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Abstract
Previous research has demonstrated the power of
leveraging prior knowledge to improve the perfor-
mance of deep models in natural language pro-
cessing. However, traditional methods neglect the
fact that redundant and irrelevant knowledge ex-
ists in external knowledge bases. In this study,
we launched an in-depth empirical investigation
into downstream tasks and found that knowledge-
enhanced approaches do not always exhibit satis-
factory improvements. To this end, we investi-
gate the fundamental reasons for ineffective knowl-
edge infusion and present selective injection for
language pretraining, which constitutes a model-
agnostic method and is readily pluggable into pre-
vious approaches. Experimental results on bench-
mark datasets demonstrate that our approach can
enhance state-of-the-art knowledge injection meth-
ods.

1 Introduction
Self-supervised pre-trained language models (LMs) such as
BERT, which can learn powerful contextualized representa-
tions, have achieved state-of-the-art results in natural lan-
guage processing (NLP) tasks. However, open issues remain
as these approaches lack domain-specific knowledge. Recent
methods [Peters et al., 2019] have revealed that the perfor-
mance of the knowledge-driven downstream task (for exam-
ple, question answering or relation extraction) is dependent
on structured relational knowledge; thus, the direct finetun-
ing of pre-trained LMs yields suboptimal results.

To address this issue, several works have attempted to inte-
grate knowledge graphs (KGs) into pre-trained LMs [Zhang
et al., 2019; Levine et al., 2020; Peters et al., 2019; Xiong
∗ Equal contribution and shared co-first authorship.
† Corresponding author.

et al., 2020; Zhang et al., 2021a], which has shed light on
promising directions for knowledge-driven tasks. Such meth-
ods generally retrieve pre-trained graph embeddings [Zhang
et al., 2019] or a KG subgraph via entity linking during
pretraining and finetuning. Representations learned from
knowledge-enhanced approaches have demonstrated expres-
sive power and contributed to the performance improvement
of downstream tasks. Thus, knowledge infusion has been
widely adopted, as is a simple yet effective method that ex-
ploits external knowledge. Moreover, when sufficient train-
ing data are not available, the infusion of external knowledge
into a pre-trained LM followed by finetuning to target tasks
is more efficient [Zhang et al., 2019].

To a certain extent, knowledge infusion integrates the
knowledge which is insufficient into pre-trained representa-
tions and alleviates data requirements of the tasks. How-
ever, the adequate amount of external knowledge for effec-
tive infusion remains to be well understood. In recent years,
[Petroni et al., 2019; Broscheit, 2020] found that pre-trained
LMs were partially equipped with a specific type of rela-
tional knowledge. Furthermore, [Liu et al., 2020] observed
that the incorporation of excessive knowledge might divert
the context representation from its correct meaning. These
observations motivated us to study the effective infusion of
knowledge into pre-trained LMs. We note that previous ap-
proaches treated all external knowledge equally, thereby in-
evitably leading to redundant or irrelevant knowledge infu-
sion. We argue that knowledge is NOT always beneficial for
downstream tasks, and an indiscriminate injection of knowl-
edge may lead to negative knowledge infusion, which is
detrimental to the performance of downstream tasks.

In this paper, we take the first step towards studying this
phenomenon fundamentally and propose general approaches
to restraining detrimental knowledge during knowledge infu-
sion.

Firstly, we investigate the efficacy of infused knowledge
and observe that external knowledge (for example, entities)
with high frequencies in the pre-trained corpus are more
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likely to trigger negative knowledge infusion. We argue that
pre-trained LMs have already captured such external knowl-
edge, and the redundant knowledge retrieved from KGs could
possibly amplify the negative effects of the external noise,
which subsequently deteriorates the performance. Inspired
by this observation, we propose a selective injection mecha-
nism that infuses informative knowledge by considering both
the knowledge frequency and mutual reachability detected in
the text for effective knowledge injection.

