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Abstract
With task-oriented dialogue systems being widely
applied in everyday life, slot filling, the essential
component of task-oriented dialogue systems, is re-
quired to be quickly adapted to new domains that
contain domain-specific slots with few or no train-
ing data. Previous methods for slot filling usually
adopt sequence labeling framework, which, how-
ever, often has limited ability when dealing with
the domain-specific slots. In this paper, we take
a new perspective on cross-domain slot filling by
framing it as a machine reading comprehension
(MRC) problem. Our approach firstly transforms
slot names into well-designed queries, which con-
tain rich informative prior knowledge and are very
helpful for the detection of domain-specific slots.
In addition, we utilize the large-scale MRC dataset
for pre-training, which further alleviates the data
scarcity problem. Experimental results on SNIPS
and ATIS datasets show that our approach con-
sistently outperforms the existing state-of-the-art
methods by a large margin 1.

1 Introduction
Building a task-oriented dialogue system that can compre-
hend users’ requests and satisfy their needs has been a
key component in many intelligent conversation applications
[Jaech et al., 2016; Gao et al., 2020; Liang et al., 2020]. As an
indispensable part of task-oriented dialogue systems, slot fill-
ing aims to identify task-related slot types in certain domains.
For instance, as shown in Figure 1, given the user request
“book the hat for my classmates” in domain BookRestaurant,
we need to fill domain-specific roles like “restaurant name”
and “party size description” with “the hat” and “my class-
mates”, respectively. Previous methods for slot filling of-
ten focus on supervised learning [Zhang and Wang, 2016;
Goo et al., 2018; Wu et al., 2020], where large-scale labeled
datasets are required. However, slot filling faces the rapid
changing of domains, and few or no target training data may
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1Code and data available at https://github.com/mengshiY/RCSF

User Request: “book the hat for my classmates”
1) Slot filling via sequence labeling

2) Slot filling as reading comprehension
    Qr_n: what is the name of the restaurant? Ar_n: “the hat”
     Qp_s_d: who are the people attending the party? Ap_s_d: “my classmates”
     ......

book → O for → O
the → B-r_n my → B-p_s_d
hat → I-r_n classmates → I-p_s_d

Figure 1: An example of slot filling via sequence labeling frame-
work and reading comprehension framework. In the sequence la-
beling framework, slot labels are annotated in “BIO” format: “B”
represents the start of a slot span, “I” the inside of a span while
“O” denotes that the word does not belong to any slot. In the
reading comprehension framework, each slot type corresponds to
a well-designed question Qi where i denotes the i-th slot we need
to fill, and we use answer Ai of the question Qi to fill the i-th slot.
“r n” and “p s d” are short for slot names “restaurant name” and
“party size description”, respectively

be available in a new domain. To alleviate the data scarcity
problem in target domains, we need to train a model that can
borrow the prior experience from source domains and adapt
it to target domains quickly with limited training samples.

Conventional approaches [Zhang and Wang, 2016; Goo et
al., 2018; Wu et al., 2020] take slot filling as a sequence la-
beling task, which assigns a label to each token in a given
sequence, as shown in Figure 1. However, the sequence
labeling framework is data-hungry and does not have the
potential to scale to new domains that consist of domain-
specific slots and usually have few or no training data. To
address these issues, [Shah et al., 2019; Liu et al., 2020b;
He et al., 2020] add meta-information such as slot descrip-
tions and slot examples to capture the semantic relationship
between slot types and input tokens. However, these meth-
ods also require slot definitions to be similar between train-
ing data and unseen test data. That is, if such systems face
completely new slot types (unseen slots), their performances
would degrade significantly (As seen in our experiments of
unseen slots in subsection 4.2).

