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Abstract

Previous work on satisficing planning using greedy
best-first search (GBFS) has shown that non-
greedy, randomized exploration can help escape
uninformative heuristic regions and solve hard
problems faster. Despite their success when used
with GBFS, such exploration techniques cannot
be directly applied to bounded suboptimal algo-
rithms like Weighted A* (WA*) without losing
the solution-quality guarantees. In this work, we
present Type-WA*, a novel bounded suboptimal
planning algorithm that augments WA* with type-
based exploration while still satisfying WA*’s the-
oretical solution-quality guarantee. Our empiri-
cal analysis shows that Type-WA* significantly in-
creases the number of solved problems, when used
in conjunction with each of three popular heuris-
tics. Our analysis also provides insight into the run-
time vs. solution cost trade-off.

1 Introduction

Optimal planning algorithms, such as A*, are guaranteed to
return optimal solutions, but they do so at the expense of
high runtime and memory requirements. Most practical ap-
plications dispense with optimality guarantees, often favor-
ing bounded suboptimal algorithms which generally have far
more modest runtime and memory requirements, while also
providing quantifiable quality guarantees.

The most popular bounded suboptimal planning algorithm
is Weighted A* (WA*) [Pohl, 1970]. WA* and its variants
have been used in a wide range of applications including
BDD minimization [Ebendt and Drechsler, 2009] and path
planning [Bono et al., 2019; Zeng et al., 2015]. They have
also been extensively used in robotics applications [e.g., Ver-
naza et al.,2009; Cohen et al., 2014]. WA* is also a key
component in anytime algorithms such as Anytime Restart-
ing Weighted A* [Richter er al., 2010] and Anytime Repair-
ing A* [Likhachev et al., 2003], and is often used in domain-
independent planning systems such as LAMA [Richter and
Westphal, 2010] and FD stone soup [Helmert et al., 2011].

Despite its broad adoption, WA*’s performance often de-
grades in uninformative heuristic regions (UHRs), where the
heuristic does not provide useful guidance regarding how to
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make progress [Wilt and Ruml, 2012]. In greedy best-first
search (GBFS), a popular algorithm for satisficing planning
that provides no solution-quality guarantees, a recent line of
work has considered using non-greedy, randomized explo-
ration to overcome UHRs. For example, Type-based explo-
ration in GBFS [Xie et al., 2014], that utilizes type systems
to explore the state space, was adopted by state-of-the-art sat-
isficing planners (e.g., FD stone soup 2018 [Seipp and Roger,
2018]). However, such techniques cannot be directly applied
to WA* without losing the solution-quality guarantees.

In this work, we extend type-based exploration to support
bounded suboptimal planning by restricting the exploration to
the focal list. We present Type-WA*, a novel planning algo-
rithm that augments WA* with type-based focal exploration,
while still satisfying WA*’s theoretical solution-quality guar-
antee. To the best of our knowledge, this is the first algorithm
that uses non-greedy, randomized exploration while still be-
ing bounded suboptimal. Our contributions are as follows:

1. We introduce Type-WA* and prove it is w-admissible.

2. We present an extensive empirical analysis of Type-WA*
across domains, heuristic functions, and weights. This
analysis shows that Type-WA* significantly outperforms
WA* in terms of runtime and the number of instances
solved in given time and memory limits.

3. We discuss how Type-WA* can avoid pathological defi-
ciencies exhibited by WA*. In particular, we identify
that Type-WA* can overcome the problem of perfor-
mance degradation for larger weights [Wilt and Ruml,
2012] exhibited by WA* in some domains.

4. We show how the level of exploration in Type-WA* can
be controlled and we empirically analyze the impact that
doing so has on solution quality.