Secondly, we investigate those irrelevant parts of knowl-
edge, which lead to the negative knowledge infusion regard-
ing small spectral components. In particular, we conduct
spectral analysis from the perspective of parameters, and fea-
ture representations based on singular value decomposition
(SVD) [Golub and Reinsch, 2007] and make two observa-
tions: (1) small spectral components of weight parameters
in high layers are not beneficial, and (2) when finetuning
with sufficient training data, the small spectral singulars of
the feature representations tend to decay autonomously. In-
spired by these empirical observations, we leverage spectral
regularization to suppress those small spectral components
corresponding to irrelevant knowledge deliberately for effec-
tive knowledge exploitation. It should be noted that our ap-
proach is model-agnostic, and therefore orthogonal to exist-
ing approaches. We conduct numerous experiments on NLP
benchmarks, which demonstrate the effectiveness in mitigat-
ing negative knowledge infusion. The contributions of this
study can be summarized as follows:
• We investigate the problem of knowledge infusion into

pre-trained LMs and observe that redundant and irrele-
vant knowledge exist for downstream tasks, which may
lead to negative knowledge infusion.
• We then propose selective injection as well as spec-

tral regularization respectively for effective knowl-
edge infusion and our method is orthogonal to existing
knowledge-driven tasks.
• Extensive experimental results on NLP benchmarks

demonstrate the effectiveness of our method in allevi-
ating negative knowledge infusion and our approach can
enhance state-of-the-art knowledge injection methods.

2 Related Work
Background knowledge has been considered as an indispens-
able part of language understanding [Zhang et al., 2021b],
which has inspired knowledge-enhanced models including
ERNIE (Tsinghua)1 [Zhang et al., 2019], ERNIE (Baidu)
[Sun et al., 2019], KnowBERT [Peters et al., 2019], WKLM
[Xiong et al., 2020], LUKE [Yamada et al., 2020], KEPLER
[Wang et al., 2019b], GLM [Shen et al., 2020], K-Adaptor
[Wang et al., 2020], and CoLAKE [Sun et al., 2020]. ERNIE
[Zhang et al., 2019] injects relational knowledge into the pre-
trained model BERT, which aligns entities from Wikipedia to
facts in WikiData. KnowBERT [Peters et al., 2019] incorpo-
rates external KGs into BERT with a novel attention and re-
contextualization approach. More recent methods, such as the
GLM [Shen et al., 2020], and K-Adapter [Wang et al., 2020],

1In this paper, ERNIE refers to the ERNIE (Tsinghua).

introduce promising techniques to exploit informative knowl-
edge and mitigate catastrophic forgetting during knowledge
infusion. However, the dilemma of negative knowledge infu-
sion is still not well understood.

Our work is motivated by approaches [Liu et al., 2020;
Petroni et al., 2019; Broscheit, 2020] that have indicated
the existence of redundant and irrelevant knowledge. Liu et
al. [2020] observes that excessive knowledge incorporation
could divert the context representation and Bian et al. [2021]
finds that context-sensitive knowledge selection is critical,
whereas [Petroni et al., 2019; Broscheit, 2020] demonstrates
that pre-trained LMs had been partially equipped with rela-
tional knowledge. Negative knowledge infusion, which is a
largely ignored issue in recent knowledge-driven tasks, has
rarely been considered. Moreover, our work is inspired by
negative transfer in transfer learning [Chen et al., 2019a] as
they both follow a pretrain—finetune paradigm. However, as
opposed to these approaches, we focus on knowledge infu-
sion, including injecting favorable knowledge and exploiting
beneficial representations. In contrast, transfer learning uses
the knowledge acquired for one task to solve related tasks.

3 Knowledge-Enhanced Models
Regarding a knowledge-enhanced language model, when
finetuning, it generally consists of two parts: a feature extrac-
tor F and a task-specific architecture C. We denote F 0 and
C0 as the pre-trained weights. We study the negative knowl-
edge infusion, which is a phenomenon whereby the model
infuses knowledge but does not achieve satisfactory improve-
ment or even suffers from performance decay. It is natural
to pose the following questions: 1) Does negative knowledge
infusion really exist in downstream tasks? 2) If it does, how
does it affect the model performance?

3.1 Negative Knowledge Infusion
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Figure 1: Analysis of negative knowledge infusion. (a) F1 of sub-
test set with different-frequency entities; (b) influence of irrelevant
knowledge.