In this paper, we propose a new approach for cross-domain
slot filling, which frames the task as a machine reading com-
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prehension (MRC) problem [Hermann et al., 2015]. An ex-
ample of slot filling in the MRC framework is illustrated in
Figure 1. We transform each slot type we need to fill into
a question, and then fill the slot by answering the question.
Specifically, we design three strategies to generate the ques-
tions, which will be discussed in detail later. After the ques-
tions are generated, we build a BERT-based MRC model [De-
vlin et al., 2019] to answer each of the questions and synthe-
size the answers as the final results. In order to boost slot
filling in low-resource scenarios, we also leverage the large-
scale MRC dataset for pre-training. Compared with the tra-
ditional sequence labeling framework, MRC framework has
the advantage of introducing prior knowledge about slot in-
formation into the queries. More importantly, by converting
the sequence labeling problem into MRC problem, we can
make full use of large-scale MRC datasets to learn semantic
information, which is beneficial for slot filling tasks in the
cross-domain setting.

To verify the effectiveness of our approach, we conduct ex-
tensive experiments on two benchmark datasets. For SNIPS
dataset, our approach achieves performance gains over cur-
rent state-of-the-art model by 18.37%, 21.28% and 15.43%,
respectively under zero-shot setting, 20-shot setting and 50-
shot setting. For ATIS dataset, our approach outperforms the
existing state-of-the-art by 27.78% under zero-shot setting,
25.69% under 20-shot setting and 18.79% under 50-shot set-
ting. Moreover, further experiments show that even without
the model pre-training, our model still achieves better results
consistently than the existing state-of-the-art approaches. In
addition, we also investigate the effect of different query gen-
eration strategies and find that adding high-quality slot exam-
ples into the queries can further improve the model perfor-
mance under zero-shot setting.

Our main contributions can be summarized as follows:

• We propose a new MRC framework to deal with cross-
domain slot filling. Compared with previous sequence
labeling approaches, our framework can introduce more
prior knowledge into the well-designed queries, and thus
improve its performance in zero-shot setting. Moreover,
by converting slot filling task into MRC task, we are able
to utilize the large-scale supervised MRC dataset for pre-
training and further improve the performance.

• We devise different strategies to transfer a slot into a
query, and conduct a series of studies to explore their
effects.

• We conduct extensive experiments on two commonly
used datasets and show that our approach consistently
outperforms the existing state-of-the-art model by a
large margin.

2 Related Work
2.1 Cross-Domain Slot Filling
There are mainly two challenges in cross-domain slot filling
task. One is to adapt the shared slot types from source do-
mains to target domains, and the other is to handle domain-
specific slot types which have few or no supervision signals
for training.

To deal with the shared slot types, a common approach is
transfer learning (TF). TF aims to adapt the learned source
model MS trained on source domain DS to produce a target
model MT for target domain DT . TF can be categorized into
data-driven transfer and model-driven transfer. Data-driven
transfer approaches are based on pre-training and fine-tuning
mechanisms. [Goyal et al., 2018] train MS on large-scale
DS , and then fine-tune MS by replacing the output layer cor-
responding with the label space fromDT and further train the
model onDT . [Siddhant et al., 2019] leverage large-scale un-
labeled data to learn contextual embedding, i.e., ELMo [Pe-
ters et al., 2018], before fine-tuning on DT . Different
from data-driven approaches, model-driven [Kim et al., 2017;
Jha et al., 2018] approaches alleviate the slot adaptation prob-
lem by enabling model re-usability. Although different do-
mains have different slot types, common slots such as “date”,
“time” and “country” can be shared. These approaches usu-
ally first trainMS on these reusable slots, and then the outputs
of MS are used to guide the training of MT for new slots.

While TF approaches can share knowledge learned on dif-
ferent domains, such models can not handle unseen slots.
Therefore, researchers [Bapna et al., 2017; Guerini et al.,
2018; Lee and Jha, 2019; Shah et al., 2019; Liu et al.,
2020b] start to investigate zero-shot methods, which can be
broadly classified into two categories. One is to train the
model on slot descriptions which carry information about
the slots [Bapna et al., 2017; Lee and Jha, 2019; Liu et al.,
2020b]. Slots with similar meanings would have similar
descriptions, so it is possible to recognize the unseen slots
by training on similar seen slots. The other zero-shot ap-
proach explores the usage of slot examples [Shah et al., 2019;
Guerini et al., 2018], showing that using a small number of
slot examples along with slot descriptions performs better
than using the slot descriptions alone. However, these zero-
shot approaches simply use the slot information to match its
most corresponding entities and require slot information to
be similar between the seen slots and the unseen slots, which
limits their performance. Unlike these work, we utilize the
slot information in a more natural way, that is, we transform
it into natural questions and get slot entities by answering the
questions.