2 Background

A search problem is a tuple (G(V, E),s;,T). G is a finite
directed graph called the state space, with states or vertices
V and edges E. s; € V is the initial state, and T C V
is the set of goal states. We use (s,s’) to denote an edge
from s to s, and successors(s) to denote the set of states
{s'| (s,s') € E}. The objective is to find a solution path, a
sequence of states (Sg, ..., Sp—1) such that so = 8;, Sp—1 € T
and s; € successors(s;—1) Vj € [1.n—1].
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A cost function ¢ : E — RZY assigns a cost to each
edge. The cost of a path is the sum of the edges along
that path. A bounded suboptimal problem is then given by
(G(V,E),s;,T,c,w), where w > 1. The objective is to find
a solution path with a cost of no more than wC™*, where C*
is the cost of an optimal solution path (i.e., one with lowest
cost)!. Such solutions are said to be w-admissible. If every
solution returned by an algorithm satisfies such a requirement
for a given w, that algorithm is also said to be w-admissible.

A node n is given by a state s and a path from s; to s. This
path is often stored implicitly using a parent pointer pred(n),
which points to the previous node along the path. The g-cost
of node n, denoted g(n), is the cost of this path. We also use
g*(n) for the cost of the optimal path from s; to s, and h*(n)
for the cost of the optimal path from s to a state in 7.

2.1 Heuristic Search Algorithms

Many classical algorithms search for a solution by itera-
tively generating partial paths of nodes until one is found
that reaches a goal. We assume the reader’s familiarity with
the use of open and closed lists of nodes, whereby nodes on
the open list are selected, expanded, and moved to the closed
list?>. These algorithms differ in the policy they use to select
nodes from the open list on every iteration. For example, best-
first search (BFS) algorithms use some evaluation function ®
from the set of nodes to R to define this policy. In particular,
on every iteration, a BFS algorithm selects the node from the
open list with the lowest value according to ®.

Many BFS algorithms use a heuristic function h to define
this evaluation function. For example, the A* algorithm uses
®(n) = f(n) = g(n) + h(n). Werefer to f(n) as the f-cost
of a node. In contrast, the Weighted A* (WA*) algorithm uses
the evaluation function ®(n) = f,(n) = g(n) + wh(n),
where w > 1 is a user-defined parameter called a weight
[Pohl, 1970]. Notably, WA* is w-admissible if the heuristic
is admissible, i.e., if h(n) < h*(n) for any node n.

Focal search algorithms [Pearl and Kim, 1982] are an alter-
native to BFS algorithms. For the node selection step, these
algorithms use a heuristic A to first identify fi,;,, which is the
minimum value of f-cost of all nodes in the open list. Next,
these algorithms construct the focal list, which is a subset of
the open list defined as follows:

FOCAL={n € OPEN | f(n) <w": fmin}. (1)

Finally, a single node is selected for expansion from FOCAL,
using some other policy. The first focal search algorithm, A?
[Pearl and Kim, 1982], selects nodes in FOCAL according
to some secondary, potentially inadmissible, heuristic. Other
focal search algorithms, like EES [Thayer and Ruml, 20111,
use a more sophisticated policy for selecting nodes.

2.2 GBFS and Random Exploration

Greedy Best-First Search (GBFS) is a BFS algorithm that
uses ®(n) = h(n). Thus, GBFS always expands the node

'Other forms of solution-quality requirements can also be de-
fined [Valenzano et al., 2013]. While our approach is applicable for
many of them, we focus on w-admissibility for the sake of clarity.

’In this work, we assume that nodes on the closed list are re-
opened whenever a shorter path to them is found.
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with the lowest h-cost in the open list. Doing so generally
speeds up the search for solutions, though there are no gen-
eral guarantees on the quality of solutions found.

Due to the way it exploits the heuristic function, GBFS can
be easily led astray by misleading heuristics. For example,
the search can often become “stuck” in uninformative heuris-
tic regions (UHRSs) of the state space, in which the heuristic
does not provide guidance regarding how to make progress.
To alleviate this effect, a variety of methods that use ran-
dom exploration [Valenzano et al., 2014; Xie et al., 2014;
Imai and Kishimoto, 2011; Asai and Fukunaga, 2017] have
been proposed. These methods use some form of random
sampling when selecting nodes for expansion, to encourage
the algorithm to occasionally go against the advice of the
heuristic. Type-GBFS [Xie et al., 2014], which is our focus,
bases its approach for random sampling on a type system:

Definition 1 (Type System [Lelis ez al., 2013]). Let N be the
set of nodes in a search space. T' = {t1,...,t,} is a type
system for IV if T is a disjoint partitioning of N. For every
node n € N, T'(n) denotes the unique ¢ € T for n.