In this section, we investigate whether negative knowledge
infusion exists and whether it has a negative impact on task
performance. We design two experiments based on ERNIE
[Zhang et al., 2019] and KnowBERT [Peters et al., 2019] for
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evaluation2.
In the first experiment, as illustrated in Figure 1(a), we

sampled test samples and grouped them into buckets with
different-frequency entities where the frequency refers to the
occurrence number of entities in Wikipedia. Contrary to the
common assumption, knowledge-enhanced approaches such
as ERNIE and KnowBERT does not always exhibit satisfac-
tory improvement to vanilla BERT and may even achieve
slightly inferior performance with high-frequency entities for
some instances, which indicates that not all knowledge is ben-
eficial and demonstrates the existence of negative knowledge
infusion. The pretrained language model may have already
learned factual knowledge for high-frequent entities, which
constitute redundant knowledge.

In the second experiment, as illustrated in Figure 1(b), we
experiment to identify the influence of irrelevant knowledge
by replacing the entity with other entities of different types.
From Figure 1(b), we observe that irrelevant knowledge hurts
the performance more severely as the noise rates increase.
Note that there exist incorrect facts or wrong linked entities3

which constitute irrelevant knowledge.

3.2 Why Negative Knowledge Infusion?

As negative knowledge infusion exists, we can ask another
two questions: 1) Which part of knowledge infusion causes
negative knowledge infusion? 2) How can this problem be
mitigated?

From the perspective of knowledge, we begin to explore
which part of the external knowledge may contribute to this
problem. It can be observed from Figure 1(a) that there is
no guarantee that the performance will always exhibit an im-
provement for samples with high-frequency entities. We ar-
gue that redundant information may not contribute to the
performance and irrelevant knowledge may hinder the per-
formance. Firstly, it should be noted that recent approaches
[Petroni et al., 2019; Broscheit, 2020] have demonstrated that
pretraining can obtain relational knowledge. Since the pre-
trained LM has already captured such knowledge and several
noisy facts exist in the external knowledge base, it is unrea-
sonable to infuse this redundant external knowledge, resulting
in noise and reducing the semantics in the text. Secondly, ex-
cessive knowledge may also lead to catastrophic forgetting,
as observed by [Wang et al., 2020].

From the perspective of features and parameters, we ex-
plore which part of the weightW and features f = F (x) may
not be beneficial. Figure 1(b) already illustrates that noises
introduced either by incorrect facts or from erroneous entity
linking may cause negative knowledge infusion. To further
investigate the negative impact of irrelevant knowledge for
downstream tasks, we analyze both the weights and features
with principal angles [Rebuffi et al., 2017], which have been
introduced to measure the similarity of subspaces. Specifi-
cally, we use the corresponding angles [Chen et al., 2019b],

2Negative knowledge infusion can also be found in Table 2.
3TagMe’s performance on various benchmark datasets ranges

from 0.37 to 0.72 F1 score [Kolitsas et al., 2019]
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Figure 2: Cosine values of corresponding angles between W and
W 0.

which are defined as follows:

cos (θi) =
〈u1,i, u2,i〉
‖u1,i‖ ‖u2,i‖

(1)

where u1,i refers to the i-th eigenvector with the i-th largest
singular value and u2,i denotes the opposite case. We apply
θ to measure the availability of the eigenvectors in the weight
matrices. Naturally, if the eigenvectors of the correspond-
ing angle are small, the prior knowledge is more beneficial.
Specifically, we denote W0 and W as the pre-trained weights
of knowledge-enhanced models such as ERNIE and the fine-
tuned weights on downstream tasks, respectively. We reshape
the tensor into a matrix and subsequently perform SVD to
obtain the eigenvectors U and singular values Σ, denoted as
follows:

W = UΣV> (2)
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Figure 3: Singular values of feature matrices with different ratio of
finetuning instances.

We calculate the relative angles θ in the 4-th layer (solid
lines) and 12-th layer (dotted lines) between W0 and W,
as shown in Figure 2. We observe that the lower layers (4-
th layer) have small relative angles, which is consistent with
the finding in [Rogers et al., 2020]. It is natural that lower
layers are more beneficial for different tasks. Nevertheless,
we note that relatively large singular values have rather small
corresponding angles. Thus, it is intuitive to align weights
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Figure 4: Knowledge infusion with Selective Injection (SI) and Spectral Regularization (SR).

indiscriminately with the initial pre-trained values to remedy
the negative knowledge infusion. Moreover, we analyze the
feature representations with different training set sizes. Sim-
ilarly, we use SVD to calculate all singular eigenvectors U
and values Σ of the feature matrices, denoted as follows:

F = UΣV> (3)

As illustrated in Figure 3, we draw the diagonal elements
of the singular value matrix Σ in descending order to mea-
sure the importance of the eigenvectors. As demonstrated in
[Chen et al., 2019a], finetuning and training from scratch can
achieve comparable results with sufficient labeled data. It is
natural to assume that finetuning with large datasets should
provide greater generalization. Motivated by the observation
of significantly suppressed, relatively small singular values of
the features, we argue that promoting the similarity between
these parts will give rise to negative knowledge infusion.