2.2 Framing Other NLP Tasks as MRC
Machine Reading Comprehension models [Hermann et al.,
2015] predict answer spans from a context through a given
query. Recently, there has been a trend of transforming NLP
tasks to MRC problems. For example, [McCann et al., 2018]
use the MRC framework to implement ten different NLP
tasks uniformly and all achieve competitive performances.
[Li et al., 2020] transform named entity recognition (NER)
task into MRC to handle the nested NER problem. [Gao et
al., 2020] leverage MRC datasets and use MRC techniques to
enhance dialogue state tracking task. [Liu et al., 2020a] pro-
pose an unsupervised question generation method and utilize
a BERT-based question-answering process to bridge MRC
and event extraction problem.

Inspired by the great success of MRC, we exploit it to deal
with cross-domain slot filling task. To the best of our knowl-
edge, there is currently no specific research for cross-domain
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' H[SEP]
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User Request: “book the hat for my classmates”

Slots
• restaurant_name = ?
• party_size_description = ?
• ... ...

Queries
Qr_n: what is the name of the restaurant?
Qp_s_d: who are the people attending the party? 
... ...

Answers
Ar_n: the hat
Ap_s_d: my classmates
... ...

Figure 2: Illustration of our proposed approach RCSF. Given an user request and a set of slots in the specific domain, RCSF first generates
queries for all of the slots. Then one query and the user request are concatenated together at a time as the inputs of our backbone model BERT.
Next, RCSF predicts the start and end indexes based on the hidden representation generated by BERT and matches the start indexes and end
indexes as the answer spans through the start-end matching module. Finally, RCSF fills the slots with answers of their related queries.

slot filling in the MRC framework. Our work mainly focuses
on identifying domain-specific slot entities, which is signifi-
cantly different from previous work mentioned above.

3 Methodology
Our approach, denoted by RCSF (Reading Comprehension
for Slot Filling) is depicted in Figure 2. Given a user request,
we are supposed to fill its corresponding slots with tokens in
it. First of all, RCSF generates a query for each slot with
different strategies. Then, the query and the user request are
concatenated together as the inputs of the RCSF model (we
use BERT as the backbone in this paper). RCSF predicts the
start and end indexes based on the hidden representation of
BERT. To calculate the final answer, the start indexes and end
indexes are matched through the start-end matching module.
Details are shown in the following subsections.

3.1 Task Formulation
Given a user request X = {x1, x2, · · · , xn} with n words
and a predefined set of slot types SY in domain D, we
need to fill each slot type y ∈ SY with entities in X . We
convert the tagging-style annotated slot filling dataset to a
set of (query, context, answer) triples. For each slot type
y ∈ SY , it is associated with a natural language ques-
tion (query) qy = {qy1, qy2, · · · , qym} where m denotes the
length of the generated question. So slot tagging can be trans-
formed to predicting the answer spans of the specific slot
zy = [(s1, e1), (s2, e2), · · · , (st, et)] where si and ei denotes
the start and the end position of the i-th span, respectively,
and t is the number of spans (1 ≤ i ≤ t).

3.2 Query Generation
In our MRC framework, we firstly transform each slot type
into its corresponding query which contains prior knowl-
edge we need. The strategy to generate queries is important
for cross-domain slot filling, especially in zero-shot setting.
Since the BERT model we use is pre-trained on the MRC
dataset in which queries are natural questions, we are sup-
posed to generate natural questions as well to utilize the se-

User Input: “book the hat for my classmates.”

Slot=restaurant name
Queries:

Desc.: what is the restaurant name?
Trans.: what is the name of the restaurant?
Exp.: what is the restaurant name like the maisonette

or the robinson house?

Slot=party size description
Queries:

Desc.: what is the party size description?
Trans.: who are the people attending the party?
Exp.: what is the party size description like me or my

colleague?