For example, the (h, g) type system introduced in the origi-
nal Type-GBFS paper will put two nodes n and n’ in the same
partition if and only if A(n) = h(n') and g(n) = g(n’).

When selecting a node for expansion, Type-GBFS alter-
nates between selecting the node with the lowest heuristic
value (i.e., the same node as selected by GBFS), and selecting
a node by random sampling as follows. First, the nodes in the
open list are grouped by their type. Next, a type ¢; is selected
uniformly at random from those that are non-empty after this
grouping. Finally, a node is selected uniformly from amongst
those in the open list that are of type ¢;.

The intuition behind Type-GBES is to encourage the ex-
ploratory node selections to better cover the state space. For
example, when most of the open list is dominated by nodes
from one region of the state space (i.e., a “bad” subtree or
UHR), exploration methods which uniformly sample nodes
from the open list (e.g., e-greedy node selection [Valenzano
et al., 2014]) are likely to select nodes from that same region.
In contrast, if the type system groups many of the states in
that dominant region together, there is a better chance that
Type-GBFS will sample nodes outside of the UHR [Xie er
al., 2014].

There are a variety of other methods for introducing ran-
dom exploration to GBFS (cf. [Imai and Kishimoto, 2011;
Asai and Fukunaga, 2017]). Though we omit a full descrip-
tion of these methods, we note that they can be used in the
bounded suboptimal setting using similar approaches to those
described in the next section.

3  WA* with Type-Based Focal Exploration

To motivate our approach, we start by demonstrating that
UHRs are also a problem for WA*. Consider an instance
of NoMystery with 14 packages and 14 locations, which is
solved by WA* with w = 3 using the admissible landmark
count heuristic [Karpas and Domshlak, 2009] in approxi-
mately 36 minutes. Figure 1 shows the distribution of f,
values in the open list after SOK, 100K, 500K, and 1M ex-
pansions (note the log-scaled y-axis). The dashed line marks
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Figure 1: Distribution of f, values in the WA* open list at different
time points. The problem instance is from the NoMystery domain.

the f,, value of the next solution node according to the so-
lution that is returned, eventually, by WA*. We see that the
overwhelming majority of nodes in the open list have lower
fw value compared to the solution node. This distribution
indicates a large UHR that will have to be exhausted before
the solution node is expanded. We hypothesize that in many
domains, such UHRs account for significant difficulty.

As discussed above, several works have used exploration as
a way to alleviate the effect of large UHRs. Although these
methods cannot be applied directly to WA* while guarantee-
ing w-admissibility, in the remainder of the section we iden-
tify an approach for augmenting WA* with exploration while
still maintaining bounded suboptimality.

3.1 The Type-WA* Algorithm

Motivated by the above analysis, we propose Type-WA* (or
TWA* for short), a novel bounded suboptimal planning algo-
rithm that augments WA* with type-based exploration in the
focal list. Algorithm 1 shows a pseudocode for the proposed
approach. It alternates between expanding nodes based on f,,
(as in WA*) and expanding a random node from the focal list
using type-based exploration. By constraining the type-based
exploration to the focal, Type-WA* is guaranteed to find so-
lutions that are w-admissible, as shown in Theorem 1.

Theorem 1 (Bounded Suboptimality). If Type-WA* returns a
solution for a weight w and admissible heuristic h, then the
solution is w-admissible.

Proof Sketch. Type-WA* always expands a node n that is ei-
ther (a) the open node with the lowest f,, value (i.e., the
weighted A* selection criterion) or; (b) a node from the focal
list.

