
Improving Text Generation with Dynamic Masking and Recovering

Zhidong Liu1 , Junhui Li1∗ , Muhua Zhu2

1School of Computer Science and Technology, Soochow University, Suzhou, China
2Tencent News, Beijing, China

{zdliu0122, zhumuhua}@gmail.com, lijunhui@suda.edu.cn

Abstract
Due to different types of inputs, diverse text gen-
eration tasks may adopt different encoder-decoder
frameworks. Thus most existing approaches that
aim to improve the robustness of certain generation
tasks are input-relevant, and may not work well for
other generation tasks. Alternatively, in this paper
we present a universal approach to enhance the lan-
guage representation for text generation on the base
of generic encoder-decoder frameworks. This is
done from two levels. First, we introduce random-
ness by randomly masking some percentage of to-
kens on the decoder side when training the models.
In this way, instead of using ground truth history
context, we use its corrupted version to predict the
next token. Then we propose an auxiliary task to
properly recover those masked tokens. Experimen-
tal results on several text generation tasks includ-
ing machine translation (MT), AMR-to-text gener-
ation, and image captioning show that the proposed
approach can significantly improve over competi-
tive baselines without using any task-specific tech-
niques. This suggests the effectiveness and gener-
ality of our proposed approach.

1 Introduction
Recent years have seen growing interest in various text gen-
eration tasks which aim to generate mostly-grammatical nat-
ural language text from diverse input forms. Representative
text generation tasks include machine translation [Vaswani et
al., 2017] which generates text from an input word sequence,
AMR-to-text generation [Zhu et al., 2019] which generates
text from a semantic graph, concept-to-text [Mei et al., 2016]
which generates text from structured data records, and image
captioning [Ren et al., 2016] which generates text description
from an image.

Most existing approaches to text generation adopt the
widely used encoder-decoder framework: the encoder takes
structured or unstructured data as input and returns a se-
quence of distributed representations, from which the decoder
generates text as output. Previous studies on a variety of text
∗Corresponding Author

generation tasks have shown the effectiveness of the frame-
work. However, training a robust text generation model usu-
ally requires large-scale training data. To alleviate such re-
quirement, one feasible way is to introduce more uncertainty
to overcome overfitting during training [Dhillon et al., 2018],
especially when the training data is limited in size. Tech-
niques in this line include drop-out and randomness. An-
other possible way is to enlarge the training data through tech-
niques like back translation, data augmentation. In this paper
we propose a simple yet effective approach that can achieve
these two goals simultaneously.

The proposed approach is inspired by the idea of masked
language modeling [Devlin et al., 2018]. To train the mod-
els of text generation tasks, we introduce randomness by ran-
domly masking some percentage of tokens on the decoder
side. In this way, different from a standard decoder which
uses ground truth history context, we use its masked (cor-
rupted) version to predict the next token. The advantage of
using corrupted history context is two-fold. On the one hand,
with dynamic masking strategy which generates a new ran-
dom masking pattern every time we feed a sequence to the
decoder, we enable the decoder to see more training instances
during training. On the other hand, the discrepancy of his-
tory context between training and inference is a classic issue
in text generation [Zhang et al., 2019]. Using non-ground
truth words as history context narrows the gap between train-
ing and inference. Upon the masked sequence, we further
propose an auxiliary task to properly recover those masked
tokens, just as masked language model does. Therefore, our
approach jointly maximizes both the likelihoods of both sen-
tence generation and prediction of masked tokens.

We verify the effectiveness and generality of our ap-
proach on three types of text generation tasks which use var-
ious forms of input data including text, graph, and image.
For sequence-to-sequence (seq2seq) generation task (specif-
ically, machine translation), our model obtains significant
improvement of 1.01 and 0.90 BLEU scores over compet-
itive baseline on IWSLT14 German→English and WMT14
English→German, respectively. For graph-to-text genera-
tion task (specifically, AMR-to-text), our approach achieves
a significant improvement of 1.39 BLEU score over the state-
of-the-art on AMR 2.0. Finally, for image-to-text genera-
tion task (specifically, image captioning), our results on the
MSCOCO test set show improvement of 1.5, 0.5, and 0.9 in

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3878



Figure 1: (a) An overview of the encoder-decoder architecture for text generation; (b) Illustration of our proposed approach, where the dotted
boxes highlight the difference from the standard decoder for text generation tasks.

