logits even yield negative results than
Graph + Rand. adopting random prediction strategy. This im-
plies that softmax probability does not reflect the reliability of
prediction. Among all the above strategies, our certainty-first
approach achieves the best performance. To find out the rea-
son, we manually examine predictions and their uncertainty
values. From the results, for predictions whose uncertainty
value are lower than 0.15, 81.2% of them are correct; for pre-
dictions whose uncertainties values are higher than 0.5, only
30.1% of them are correct. This implies that our certain-first
strategy tend to yield correct predictions at early stage and
thus reduce error cascading in graph completion.

6.3 Learning Visualization and Case Study
A salient cluster pattern can be observed in our certainty-
first graph completion process. Particularly, Figure 5 studies
the number of cases where the events evolved in the current
edge prediction overlap with that of previous-N predictions,
by comparing our method and a random prediction strategy.
From the results, in our method, there are 358 cases (28%)

Figure 5: Overlapping cases with previous N predictions.

Figure 6: Visualization of the graph completion process. Blue edges
indicate the newly predicted edges. For simplicity, we do not distin-
guish the type/direction of an edge.

and 780 cases (61%) overlap with the previous-1 and -3 pre-
dictions, but in the random strategy there are only 48 cases
(3%) and 122 cases (9%). This indicate that our method tends
to tackle events which have been addressed in previous pre-
dictions. Figure 6 visualizes the case of a randomly selected
document APW19980227.0494 with down-sampled events,
where the cluster pattern can be clearly observed. A plausi-
ble explanation of the above phenomenon is that: when an
edge is predicted and added into graph, our model gets more
information about the nodes (i.e., events). Thus our model be-
comes more confident to predict edges involving those nodes.

7 Conclusion
In conclusion, this paper takes a new graph perspective on the
task of discourse-level event temporal ordering, framing it as
a graph completion problem. A new model based on graph
representation learning and uncertainty modeling is proposed,
which can effectively capture the inter-dependencies of tem-
poral relations and assimilate document-level features for rea-
soning. The experimental results have suggested that our
approach not only improves performance but also maintains
global consistency. In the future, we seek to apply our method
to other discourse-level tasks such as document-level relation
extraction and event causality identification.
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