4 Approach
In this section, we preliminarily study how to alleviate neg-
ative knowledge infusion, as depicted in Figure 4. As the
above analysis demonstrates that redundant knowledge is not
necessary for infusion, it is intuitive to assign different sam-
pling weights to different entities, thereby injecting different
ratios of external knowledge. Moreover, as both weights and
features with large singular values are valuable for down-
stream tasks, it is logical to shrink the importance of the
lower spectral components with smaller scores, particularly
with limited supervision. Note that the computation of SVD
in high-dimensional weight spaces is costly; hence we mainly
apply our approach on the feature space.

4.1 Dropping Redundant Knowledge with
Selective Injection

The above redundant knowledge analysis of feature matrices
results in the key inspiration. We propose a selective injec-
tion approach. Specifically, we randomly sample 85% of

the injected entities as candidate knowledge and then intro-
duce selective injection to infuse the necessary portions. Note
that, as most frequently appearing entities are trivial and re-
dundant, it is natural to assign lower sample probabilities to
them. However, although several entities have a relatively
high frequency, they cannot be neglected owing to their se-
mantic importance. For example, one sampled entity should
be assigned with a high probability if it can be inferred by
numerous other entities in the same text (within Khop-hops).
To this end, we propose the selective injection approach re-
garding the following sampling equation 4:

P (Eej ) ∝ I{DF(ej)<Kthren } + λ [|S (ej)|]Kmax
Kmin

, (4)

where DF(·) refers to the document frequency,
E is a set of linked entities from text, S(e) ,
{e|∀e′s.t. distance (e′, e) < Khop ∧ e′ ∈ E}, | · | refers to the
set size which denotes the number of neighbouring entities
with distance shorter than Khop, [x]ba , max(a,min(x, b)),
and distance (e, e′) is the shortest undirected length between
the two entities. Note that the neglected knowledge in the
selective injection still has 15% possibility to be infused into
the LMs. Our approach can be used as a knowledge-sampling
function for different knowledge-enhanced approaches.

4.2 Shrinking Irrelevant Knowledge with Spectral
Regularization

Motivated by the above spectral analysis of the features, we
propose a spectral regularization approach to remedy the ir-
relevant knowledge obtained during finetuning. In particular,
we conduct SVD on the feature matrix F following Equation
and penalize the smallest k singular values, as indicated be-
low:

Lsr(F ) = η

k∑
i=1

σ2
i′ , (5)

4λ and Khop/thresh/min/max are hyperparameters.
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where k is the number of singular values to be penalized, η is
a hyperparameter, and σi′ refers to the i-th smallest singular
value.

Computational Complexity. The computational com-
plexity of the selective injection can be ignored because it
can be pre-computed prior to training. For a a× b matrix, the
time complexity of the SVD is O

(
min

(
a2b, ab2

))
, which is

unacceptable. We calculate the spectral regularization with
O
(
b2d
)
, where b is the batch size and d is the feature di-

mension (for example, 768). This is negligible in recent
knowledge-enhanced approaches. Our approach can be em-
bedded into existing fine-tuning scenarios, which can be for-
mulated as:

min
W

n∑
i=1

L (C (F (xi)) , yi) + γΩ(W) + ηLsr(F ). (6)

where L is the task loss, Ω is the L2 regularization, C is the
task-specific function, Lsr is our spectral regularization, γ
and η are hyperparameters.

5 Experiments
5.1 Datasets and Setup
TACRED [Zhang et al., 2017] is a large-scale relation ex-
traction dataset that covers 42 relation types and contains
106,264 sentences.
OpenEntity [Choi et al., 2018] is a completely manually
annotated entity typing dataset.
SearchQA [Dunn et al., 2017] is a large-scale question an-
swering dataset that is constructed to reflect a full pipeline of
general question answering.
Quasa-T [Dhingra et al., 2017] is a large-scale question-
answering dataset consisting of 43,000 open-domain trivia
questions and their answers that are obtained from various
internet sources.
GLUE [Wang et al., 2019a] is a benchmark with nine di-
verse NLP tasks. As WNLI mainly focuses on reasoning, we
do not perform experiments on WNLI.