CIDEr, SPICE, and BLEU-4 scores, respectively.
Our main contributions can be summarized as follows:

• We add a novel objective to force the models of text gen-
eration not only predict the target sentence, but also re-
sume the original tokens, which could enhance the lan-
guage representation for text generation.

• Our approach is applicable to arbitrary types of input
and easily transparent to other encoder-decoder architec-
tures. We do not manipulate the encoder and only mask
a number of tokens from target sentence.

• Experimental results show that our method outperforms
all baselines on a variety of text generation tasks.

2 Methodology
Since our goal is to improve robustness of encoder-decoder
models by focusing on the decoder part, we keep the encoders
unchanged.

2.1 Model Architecture
A text generation model basically consists of an encoder and
an decoder, as shown in Figure 1(a). Depending on the format
of input, the encoders of text generation tasks may be very
different. We use X to indicate the input.

We use Y = (y1, · · · , yT ) to indicate the output, while T
is the length of sequence Y . For simplification, we uniform
their decoders as Transformer-based, which consist of a stack
of identical decoder layers. Each decoder layer has three sub-
layers. The first is a masked multi-head self-attention mecha-
nism, the second performs multi-head attention over the out-
put of the encoder stack while the third is a simple, position-
wise fully connected feed-forward network. As shown in Fig-
ure 1(a), at each decoding time t, the predictions for position

yt can depend on source-side inputX and target-side ground
truth history context y<t.

P (Y |X) =
T∏

t=1

P (yt|y<t, X; Θ) (1)

where Θ is model parameters. The model is trained by max-
imum likelihood estimate, i.e., minimizing the negative log
likelihood loss:

LTG (Y |X) = −
T∑

t=1

logP (yt|y<t, X; Θ) (2)

Figure 1(b) illustrates our proposed decoder, which falls
into a multi-task learning framework. Compared to the base-
line decoder, our proposed decoder have two differences: 1)
rather than using the gold target-side history context to pre-
dict Y , we use a corrupted version; 2) we introduce a masked
language model on the target side. Next, we present the pro-
posed decoder in details.

2.2 Dynamic Masking
In order to obtain more training samples efficiently
and cheaply, we corrupt a given word sentence Y =(
y1, · · · , yTy

, <eos>
)

and obtain a noise version Y
′

=(
y

′

1, · · · , y
′

Ty
, <eos>

)
. To this end, we follow BERT [De-

vlin et al., 2018] and randomly sample 15% of tokens in Y .
The selected tokens are (1) 80% of time replaced by a mask
token [MASK], or (2) 10% of time replaced by a random to-
ken, or (3) 10% of time unchanged. Consequently, we update
Eq. 1 and Eq. 2 as:

P (Y |X) =
T∏

t=1

P
(
yt|y

′

<t, X; Θ
)

(3)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3879



LTG (Y |X) = −
T∑

t=1

logP
(
yt|y

′

<t, X; Θ
)

(4)

That is to say, rather than using ground truth history context
y<t, we now use its corrupted version y

′

<t to predict yt at the
t-th time step.

Note that BERT performs random masking and replace-
ment once in data pre-processing. To avoid using the same
mask for each training instance in every epoch, we gener-
ate the masking pattern every time we feed a sequence to the
model. For example, if the training process finishes after K
epochs, each training sequence would be seen with theK dif-
ferent corrupted versions.