Table 1: An example of the three query generation strategies. Desc.,
Trans., and Exp. indicate queries based on slot description, back-
translation, and examples respectively. Some queries with empty
answers are omitted in the above example for brevity.

mantic information of the pre-trained model. Therefore, we
use templates such as “what is the ?”, where the blank
is filled with slot information, to construct queries. As the
examples shown in Table 1, we propose the following three
strategies for query generation:

• Description: We turn slot names into their correspond-
ing slot descriptions by replacing punctuation marks like
“ ” and “.” with blanks and replacing abbreviations with
their original words. Queries are constructed by filling
the above template using the slot descriptions directly.

• Back-translation: As above, we firstly use the slot de-
scriptions to construct questions. However, the simple
conjunction of the template and slot descriptions may in-
troduce extra noises caused by grammar errors. To wipe
off the noises, we translate the constructed questions into
Chinese and re-translate them back into English. After
the round-trip translation, the queries are more natural.

• Example: The queries are constructed using slot de-
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scriptions and two slot examples from the training and
validation datasets. We use the template “what is the
slot description like example 1 or example 2?”.

3.3 Slot Filling as Answer Prediction
Given the query qy and the context X , we need to ex-
tract the answer spans zy under the MRC framework.
BERT [Devlin et al., 2019] is used as the backbone.
As depicted in Figure 2, we concatenate the question qy
and the input sentence X as the input sequence I =
{[CLS], q1, q2, · · · , qm, [SEP ], x1, x2, · · · , xn, [SEP ]} to
BERT where [CLS] and [SEP ] stand for the classifier token
and sentence separator token in BERT, respectively. Then
BERT receives the input sequence and generates a context
representation matrix H ⊆ Rn×d, where d is the dimension
of the last layer of BERT.

Start and End Prediction
In the traditional MRC framework, one query usually has one
answer. However, in our approach, one query may corre-
spond to multiple answers. Therefore, we construct two bi-
nary classifiers. One is used to predict whether the token is a
start index, and the other is employed to predict whether the
token is an end index. Given the representation matrixH out-
put by BERT, the model first predicts the probability Pstart

of each token being a start index as follows:

Lstart = Linear(HWstart), Lstart ⊆ Rn×2 (1)

Pstart = Softmax(LstartVstart), Pstart ⊆ Rn×2 (2)

where Linear denotes a fully connected layer and Softmax
represents the softmax function. Wstart and Vstart are train-
able weights.

And the end index prediction procedure is exactly the
same, except that we have other matrix Wend and Vend to
obtain the probability matrix Pend of each token being an end
index:

Lend = Linear(HWend), Lend ⊆ Rn×2 (3)

Pend = Softmax(LendVend), Pend ⊆ Rn×2 (4)

Start-End Matching
In the context X , there can be multiple entities of the same
category, which means we are supposed to predict multiple
start-end pairs. Traditional methods [Sun et al., 2020] get the
start-end pairs by matching the start index with its nearest end
index, which does not work well here since the predicted slot
entities could overlap and we might lose the most possible
one when eliminating overlaps. So we adopt the principle
of the most possible pair first. That is, we first sort the start
indexes and end indexes by their probability Pstart and Pend.
Then we choose the top-N start indexes and the top-N end
indexes, where N is a predefined number:

Istart = {i|P i
start > t, i = 1, 2, · · · , N} (5)

Iend = {j|P j
end > t, j = 1, 2, · · · , N} (6)

where i and j denotes the i-th and j-th rows of a matrix re-
spectively and t is the minimum probability of the top-N in-
dexes.

With the sets of the most possible start indexes Istart and
end indexes Iend, we calculate the probability P ij of each
start-end pair by adding P i

start and P j
end where P i

start de-
notes the probability of the i-th token being a start token and
P j
end denotes the j-th token being an end token. Then, we

sort the matched start-end pairs by P ij and choose the most
possible pair which does not overlap the chosen ones.

3.4 Train and Test
To utilize the large-scale MRC dataset, we adopt a two-stage
training procedure. Our MRC model is first pre-trained on the
MRC dataset SQuAD2.0 [Rajpurkar et al., 2018], and then
fine-tuned on queries and answers created from our slot filling
datasets.