If an algorithm only expands nodes from the focal list com-
puted for admissible heuristic h and weight w, it is guaranteed
to return a w-admissible solution. Since Ebendt and Drech-
sler [2009] showed that expanding the lowest f,, value (as
in WA*) is guaranteed to be in FOCAL, Type-WA* only ex-
pands nodes that are in FOCAL. O

We note that any of the other methods for inducing explo-
ration can also be used in a bounded suboptimal search, if that

Algorithm 1 The Type-WA* Algorithm
Input: init node n, heuristic h, weight w, Type system T’
1: function TYPE-WA*(ny, h, w, T)

2: g(nr)=0,pred(n;) = NONE
3:  OPEN « {n;}, CLOSED « {}, step < 1
4:  while OPEN # () do
5: if step is odd then > Weighted A* step
6: n <— arg minpecopen fw(n) = g(n) + wh(n)
7 else > Type-based focal exploration step
8: FOCAL = {n | n € OPEN, f(n) < w - fmin}
9: t < randomly-selected, non-empty type from 7'
10: n <— randomly selected FOCAL node in type ¢
11: if n is a goal then
12: return path to n
13: for n. € successors(n) do
14: if n. ¢ OPEN U CLOSED then > New state
15: 9(ne) = g(n) + c(n,nc)
16: pred(ne) < n
17: OPEN = OPEN U {n.}
18: else if g(n) + c(n, n.) < g(n.) then
19: > Found lower-cost path
20: g(ne) = g(n) + c(n, ne)
21: pred(ne) < n
22: if n. € CLOSED then > Reopen node
23: CLOSED + CLOSED — {n.}
24: OPEN «+ OPEN U {n.}
25: CLOSED «+ CLOSED U {n}
26: step = step + 1
27:  return ()

exploration is similarly restricted to the focal list. We leave a
full examination of such methods as future work.

Implementation Details

In practice, focal search algorithms maintain multiple data
structures to allow for the incremental tracking of f,,;, and
the contents of the focal list. For Type-WA*, we also need to
maintain a grouping of nodes by types. We use the follow-
ing approach, which is suitable when the type system satis-
fies the property that for any two nodes n and n’ for which
f(n) # f(n'), n and n' are in different types. We note
that this is satisfied by the (h, g) type system used below, and
other common type systems like (f).

First, we maintain an open list ordered by f,,, to allow easy
access for the WA*-like expansions. For the focal list, we
store a bucket of nodes for each type. Since all nodes in the
same bucket have the same f-cost, we can sort the buckets
by f-cost. Doing so allows for an easy calculation of f,ip,
w fmin, and thereby the set of buckets corresponding to nodes
in the focal list. For an exploration expansion, we then sim-
ply randomly select one of the buckets in this set, and then
randomly return a node in the selected bucket.

The open list ordered by f,, and the type buckets are not
synchronized, and some nodes in them may already be closed.
We simply ignore these nodes if they are selected for expan-
sion. But we do need to maintain f,;, accurately, since un-
derestimating its true value can restrict the focal list and con-
sequently the amount of exploration. Therefore, before se-
lecting a node for an exploratory expansion, we remove nodes
from the lowest f-cost bucket until we find one that is open.
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Figure 3: Results for 100 random NoMystery problem instances (note the log-scaled axes; the dotted lines represent timeout).

4 Empirical Analysis

In this section, we present an empirical analysis of Type-
WA*, We start by analyzing its performance on two well-
known benchmark domains: Blocksworld and NoMystery.
Then, we present an extensive evaluation on problem in-
stances from the International Planning Competition (IPC).

We tested with three different admissible heuristics: the
merge-and-shrink heuristic (h™°) [Helmert et al., 2014], the
admissible variant of the landmark count heuristic (h*™)
[Karpas and Domshlak, 20091, and the landmark cut heuris-
tic (h*©) [Helmert and Domshlak, 2009]. In all experiments
we use a time limit of 10 minutes and a memory limit of 4GB.
Experiments are conducted with the type system (h, g). Since
Type-WA¥* is a stochastic algorithm, the reported coverage
(i.e., the number of instances solved in the time and memory
limits) for Type-WA* is averaged over 5 runs.

We implemented Type-WA* in the Fast Downward planner
[Helmert, 20061, and validated plans using VAL [Howey et
al., 2004]. To maintain integer f values, we round down the
weighted heuristic value in experiments that use fractional w,
fw(n) = g(n)+|w - h(n)|. We run experiments on an AMD
Ryzen Threadripper 2990WX.