2.3 Masked Language Model
Now the history context may contain noise tokens. Besides
the text generation task, which predicts the next word based
on history context, we propose another task, masked language
model, which predict those noised tokens. Unlike masked
language model in BERT which uses bidirectional context,
here we use the left context and allow the model to see it-
self, i.e., the [MASK] token. Figure 2 gives a concrete exam-
ple where the first target word (i.e., the) is not masked, i.e.,
y

′

1 = y1 while the second y2 (i.e., boy) is masked, i.e., y
′

2 =
[MASK]. At time steps t = 1 and t = 2, the text generation
task predicts y1 and y2, respectively while the masked lan-
guage model predicts nothing. At time step t = 3, the former
task predicts y3 while the latter task tries to predict y2 itself
since y2 is masked in the history context. Formally, the loss
function for the masked language model task is defined as:

LMLM

(
Y |X,Y

′)
= −

T∑
t=1

1
(
y
′
t 6= yt

)
logP

(
yt|y

′
<t, y

′
t, X; Θ

)
(5)

where 1
(
y

′

t 6= yt

)
returns 1 if y

′

t is different from yt, other-
wise 0.

2.4 Jointly Learning
As shown in Figure 1(b), the tasks of text generation and
masked language model are jointly learned via a hard parame-
ter sharing multi-task learning framework. Specifically, they
share N -M decoder layers while have M task-specific de-
coder layers each. The joint loss is shown as Eq. 6.

LJoint

(
Y |X,Y

′)
= LTG (Y |X) + αLMLM

(
Y |X,Y

′)
(6)

where α is a hyperparameter used in controlling the weight
of masked language model task.

Also note that we introduce dynamic masking and masked
language model task only in the training stage.

3 Experiments
To evaluate the effect and generality of our proposed ap-
proach, we conduct experiments on several representative text
generation tasks, including machine translation, AMR-to-text
generation, and image captioning. Note that those tasks have

Figure 2: A concrete example of the text generation task and the
masked language model task. Here y1 (i.e., the) is not changed while
y2 (i.e., boy) is masked.

different types of inputs, thus employ different encoders, i.e.,
sequential, graph-based, and CNN-based, respectively. For
each task, we evaluate the effect of dynamic masking (DM),
and its combination with the masked language model (MLM)
task. For the decoder layers, we set N to 6 and set M to 1 for
all experiments, as shown in Figure 1. The M task-specific
decoder layers do not share parameters. That is to say, we
share the N −M decoder layers in the bottom while the two
prediction tasks have their respectiveM decoder layers in the
upper. For the two tasks, we use the same final linear transfor-
mation layers to convert output logits to token probabilities.
Moreover, we report results of single models that are trained
at most 300K iterations and tuned on the respective develop-
ment sets.

3.1 Machine Translation
Dataset and evaluation. For machine translation, we eval-
uate our approach on two widely used benchmarks: WMT14
English→German (WMT14 EN-DE)1 and IWSLT14
German→English (IWSLT14 DE-EN).2 WMT14 EN-DE
consists of 3.9M training sentence pairs after filtering out
long and imbalanced pairs. We use newstest2013 and
newstest2014 as the validation and test set respectively.
For IWSLT14 DE-EN, we conduct the same data cleanup
and train/dev splitting as [Ott et al., 2019], resulting 160K
parallel sentence pairs for training and 7,284 sentence pairs
for development. We combine tst2010, tst2011, tst2012,
dev2010, and dev2012 as our testing data. We tokenize all
sentences with Moses scripts.3 Then we segment words into
subwords by using byte-pair encoding (BPE) [Sennrich et
al., 2016b]. The sizes of resulting vocabularies shared by the
source and target language are 32K and 10K for respectively
WMT14 EN-DE and IWSLT14 DE-EN. For evaluation, we
utilize multi-bleu.perl to report BLEU scores, as in [Papineni
et al., 2002].