In the training stage, each context X is paired with two
label sequences Ystart and Yend, which denote the ground-
truth label of each token xi being the start index and the end
index of an entity respectively. The loss functions are defined
as follows:

Lossstart = CE(Pstart, Ystart) (7)
Lossend = CE(Pend, Yend) (8)

Loss = λLossstart + (1− λ)Lossend (9)

where CE represents the cross-entropy loss function and λ ∈
[0, 1] is a balanced factor used to control the overall training
objectives. In our experiment, we set λ = 0.5 according to
the performance of the model on the validation set.

At test time, first of all, start and end indexes are separately
selected based on Eq. 5 and Eq. 6. Then the start-end match-
ing module is applied to align the extracted start indexes and
the end indexes, leading to the final extracted answers.

4 Experiments
4.1 Experimental Settings
Datasets
We evaluate our framework on SNIPS [Coucke et al., 2018], a
public spoken language understanding dataset which contains
39 slot types across seven domains (intents) and about 2000
samples per domain. To simulate the cross-domain scenarios,
we follow [Liu et al., 2020b] to split the dataset, that is, we
choose one domain as the target domain and the other six
domains as the source domains each time.

However, domains in SNIPS are not completely indepen-
dent with each other. We use another commonly used dataset
ATIS [Hemphill et al., 1990] as target domain to test our
model. It consists of 5971 utterances related to the airline
travel domain with 83 slot types.

Baselines
We compare our approach with the following baselines:

• Concept Tagger (CT): A method proposed by [Bapna
et al., 2017], which utilizes slot descriptions to boost the
performance on detecting unseen slots.

• Robust Zero-shot Tagger (RZT): Based on CT, [Shah
et al., 2019] leverage both slot descriptions and exam-
ples to improve the robustness of zero-shot slot filling.
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Training Setting Zero-shot Few-shot on 20 (1%) samples Few-shot on 50 (2.5%) samples

Corpus Domain ↓ Model → CT RZT Coach RCSF CT RZT Coach RCSF CT RZT Coach RCSF

SN

AddToPlaylist 38.82 42.77 50.90 68.70 58.36 63.18 62.76 88.37 68.69 74.89 74.68 91.92
BookRestaurant 27.54 30.68 34.01 63.49 45.65 50.54 65.97 85.56 54.22 54.49 74.82 89.64
GetWeather 46.45 50.28 50.47 65.36 54.22 58.86 67.89 88.83 63.23 58.87 79.64 93.90
PlayMusic 32.86 33.12 32.01 53.51 46.35 47.20 54.04 80.95 54.32 59.20 66.38 86.59
RateBook 14.54 16.43 22.06 36.51 64.37 63.33 74.68 93.35 76.45 76.87 84.62 94.06
SearchCreativeWork 39.79 44.45 46.65 69.22 57.83 63.39 57.19 81.30 66.38 67.81 64.56 86.23
SearchScreeningEvent 13.83 12.25 25.63 33.54 48.59 49.18 67.38 80.46 70.67 74.58 83.85 94.22

Average F1 30.55 32.85 37.39 55.76 53.62 56.53 64.27 85.55 64.85 66.67 75.51 90.94

AT AirlineTravel 2.14 2.86 1.64 30.64 26.05 41.37 54.91 80.60 35.87 51.80 66.99 85.78

Table 2: F1-scores (%) on SNIPS (SN) and ATIS (AT) for different target domains under zero-shot and few-shot learning settings. Scores in
each row represents the performance of the leftmost domain, and RCSF denotes our approach using queries constructed by slot descriptions.
Since the SNIPS dataset consists of multiple domains, we calculate the average F1 of all domains. We also try Coach with BERT encoders,
but it did not perform better than its original LSTM encoders.

• Coarse-to-fine Approach (Coach): A two stage
method proposed by [Liu et al., 2020b], which contains
a coarse-grained BIO 3-way classification and a fine-
grained slot type prediction. Slot descriptions are used
in the second stage to help recognize unseen slots, and
template regularization is applied to further improve the
slot filling performance of similar or the same slot types.