In this case, η was set to 0.001, k was set to 1, λ was set
to 0.5, γ was set to 0.0001, Khop/thresh/min/max was set to
{6,100,5,20}, and the batch size was set to 32. Note that our
approach can also leverage other kind of external knowledge
such as ConceptNet which is different from the world knowl-
edge database Wikidata.

5.2 Baselines
We leverage Wikidata as an external knowledge base for both
ERNIE and KnowBERT. We pretrain our own ERNIE and
KnowBERT initialized with RoBERTa [Liu et al., 2019]. We
compare our approach with baselines as shown below:
BERT [Devlin et al., 2018]. We utilize the BERT-base as
the pre-trained language model baseline.
RoBERTa [Liu et al., 2019]. We utilize the RoBERTa-base
as baseline.
KEPLER [Wang et al., 2019b]. It is a unified model for
knowledge embedding and pre-trained language representa-
tion.

WKLM [Xiong et al., 2020]. It is a weakly supervised pre-
training approach that explicitly forces the model to incorpo-
rate knowledge about real-world entities.

K-Adaptor [Wang et al., 2020]. It is an adaptor-based ap-
proach that fixed the pre-trained language model’s parame-
ters.

ERNIE* [Zhang et al., 2019]. Here the model ERNIE*
refers to the results obtained from the paper.

ERNIE. Here, the model ERNIE refers to our implemen-
tation results, which has the same amount of tuning with
ERNIE+SI+SR.

KnowBERT* [Peters et al., 2019]. Here the model Know-
BERT* refers to the results obtained from the paper.

KnowBERT. Here, the model KnowBERT refers to the re-
sults of our implementation, which has the same amount of
tuning with KnowBERT+SI+SR.

5.3 Results and Analysis
Main Results. From Table 1, we can observe the follow-
ing: 1) ERNIE and KnowBERT embedded with our approach
achieved improvement in all experiments and even performed
better than RoBERTa in FIGER and TACRED, indicating the
advantages of infusing informative knowledge and shrinking
irrelevant features; 2) In SearchQA and Qusar-T, the improve-
ment of our approach are relatively small, which could be
owing to an insufficient quantity of available external knowl-
edge, and thus fewer performance gains; 3) Both selective
injection and spectral regularization contribute to the model
performance, and selective injection obtains improvements in
OpenEntity and TACRED, indicating the benefits of dropping
redundant and irrelevant knowledge.

GLUE Results. From Table 2, we can observe the follow-
ing: 1) ERNIE embedded with our approach achieved im-
provement in all experiments and obtained comparable re-
sults with RoBERTa-base on GLUE, further indicating the ef-
ficacy of our approach; 2) Our approach does not obtain much
performance gains compared with RoBERTa-base. Note that
those tasks are not knowledge-driven [Devlin et al., 2018]
which requires linguistic representations rather than structure
facts; thus, knowledge-enhanced models such as ERNIE hurt
the performance as it introduces noises, whereas our approach
does not detour performances as it performs selective knowl-
edge injection. It is advantageous for those indistinguishable
situations whether knowledge is necessary or not (alleviating
negative knowledge infusion).

Selective Injection. To evaluate the effectiveness of the se-
lective injection, we conducted ablation studies. It can be
observed from Figure 5(a) that 1) the samples with high-
frequency entities (redundant knowledge) exhibited a severe
performance decay, which further demonstrates the negative
impact of redundant knowledge; and 2) our approach with
selective injection achieved more stable performance, sug-
gesting that our mechanism of de-emphasizing the redundant
knowledge was beneficial.
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Model OpenEntity TACRED SearchQA Quasar-T
P Ma-F1 Mi-F1 P R F1 EM F1 EM F1