Experimental settings. We use OpenNMT [Klein et al.,
2017] as the implementation of the Transformer model.4

Results. Table 1 shows BLEU scores on WMT14 EN-DE
and IWSLT14 DE-EN. From the results we can see that with-

1https://wit3.fbk.eu
2http://statmt.org/wmt14/translation-task.html
3http://www.statmt.org/moses/
4https://github.com/OpenNMT/OpenNMT-py

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3880

https://wit3.fbk.eu
http://statmt.org/wmt14/translation-task.html
http://www.statmt.org/moses/
https://github.com/OpenNMT/OpenNMT-py


Model WMT14 EN-DE IWSLT14 DE-EN
#Param BLEU #Param BLEU

Transformer∗ 65.0M 27.30 - 34.40
Transformer (our) 61.3M 27.51 49.3M 34.87
+ DM 61.3M 28.12† 49.3M 35.53†

+ DM + MLM 65.6M 28.41† 53.5M 35.88†

Table 1: Translation results (BLEU score) on WMT14 EN-DE and
IWSLT14 EN-DE. #Param indicates the number of model parame-
ters. ‘∗’ indicates the results achieved by Transformer are reported
in previous studies [Vaswani et al., 2017] and [Wu et al., 2019].
‘†/‡’ indicates statistically significant difference at 0.01/0.05 from
Baseline model, tested by bootstrap resampling [Koehn, 2004].

out introducing any parameters, dynamic masking achieves
significant improvement of 0.61 and 0.66 BLEU scores for
the two translation tasks, respectively. This suggests that our
approach is effective even when the training data is big, e.g.,
3.9M for WMT14 EN-DE. One particularly nice property of
dynamic masking is that it is incredibly easy to implement.
By introducing a decoder layer with 4.3M parameters, the
masked language model task further improves translation per-
formance. Our approach achieves final improvement of 0.90
and 1.01 BLEU scores over the Transformer baseline.

3.2 AMR-to-text Generation
Dataset and evaluation. Following previous studies on
AMR-to-text, we use the benchmark dataset AMR2.0
(LDC2017T10), which contains 36,521/1,368/1,371 train-
ing/development/testing sentences with corresponding AMR
graphs. Following Zhu et al. [2019] and Ge et al. [2019], we
segment tokens in AMR graphs and words in sentences into
subwords by BPE with 10K operations and form a shared vo-
cabulary for the source and target side. For evaluation, we fol-
low related studies and adopt three different metrics: BLEU,
Meteor [Banerjee and Lavie, 2005], and chrF++ [Popović,
2017].

Experimental settings. We use self-attention-based graph
Transformer [Zhu et al., 2019] as our baseline system,5 which
achieves the state-of-the-art performance for AMR-to-text
generation. We follow the parameter settings in [Zhu et al.,
2019].

Results. Table 2 presents the detailed results of AMR-to-
text generation on AMR 2.0. From the results we can see
that both dynamic masking and masked language model task
succeed to achieve improvement according to the three eval-
uation metrics. For example, dynamic masking achieves a
significant improvement of 0.87 BLEU scores over the base-
line and adding masked language model task gives a further
improvement of 0.52 BLEU scores.

3.3 Image Caption Generation
Dataset and evaluation. For image caption generation, we
experiment with the widely used dataset MSCOCO 2014 [Lin
et al., 2014]. The popular Karpathy splitting [Karpathy and
Fei-Fei, 2015] is adopted, which results in 113,287 images

5https://github.com/Amazing-J/structural-transformer

for training, 5K images for validation, and 5K images for
testing. Each of the images has five corresponding captions.
We follow standard practice and perform only minimal text
preprocessing that converts all sentences to lower case, tok-
enizes on white spaces, and filters words that occur less than
five times. This way, we obtain a vocabulary of 9,487 words
for this task. All sentences are truncated to contain at most
16 words during training. For evaluation, we employ several
standard metrics, including SPICE [Anderson et al., 2016],
CIDEr [Vedantam et al., 2015], METEOR, ROUGE-L [Lin,
2004], and BLEU.

Experimental settings. Following previous studies, we
first train Faster R-CNN [Ren et al., 2016] on Visual Genome
dataset [Krishna et al., 2017] to identify and localize in-
stances of objects. For each image, we take the global average
pooling of the final convolutional layer output, which results
in a vector of 2,048 dimensions. In practice, these spatial
features are extracted before the training of captioning mod-
els and are fixed during training. For captioning models, the
dimension sizes of Transformer hidden states, image feature
embeddings, and word embeddings are all set to 512.
Results. Table 3 presents the results of various single mod-
els on MSCOCO. From the results we can see that dynamic
masking achieves improvement over the baseline and adding
the task of masked language model obtains further improve-
ment. The conclusion comes true regarding all the evaluation
metrics.