4.1 Performance on Blocksworld Instances

We consider a set of 100 random instances of the 4-operator
Blocksworld problem with 15 blocks. Figure 2a (Figure
2b) compares the search time (expanded nodes) of WA* and
Type-WA* for w = 2 using h”M . Points under the diagonal
correspond to problems that were solved faster using Type-
WA* and vice versa. For problems that were relatively easy
for WA*, there is no significant difference with and with-
out exploration. However, for problems that were relatively

hard for WA* (e.g., problems that took more than 10 sec-
onds), Type-WA* significantly outperforms WA* and man-
ages to reduce the solution time and number of node expan-
sions by up to several order of magnitudes. Specifically, while
WA* only solved 87 instances in the time limit, Type-WA*
solved an average of 99.8 instances. In experiments with
a lower weight of 1.5, WA* solved only 74 instances while
Type-WA* solved 92 instances. In experiments with a higher
weight, w = 3, WA* solved 98 instances while Type-WA*
solved all 100 instances. While Figures 2a and 2b are based
on a single run of Type-WA*, repeated runs yielded similar
trends. The reported coverage is averaged over five runs.

h™¢ was found to be more effective for this problem, so we
experimented with smaller weights: w € {1.3,1.5,2}. Fig-
ure 2c compares the solution time for w = 1.5 and shows a
similar pattern: the harder instances are solved faster with
Type-WA*, including 7 instances that were not solved by
WA*. Detailed results for h“™ and h’“ appear in Appendix
A3. We note that results with A are omitted, since all meth-
ods performed poorly when using this heuristic.

4.2 Performance on NoMystery Instances

Next, we consider a set of 100 random instances of NoMys-
tery with 14 packages and 14 locations. Figure 3a compares
WA* and Type-WA* for w = 2 using h™S. Similar to
Blocksworld, Type-WA* solves 7 problems WA* could not,
and solves the hardest instances significantly faster.
Typically, increasing w tends to make problems easier for
WA* at the cost of a weaker suboptimality bound. However,
in this domain, we find that increasing w actually makes the
problems harder for WA*. Figure 3b shows the results for the

3 All appendices appear in Cohen ef al. [2021].
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hl\/[S hL]M hLC
Domain WA* TWA* | WA* TWA* | WA* TWA*
barman (14) 3 6.0 3 6.0 0 3.0

cavediving (20) 7 7.0 7 7.8 3 3.0
childsnack (20) 0 44 0 3.8 0 5.0

citycar (20) 15 18.2 13 19.6 0 0.0
floortile (20) 6 52 2 2.0 12 14.6
ged (20) 20 20.0 15 17.4 19 19.8
hiking (20) 20 20.0 18 19.6 13 14.2
maintenance (5) 5.0 5 5.0 5 5.0
openstacks (20) 2.0 3 1.0 3 2.0
parking (20) 1 12.4 9 9.0 16 15.6

5

3

3

tetris (17) 7 7.0 12 17.0 8 8.4

tidybot (20) 7 15.8 17 20.0 16 15.0

transport (20) 7 13.8 9 8.0 8 8.4

visitall (20) 6 9.0 20 20.0 13 12.8
0

agricola (20) 20.0 0 20.0 0 2.6
caldera (20) 10 16.6 16 20.0 0 0.0
data-net. (20) 11 18.0 13 18.0 13 17.6
nurikabe (20) 11 14.0 16 17.8 0 0.0
organic. (20) 7 7.0 7 7.0 7 7.0
petri-net. (20) 4 3.0 2 2.0 12 12.0
settlers (20) 8 11.8 13 13.0 0 0.0
snake (20) 11 14.8 14 15.8 7 9.2
spider (20) 11 12.0 19 17.2 12 12.4
termes (20) 15 12.0 12 14.2 8 12.0
Total (456) \ 207  275.0 \ 245  301.2 \ 175  199.6

Table 1: Number of solved instances in IPC domains for w = 3.

higher weight w = 3. Now, we find 51 instances that could
not be solved by WA* in the time and memory limit. Interest-
ingly, the increase in weight does not have a negative impact
on Type-WA*’s coverage, as it still solves all 100 instances.
Figure 3c provides a detailed report on the number of prob-
lems solved by WA* and Type-WA* for different weights and
heuristic functions (omitting h*“ which performed poorly on
this domain). While increasing the weight seems to have
a very negative impact on WA*, it does not similarly affect
Type-WA*, which solves all 100 instances in all settings.