BERT-base [Devlin et al., 2018] 76.37 70.96 73.56 67.23 64.81 66.00 57.10 61.90 40.40 46.10
ERNIE* [Zhang et al., 2019] 78.42 72.90 75.56 69.97 66.08 67.97 - - - -
KnowBERT* [Peters et al., 2019] 78.60 73.70 76.10 71.60 71.40 71.50 - - - -
KEPLER [Wang et al., 2019b] 77.20 74.20 75.70 70.43 73.02 71.70 - - - -
WKLM [Xiong et al., 2020] - - - - - - 61.70 66.70 45.80 52.20
RoBERTa [Liu et al., 2019] 77.55 74.95 76.23 70.17 72.36 71.25 59.01 65.62 40.83 48.84
K-Adapter [Wang et al., 2020] 79.25 75.00 77.06 70.05 73.92 71.93 61.96 67.31 45.69 52.84

ERNIE 78.52 72.92 75.62 70.92 69.28 70.09 59.53 65.92 44.35 51.15
ERNIE+SI 78.81 74.70 76.70 71.25 74.03 72.61 61.56 67.01 45.59 52.58
ERNIE+SI+SR 78.91 74.80 76.80 71.05 74.33 72.65 61.64 67.31 45.79 52.98
KnowBERT 78.63 73.80 76.14 71.50 71.50 71.50 60.93 65.92 44.45 50.95
KnowBERT+SI 78.61 74.73 76.62 71.15 73.73 72.42 62.66 67.32 45.70 52.88
KnowBERT+SI+SR 78.93 75.56 77.21 71.35 74.49 72.89 62.86 67.52 45.73 53.10

Table 1: Results on OpenEntity, TACRED, SearchQA, and Quasar-T datasets.

Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE AVG.

RoBERTa 87.5/87.3 91.9 92.8 94.8 63.6 91.2 90.2 78.7 86.4
ERNIE 87.0/86.3 91.3 92.2 94.4 62.1 89.1 89.1 69.5 84.5

ERNIE+SI 87.1/87.0 91.5 92.0 94.4 62.2 90.0 89.3 75.6 85.4
ERNIE+SI+SR 87.4/87.1 92.0 92.3 94.6 63.3 90.6 90.5 76.5 86.0

Table 2: Results on different tasks of GLUE dev set.
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Figure 5: Analysis of selective infusion, spectral regularization, hyper-parameter sensitivity, and noise tolerance: (a) analysis of selective
injection; (b) all singular values of feature matrices; (c) sensitivity analysis of different k; (d) analysis with different ratios of incorrect
knowledge.

Spectral Regularization. The singular values of the fea-
tures are drawn with (dotted) and without (solid) spectral
regularization in Figure 5(b). We observed that 1) the sin-
gular values shrank, demonstrating the effectiveness of our
approach; and 2) although k = 1 (k is the number of sin-
gular values to be penalized), more than one singular value
was surprisingly suppressed, which shows the capability of
the automatic distribution adjustment. We also conducted a
sensitivity analysis of different k values using Equation 5. It
can be observed from Figure 5(c) that 1) the performance of
the limited training data with a larger k value was slightly su-

perior; and 2) the performance of the sufficient training data
decayed with a relatively large k, indicating the necessity of
a trade-off between penalization and knowledge transfer.

Noise Tolerance. To further evaluate our approach’s noise
tolerance, we deliberately replaced entities with other enti-
ties of different types to simulate noisy facts in the knowl-
edge base. We experimented with different ratios of noise
in knowledge. According to 5(d), 1) all approaches exhib-
ited a performance decay, indicating the negative effect of the
irrelevant knowledge; and 2) our method significantly outper-
formed all of the baselines, suggesting that our approach was
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more robust and could remedy the noisy effect resulting in
negative knowledge infusion.

6 Conclusions and Future Work
We have studied the knowledge infusion of knowledge-driven
tasks and took the first step towards delving into knowl-
edge infusion scenarios from a new perspective: negative
knowledge infusion. Whereas recent approaches have gen-
erally focused on designing sophisticated architectures to in-
fuse knowledge, the essential mechanism of knowledge infu-
sion remains less understood. We empirically observed two
main findings, namely that redundant and irrelevant knowl-
edge will lead to negative infusion, which may shed light on
future works on knowledge-enhanced approaches. We pro-
posed selective injection and spectral regularization to inhibit
negative components, which can be embedded into existing
methods demonstrated performance gains. We anticipate fur-
ther research on promising directions, including 1) exploiting
more efficient approaches to identify the useful knowledge;
2) investigating the essence of knowledge-driven tasks and
proposing more effective infusion across domains.
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