4 Analysis
Next, we provide a series of analyses on a number of key fac-
tors that may affect the system performance. Such analyses
help to better understand relative importance of the factors.

4.1 Effect of Different Noisy Strategies

We compare the dynamic masking strategy with two other
noisy strategies.

Static masking (SM). Following BERT, we perform ran-
dom masking during data preprocessing. Therefore, each
training example is seen with fixed masks no matter how
many times it is used in the training stage.

Gaussian noise (GN). Following Cheng et al. [2018], we
modify the target sentence at feature level. Specifically, given
a target sentence, we add Gaussian noises to word embed-
dings according to the following distribution:

E[yi]
′ = E[yi] + ε, ε ∼ N

(
0, σ2I

)
, (7)

whereE[yi] is the word embedding for yi, vector ε is a sample
from a Gaussian distribution with variance σ2. σ is a hyper-
parameter which we set to 0.01. We simply inject Gaussian
noises to all of word embeddings when we feed a target sen-
tence to decoder. Note that we perform Gaussian noise injec-
tion every time we feed a sequence to the model. Thus, each
training example would be seen with K different corrupted
versions, where K is the number of epochs in training stage.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3881

https://github.com/Amazing-J/structural-transformer


Model #Param BLEU Meteor chrF++
Graph Transformer (Zhu et al. [2019]) - 31.54 36.02 63.84
Graph Transformer (our) 54.2M 31.38 36.07 63.01

+ DM 54.2M 32.25† 36.51 63.68
+ DM + MLM 58.4M 32.77† 36.85 64.46

Table 2: Performance of AMR-to-text generation on AMR 2.0.

Model CIDEr BLEU-4 BLEU-1 ROUGE-L METEOR SPICE
Transformer (our) 114.1 35.8 76.0 56.3 27.7 20.8

+ DM 115.1 36.4‡ 76.7 56.6 28.0 21.1
+ DM + MLM 115.6 36.7‡ 76.7 56.7 28.1 21.3

Table 3: Performance of image caption generation on MSCOCO.

Model WMT14 EN-DE IWSLT14 DE-EN AMR-to-text Image Caption
Baseline 27.51 34.87 31.38 35.8

+ SM 27.66 35.47 31.10 35.8
+ SM + MLM 27.62 35.50 31.57 35.9
+ GN 27.69 35.10 31.41 36.1
+ DM 28.12 35.53 32.25 36.4
+ DM + MLM 28.41 35.88 32.77 36.7

Table 4: Performance comparison in BLEU score of different noising strategies on the text generation tasks.

Results. Table 4 compares the performance of different
noisy strategies. From the results, we observe that:

• Static masking achieves an improvement of 0.6 BLEU
score on IWSLT14 DE-EN. However, it has very limited
effect in the other three text generation tasks.

• Based on static masking, the masked language model
also fails to bring further improvement in the text gener-
ation tasks, except AMR-to-text generation.

• Although adding Gaussian noises to word embedding
has positive impact across all text generation tasks, the
effect is quite limited (improvement of 0.1 ∼ 0.3 BLEU
score).

• Finally, our approach outperforms both static masking
and Gaussian noise across all the text generation tasks.

4.2 Effect of Hyperparameter α
We explore the effect of hyperparameter α in Eq. 6, which
controls the weight of the proposed task of masked language
model. Table 5 presents the BLEU scores on the respective
development set of the text generation tasks when α ranges
from 0.0 to 1.0. From the results in Table 5, we find that for
different text generation tasks, best performance is achieved
with different values of α smaller than 0.7, which suggests
that the optimal value of α is irrelevant to the task or the size
of training data. Moreover, it shows that the task of masked
language model brings more improvement on AMR-to-text
than others. This is probably due to the smaller training data
of AMR-to-text generation.