Implementation Details
We conduct our experiment based on BertForQuestionAn-
swering2 implemented by HuggingFace as our base model,
and load the pre-trained weights provided by deepset3.
They pre-train the BERT model on the question answering
dataset SQuAD2.0 [Rajpurkar et al., 2018]. Adam opti-
mizer [Kingma and Ba, 2014] is applied to optimize all pa-
rameters with a learning rate 1e-5. We set the batch size to 64
and the maximum sequence length to 128. The patience of
early stop is set to 5. As for the baseline models, we use the
implementation of [Liu et al., 2020b]4 and follow the same
settings for a fair comparison.

F1-score is used as the evaluation metric. A slot span is
considered to be correct only if its range and slot type are both
correct. We fine-tune all hyper-parameters on the validation
set and use the best checkpoint to test our model.

4.2 Main Results and Discussions
Table 2 demonstrates the main results of our MRC model
compared to the baselines. In SNIPS dataset, our approach
outperforms the state-of-the-art model (Coach) by 18.37%
on the average F1 under zero-shot setting, 21.28% under 20-
shot setting and 15.43% under 50-shot setting, which demon-
strates the effectiveness of our method. To simulate the cross-
domain situation in real world, we also test our model on
ATIS dataset with SNIPS dataset as the training set. In this
setting, AirlineTravel in ATIS is considered as the target do-
main while all of the seven domains in SNIPS are taken as
the source domains. Our model still outperforms the exist-
ing state-of-the-art approach by a large margin, especially in

2https://github.com/huggingface/transformers
3https://huggingface.co/deepset
4https://github.com/zliucr/coach

Target
Samples‡

0 sample 20 samples

US (Slot) US (Sen.) US (Slot) US (Sen.)

CT 3.47 27.10 42.16 50.13
RZT 1.69 28.28 41.88 52.56
Coach 11.66 34.09 53.96 64.16

RCSF 25.44 41.99 84.94 87.37

Table 3: Averaged F1-scores (%) over all target domains on SNIPS
(SN) for unseen slots and unseen sentences. Scores in each row rep-
resent the performance of the leftmost method, and RCSF denotes
our approach. ‡ represents the number of training samples in target
domain. US (Slot) and US (Sen.) indicate results on unseen slots
and unseen sentences, respectively.

zero-shot setting, which shows that our model can fully make
use of the semantic information encoded by queries and has
the ability to recognize unseen slots while the baseline mod-
els fail to predict unseen slots in the irrelevant target domain
AirlineTravel.

Analysis on Unseen Slots and Unseen Sentences
To further study the effectiveness of our approach on zero-
shot setting, we also conduct analysis on unseen slots and
unseen sentences in target domains of SNIPS 5.

Following [Liu et al., 2020b], we separate the test set on
each domain into “seen sentence” and “unseen sentence”. An
utterance is categorized into the “unseen sentence” part as
long as there is an unseen slot in it. Otherwise, it is cate-
gorized into the “seen sentence” part. However, [Liu et al.,
2020b] can not show the real zero-shot scenarios directly be-
cause a sample with both seen slots and unseen slots would be
categorized into “unseen sentence” part in their experiments.
Therefore, we recalculate the F1-scores for each slot sepa-
rately instead of each sentence. In our experiments, if a slot
does not exist in the remaining six source domains, it will be
categorized into the “unseen slot” part. Otherwise we catego-
rize it into the “seen slot” part.

5Since all slot types in ATIS can be considered as unseen slots in
our settings, we only provide the results of SNIPS.
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Training Setting 0 sample

Corpus Domain ↓ Model → RCSF w/o T w/o PT

SN

AddToPlaylist 68.70 18.57 53.02
BookRestaurant 63.49 27.24 34.80
GetWeather 65.36 23.44 58.02
PlayMusic 53.51 27.26 33.06
RateBook 36.51 3.21 24.12
SearchCreativeWork 69.22 7.38 32.53
SearchScreeningEvent 33.54 23.93 18.70

Average F1 55.76 18.72 36.32

AT AirlineTravel 30.64 24.57 4.06

Table 4: F1-scores (%) on SNIPS (SN) and ATIS (AT) for different
target domains under zero-shot setting. “w/o T” denotes that we
directly test on the pre-trained BERT without fine-tuning on it, and
“w/o PT” represents that we train our model from scratch without
pre-training.