Wilt and Ruml [2012] analyzed WA* in domain-specific
heuristic search and showed that WA* performance can de-
teriorate when increasing w. This is because increasing w
makes the search increasingly greedy (i.e., increasingly based
on the heuristic h). As such, if h suffers from large UHRs,
increasing w can lead to degraded performance [Wilt and
Ruml, 2012]. While previous work [Valenzano et al., 2014;
Xie et al., 2014; Cohen and Beck, 2018] has shown that ex-
ploration can alleviate this issue when used with GBFS, our
work suggests that by augmenting WA* with exploration in
the focal list, we can successfully escape large UHRs while
still maintaining w-admissibility.

4.3 Performance on IPC domains

We now evaluate our approach using problem instances from
the International Planning Competition (IPC). We consider
all the instances from the optimal track in IPC’18 and IPC’ 14
and compare the performance of WA* and Type-WA*. Ta-
ble 1 shows the coverage for w = 3 when using the three
heuristics: hpss, hpa, and hpco. Recall that the coverage
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Figure 4: Coverage over time for Type-WA* (dashed lines) and WA*
(solid line) on IPC problems.

for Type-WA¥* is averaged over five runs. We can see that, in
total, Type-WA* achieves significantly higher coverage com-
pared to WA* for each of the heuristics. Furthermore, there
are some domains in which Type-WA* particularly outper-
forms WA* (e.g., agricola and tidybot for h*).

Figure 4 compares the coverage of WA* (solid line) and
Type-WA* (dashed line) over time. The figure shows that
in terms of coverage, Type-WA* dominates WA* at all time
points with all three heuristics. We note that the performance
pattern exhibited by h** is due to the typically longer heuris-
tic computation time that we limit to 100 seconds.

Results for Different w

We analyzed the coverage for hM* with w € {2,3,10}.
Type-WA* significantly improved the coverage for all
weights and solved, on average, 60.2 more instances for
w = 2, 68 more instances for w = 3, and 70.8 more instances
for w = 10. A per-domain analysis appears in Appendix C.

Solution Cost and Exploration

To evaluate the impact of exploration on actual solution cost,
we normalized the cost of each solution found using the low-
est cost solution found by any of the configurations (i.e.,
C éCbESt, where C' is the cost of the obtained solution and
CPest is the lowest cost solution found). Table 2 shows the av-
erage normalized cost for WA* and Type-WA* with h™* for
w € {2,3,10}. Since the normalized cost is averaged only
over solved problems, we also report the number of solved
problems. The results are aggregated over all domains, how-
ever per-domain results appear in Appendix D.

The table shows that while Type-WA* solved a signifi-
cantly higher number of problem instances, the solutions tend
to have higher cost (though the suboptimality bound is still
satisfied). These results suggest that Type-WA* makes use
of the allowed suboptimality in order to solve more prob-
lems in the time limit. To further test this hypothesis, we ran
Type-WA* with w = 10, while using a second lower weight,

WA*  TWA* | WA* TWA* | WA* TWA*
Cost 1.01 1.12 1.03 1.24 | 1.10 1.68
# Solved 196 256.2 207 275.0 227 297.8

Table 2: Normalized cost and # of solved instances on IPC domains.
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w = 10
WA* TWA* R-TWA*
Cost 1.10 1.68 1.14
# Solved 227 297.8 264.8

Table 3: Normalized cost and # of solved instances for IPC domains.

Type-WA* (w = 2)

Type-WA* (w = 10)

Figure 5: # of expanded nodes per type during exploration steps.

w = 2, to construct the focal list.* The results are reported
in Table 3, where, R-TWA* denotes Type-WA* with an open
list ordered by f(s) = g(s) + 10 - h(s) and a restricted focal
list that only contains nodes with f(s) < 2- f,,in. We can see
that restricting the exploration leads to a lower cost compared
to standard Type-WA*, though fewer problems are solved.
Note that R-TWA* still solved significantly more problems
than WA*, while only incurring a minor increase in cost.