4.3 Effect of Sampled Token Ratio
An important hyperparameter in dynamic masking is the sam-
pled token ratio. A low ratio makes the history context less

α EN-DE DE-EN AMR-to-text Image Caption

0.0 26.43 37.24 31.56 34.2
0.1 26.48 37.26 32.20 34.5
0.2 26.43 37.32 32.35 34.6
0.3 26.56 37.15 32.24 34.8
0.4 26.45 37.29 32.39 34.4
0.5 26.42 37.24 32.27 34.3
0.6 26.62 37.21 32.64 34.4
0.7 26.49 37.13 32.59 33.9
0.8 26.37 37.21 32.30 33.9
0.9 26.46 37.15 32.19 34.1
1.0 26.43 37.13 32.05 34.1

Table 5: Performance comparison in BLEU scores of different α
values on the development data sets of the text generation tasks.

Ratio (%) BLEU Meteor ChrF++

10 31.66 36.30 63.47
15 32.77 36.85 64.46
20 31.73 36.40 63.53
25 31.98 36.51 63.87

Table 6: Performance comparison on the test set of AMR-to-text
generation when use different sampled token ratios.

different from gold one while sampling tokens at a high ratio
makes the history context have more noise. Taking AMR-
to-text generation as example, we compare four variants of
sampled token ratio (10%, 15%, 20%, and 25%). As shown
in Table 6, we see that the best performance of different met-
rics always appears at the ratio of 15%.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3882



Figure 3: Learning curve of BLEU score over different training iter-
ations on the development set of AMR 2.0.

4.4 Convergence Analysis
Introducing the task of masking language model to predict the
masked token can not only achieve better performance, but
also help the model converge faster. One reason is that com-
pared to standard text generation tasks, our approach roughly
makes prediction on additional 15% tokens in each batch.

Figure 3 shows the BLEU scores on the development set
of AMR-to-text generation over different training iterations.
Comparing the baseline (e.g., Graph Transformer) to the sys-
tem with dynamic masking (e.g., + DM), we observe that the
performance of + DM is lower than that of the baseline in
the first 100K iterations. Then it starts to surpass the base-
line after 100K iterations. With the task of masking language
model, the system of + DM + MLM consistently outperforms
both the baseline and + DM from the beginning. Moreover,
it converges at about 200K iterations while the other two at
about 300K iterations, suggesting fewer training iterations
may be required for our approach to converge.

5 Related Work
We describe related work from the following two perspec-
tives: robust text generation and masked language modeling.

5.1 Robust Text Generation
Using neural networks to generate natural language texts has
been widely studied, ranging from machine translation to di-
alogue generation, AMR-to-text and image captioning. How-
ever, neural networks often suffer from vulnerability in the
sense that small perturbations in various parameters or inputs
can nevertheless result in different and often incorrect output.

To alleviate the effect of noisy perturbations and enhance
the robustness of machine translation systems, Belinkov and
Bisk [2017] design structure-invariant representations and
resort to robust adversarial training. Cheng et al. [2018] in-
troduce adversarial stability training to improve the robust-
ness on arbitrary noise type. Sennrich et al. [2016a] and He
et al. [2016] improve the robustness of machine translation
models with monolingual corpora with the aid of an inverse
model. Different from prior works, we do not resort to meth-
ods like adversarial training or monolingual data to improve

robustness. Instead, we introduce randomness by masking to-
kens in the target side of training data. The idea is similar to
Zhong et al. [2020] in spirit which improves the robustness of
image processing by randomly erasing a rectangle region in
an image. Such a method is simple and universal enough to
be applied to arbitrary encoder-decoder architectures.

5.2 Masked Language Modeling
Our approach is inspired by masked language modeling
(MLM), which is first adopted in a novel pre-training model
to learn deep bidirectional language representations [Devlin
et al., 2018]. Subsequently, the same technique has become
an essential component in many state-of-the-art pre-training
methods [Lample and Conneau, 2019; Chen et al., 2021a;
Chen et al., 2021b]. Briefly speaking, MLM randomly masks
out a subset of tokens in the input sentences and is optimized
to predict the masked tokens according to residual tokens.