Table 3 shows the average results on “unseen slot” and “un-
seen sentence” in the target domains. We can see that our ap-
proach outperforms the baselines by large margins in both the
“unseen sentences” and “unseen slots” settings, which proves
that our MRC framework has a positive effect on the zero-
shot learning scenarios even when there are no sufficient su-
pervised signals. As for the “unseen slot” part, the baseline
models fail to recognize these unseen slots in the target do-
main. On the contrary, our approach can be adapted to pre-
dict the unseen slot types more quickly. Taking the unseen
slot “playlist owner” in domain AddToPlaylist for example,
“Coach” model mistakenly assigns the slot label “playlist”
which is a seen slot type appearing in domain PlayMusic to
entities of “playlist owner”. However, benefited from the pre-
training, our model has the ability to distinguish “owner of the
playlist” from “playlist”.

4.3 Ablation Studies
The Effect of the BERT Pre-training
As we can see, our experiments are based on BERT, which
is pre-trained with large-scale MRC data. To test the impact
of the pre-trained BERT, we carry out ablation experiments.
The results are shown in Table 4.

Firstly, we directly test the pre-trained BERT model on the
test dataset without fine-tuning it on our training dataset. It
can be seen that we still get an average F1 of 18.72% on
SNIPS and 24.57% on ATIS, which shows that the pre-trained
BERT does contain rich semantic information and our model
fully utilize it to boost performance.

Secondly, to separate the effect of the pre-training, we train
the model with randomly initialized weights. Without pre-
training, the performance of our MRC model drops drasti-
cally, but it still slightly outperforms the existing state-of-the-
art model which adopts sequence labeling framework in low-
resource scenarios. This suggests that the MRC framework is
more data-efficient than sequence labeling methods.

The Effect of Query Construction Strategies
For MRC tasks, the way to construct queries has a signifi-
cant influence on the final results. Intuitively, the more in-

Training Setting 0 sample

Corpus Domain ↓ Model → Desc. Trans. Exp.

SN

AddToPlaylist 68.70 65.99 70.35
BookRestaurant 63.49 62.05 72.68
GetWeather 65.36 67.80 83.17
PlayMusic 53.51 53.51 53.84
RateBook 36.51 23.67 50.08
SearchCreativeWork 69.22 67.39 66.59
SearchScreeningEvent 33.54 53.20 65.81

Average F1 55.76 56.23 66.08

AT AirlineTravel 30.75 25.99 32.20

Table 5: Results of different types of queries under zero-shot setting.
Desc., Trans., and Exp. indicate queries based on slot description,
back-translation, and examples, respectively.

formation the query contains, the better its effect should be.
Table 5 shows the performance of different types of queries
under zero-shot setting. It can be seen that using slot descrip-
tions and slot examples together is superior to the other two
methods on average, since more information can be found in
slot examples, which is in line with our intuition. Specifi-
cally, in domain SearchScreeningEvent, “Example” method
achieves its biggest performance improvement and outper-
forms the “description” method by 32.27%. As for the “back-
translation” method, it does not show significant improve-
ment in our experiments. It is effective in some domains
while may harm the results in other domains. The reason
of the performance decrease may be that some key informa-
tion is erased through the round-trip translation. However, in
domain SearchCreativeWork, “description” method achieves
the best F1 score of 69.22%. The main reason lies in that do-
main SearchCreativeWork only contains shared slots which
exist in the training data already.

5 Conclusion and Future Work
In this paper, we propose a novel MRC framework to address
cross-domain slot filling. Our approach comes with two key
advantages: (1) the well-designed queries encoding signif-
icant prior knowledge about slot names; (2) being capable
of utilizing the semantic information of BERT pre-trained on
the MRC dataset SQuAD2.0. Our method obtains new state-
of-the-art results on SNIPS and ATIS datasets in the cross-
domain setting, which demonstrates its effectiveness. In the
future, we would like to explore how to jointly address intent
detection and slot filling tasks using a unified MRC frame-
work in cross-domain scenarios.
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