To account for this effect, we analyzed the nodes expanded
by Type-WA* for w = 2 vs. w = 10, on a IPC’ 14 floortile
instance when using 2. Figure 5 shows heatmaps of the
number of nodes expanded by just the exploration steps for
each (h, g) type during the first 50,000 expansions. We see
that increasing w leads to a larger variation in explored types.
This helps explain the gain in coverage as exploring more
types may overcome UHRs and help find solutions faster. It
also explains the decrease in solution quality, since the ad-
ditional types being explored often have higher g-cost and
thus lead to lower quality solutions. Note that R-TWA* with
w = 10 and w = 2 exhibits similar exploration patterns to
Type-WA* with w = 2, which accounts for the lower cover-
age and higher solution quality.

Results for Pure Type-based Focal Exploration

We also analyzed the performance of a search that uses only
type-based focal exploration and we report the results in Ap-
pendix E. We find that pure type-based focal exploration
performs well and even outperforms WA* in some settings.
Still, Type-WA* significantly outperforms both WA* and
pure type-based focal exploration.

5 Discussion and Future Work

These experiments demonstrate that WA* can struggle due to
UHRs, and in some IPC domains like NoMystery, we see the
previously reported behaviour where a higher weight leads to

*Type-WA* is W-admissible where W = max(w, ).
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worse performance [Wilt and Ruml, 2012]. We note that this
phenomenon may also negatively affect anytime algorithms
that use WA* with decreasing weights (e.g., RWA* [Richter
et al., 2010] and the LAMA planner [Richter and Westphal,
2010]). Our analysis also shows that Type-WA* better han-
dles UHRs while still satisfying suboptimality bounds, and
did not lead to significant degradation in performance due to
higher weights. This suggests that Type-WA* may be a more
robust choice in the context of such anytime algorithms. A
detailed investigation of the empirical impact of using explo-
ration in anytime planning is a direction for future work.

Our results suggest that Type-WA* appears to be exploit-
ing the suboptimality bound to find solutions faster. We also
found that restricting the focal list used for exploration can ef-
fectively trade-off solution quality with coverage. It is there-
fore interesting to investigate methods that dynamically adapt
the level of exploration through the size of the focal list to bet-
ter manage this trade-off. For example, we can try to extend
the bound over time, thereby seeking higher quality solutions
quickly if possible, before exploring nodes that are likely to
lead to lower quality solutions if progress is not made.

Our approach for incorporating type-based exploration into
WA* through the focal list can easily be extended to addi-
tional exploration techniques and other bounded suboptimal
search algorithms. Further investigating this idea when us-
ing (potentially inadmissible) heuristics to sort the focal list
may be beneficial, since the search is likely to be sensitive to
UHRs induced by these heuristics.

Currently, Type-WA* supports any admissible heuristic in-
cluding inconsistent heuristics, e.g., hEC . Previous work
on bounded suboptimal planning with consistent heuristics
showed that the number of re-expansions can be bounded
[Narayanan et al., 2015], or even eliminated [Likhachev et
al., 2003; Chen and Sturtevant, 2019], without violating w-
admissibility. Investigating whether we can adapt Type-WA*
to bound the number of re-expansions when used with a con-
sistent heuristic is an interesting direction for future work.

6 Conclusion

In this work, we presented the first bounded suboptimal plan-
ning algorithm that incorporates random exploration in the
search. Our approach, Type-WA¥*, augments WA* with type-
based exploration in the focal list, yielding solutions that
satisfy the theoretical bound of WA*. We perform exten-
sive empirical analysis across different domains, heuristics,
and weights. We show that Type-WA* achieves significantly
higher coverage than WA* and is less sensitive to UHRs. We
provide insight into the impact of exploration and the runtime
vs. solution cost trade-off. Our work demonstrates the poten-
tial of using exploration in bounded suboptimal planning and
identifies several promising directions for future work.
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