To adapt MLM to the seq2seq framework, Song et
al. [2019] (MASS) and Wang et al. [2019] (PoDA) propose to
feed the encoder with a masked sequence and the decoder se-
quentially generates the masked tokens word-by-word. This
seq2seq MLM can benefit the seq2seq-style downstream
tasks, such as dialogue generation, machine translation, and
summarization. However, for text generation tasks, the input
to the encoder may be beyond token sequence. Considering
the diversity of text generation tasks, the input may be table,
graph, or even image. As a result, it is difficult to mask the
different types of input. This is the reason that we propose to
mask the output sentence of decoder, based on which we add
a simple network to predict the masked tokens.

6 Conclusion
In this paper, we have proposed a general approach to im-
prove the performance of text generation tasks. This is done
from two levels. To train the models, we first have intro-
duced randomness by randomly masking some percentage of
tokens on the decoder side. This strengths the decoder by
asking it to predict next tokens with rather than ground truth
history context, but corrupted one. Meanwhile, we have pro-
posed an auxiliary task to recover those masked tokens via a
multi-task learning framework. Experimental results on vari-
ous text generation tasks have demonstrated the effectiveness
and generality of our proposed approach.

Acknowledgments
This work was supported by the National Key R&D Program
of China under Grant No. 2020AAA0108600 and by the Na-
tional Natural Science Foundation of China under Grant No.
61876120.

References
[Anderson et al., 2016] Peter Anderson, Basura Fernando,

Mark Johnson, and Stephen Gould. Spice: Semantic
propositional image caption evaluation. In ECCV, 2016.

[Banerjee and Lavie, 2005] Satanjeev Banerjee and Alon
Lavie. Meteor: An automatic metric for MT evaluation
with improved correlation with human judgments. In ACL,
2005.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3883



[Belinkov and Bisk, 2017] Yonatan Belinkov and Yonatan
Bisk. Synthetic and natural noise both break neural ma-
chine translation. arXiv preprint arXiv:1711.02173, 2017.

[Chen et al., 2021a] Linqing Chen, Junhui Li, Zhengxian
Gong, Boxing Chen, Weihua Luo, Min Zhang, and
Guodong Zhou. Breaking the corpus bottleneck for
context-aware neural machine translation with a novel
joint pre-training approach. In ACL-IJCNLP, 2021.

[Chen et al., 2021b] Linqing Chen, Junhui Li, Zhengxian
Gong, Xiangyu Duan, Boxing Chen, Weihua Luo, Min
Zhang, and Guodong Zhou. Improving context-aware neu-
ral machine translation with source-side monolingual doc-
uments. In IJCAI, 2021.

[Cheng et al., 2018] Yong Cheng, Zhaopeng Tu, Fandong
Meng, Junjie Zhai, and Yang Liu. Towards robust neural
machine translation. In ACL, 2018.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Dhillon et al., 2018] Guneet S Dhillon, Kamyar Azizzade-
nesheli, Zachary C Lipton, Jeremy Bernstein, Jean Kos-
saifi, Aran Khanna, and Anima Anandkumar. Stochastic
activation pruning for robust adversarial defense. In arXiv
Preprint arXiv:1803.01442, 2018.

[Ge et al., 2019] Donglai Ge, Junhui Li, Muhua Zhu, and
Shoushan Li. Modeling source syntax and semantics for
neural amr parsing. In IJCAI, 2019.

[He et al., 2016] Di He, Yingce Xia, Tao Qin, Liwei Wang,
Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual learn-
ing for machine translation. In NIPS, 2016.

[Karpathy and Fei-Fei, 2015] Andrej Karpathy and Li Fei-
Fei. Deep visual-semantic alignments for generating im-
age descriptions. In CVPR, 2015.

[Klein et al., 2017] Guillaume Klein, Yoon Kim, Yuntian
Deng, Jean Senellart, and Alexander M Rush. OpenNMT:
Open-source toolkit for neural machine translation. arXiv
preprint arXiv:1701.02810, 2017.

[Koehn, 2004] Philipp Koehn. Statistical significance tests
for machine translation evaluation. In Proceedings of
EMNLP, 2004.

[Krishna et al., 2017] Ranjay Krishna, Yuke Zhu, Oliver
Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, et al. Visual genome: Connecting language and
vision using crowdsourced dense image annotations. In-
ternational journal of computer vision, 2017.

[Lample and Conneau, 2019] Guillaume Lample and Alexis
Conneau. Cross-lingual language model pretraining. arXiv
preprint arXiv:1901.07291, 2019.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft COCO: Com-
mon objects in context. In ECCV, 2014.

[Lin, 2004] Chin-Yew Lin. Rouge: A package for automatic
evaluation of summaries. In ACL, 2004.

[Mei et al., 2016] Hongyuan Mei, Mohit Bansal, and Mat-
tew R Walter. What to talk about and how? Selective
generation using LSTMs with coarse-to-fine alignment. In
NAACL-HLT, 2016.

[Ott et al., 2019] Myle Ott, Sergey Edunov, Alexei Baevski,
Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for se-
quence modeling. In NAACL-HLT, 2019.

[Papineni et al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In ACL, 2002.

[Popović, 2017] Maja Popović. chrF++: words helping char-
acter n-grams. In WMT, 2017.

[Ren et al., 2016] Shaoqing Ren, Kaiming He, Ross Gir-
shick, and Jian Sun. Faster R-CNN: Towards real-time
object detection with region proposal networks. In NIPS,
2016.

[Sennrich et al., 2016a] Rico Sennrich, Barry Haddow, and
Alexandra Birch. Improving neural machine translation
models with monolingual data. In ACL, 2016.

[Sennrich et al., 2016b] Rico Sennrich, Barry Haddow, and
Alexandra Birch. Neural machine translation of rare words
with subword units. In ACL, 2016.

[Song et al., 2019] Kaitao Song, Xu Tan, Tao Qin, Jianfeng
Lu, and Tie-Yan Liu. Mass: Masked sequence to sequence
pre-training for language generation. In ICML, 2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, 2017.

[Vedantam et al., 2015] Ramakrishna Vedantam,
C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-
based image description evaluation. In CVPR, 2015.

[Wang et al., 2019] Liang Wang, Wei Zhao, Ruoyu Jia, Su-
jian Li, and Jingming Liu. Denoising based sequence-
to-sequence pre-training for text generation. In EMNLP-
IJCNLP, 2019.

[Wu et al., 2019] Felix Wu, Angela Fan, Alexei Baevski,
Yann N. Dauphin, and Michael Auli. Pay less attention
with lightweight and dynamic convolutions. In ICLR,
2019.

[Zhang et al., 2019] Wen Zhang, Yang Feng, Fandong
Meng, Di You, and Qun Liu. Bridging the gap between
training and inference for neural machine translation. In
ACL, 2019.

[Zhong et al., 2020] Zhun Zhong, Liang Zheng, Guoliang
Kang, Shaozi Li, and Yi Yang. Random erasing data aug-
mentation. In ICLR, 2020.

[Zhu et al., 2019] Jie Zhu, Junhui Li, Muhua Zhu, Longhua
Qian, Min Zhang, and Guodong Zhou. Modeling graph
structure in transformer for better AMR-to-text generation.
In EMNLP-IJCNLP, 2019.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3884


	Introduction
	Methodology
	Model Architecture
	Dynamic Masking
	Masked Language Model
	Jointly Learning

	Experiments
	Machine Translation
	AMR-to-text Generation
	Image Caption Generation

	Analysis
	Effect of Different Noisy Strategies
	Effect of Hyperparameter 
	Effect of Sampled Token Ratio
	Convergence Analysis

	Related Work
	Robust Text Generation
	Masked Language Modeling

	Conclusion

