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Abstract
Polynomial-time heuristic functions for planning
are commonplace since 20 years. But polynomial-
time in which input? Almost all existing ap-
proaches are based on a grounded task represen-
tation, not on the actual PDDL input which is ex-
ponentially smaller. This limits practical applica-
bility to cases where the grounded representation
is “small enough”. Previous attempts to tackle this
problem for the delete relaxation leveraged symme-
tries to reduce the blow-up. Here we take a more
radical approach, applying an additional relaxation
to obtain a heuristic function that runs in time poly-
nomial in the size of the PDDL input. Our relax-
ation splits the predicates into smaller predicates
of fixed arity K. We show that computing a re-
laxed plan is still NP-hard (in PDDL input size) for
K ≥ 2, but is polynomial-time for K = 1. We im-
plement a heuristic function for K = 1 and show
that it can improve the state of the art on bench-
marks whose grounded representation is large.

1 Introduction
Heuristic search is a dominant paradigm for effective plan-
ning (e. g. [Hoffmann and Nebel, 2001; Helmert and Domsh-
lak, 2009; Richter and Westphal, 2010; Seipp, 2019]).
Polynomial-time computable heuristic functions are an es-
sential ingredient to this success, and have been extensively
investigated since 20 years. A particularly important tech-
nique is the delete relaxation [Bonet and Geffner, 2001],
which ignores negative effects (in a propositional encoding),
essentially pretending that state variables accumulate their
values rather than switching between them. Most state-of-
the-art satisficing planning systems (which do not prove op-
timality of the solution returned) still use the delete relax-
ation or extensions thereof today (e. g. [Helmert et al., 2011;
Keyder et al., 2014; Domshlak et al., 2015; Cenamor et al.,
2016]).

Virtually all of these approaches however suffer from
the fact that “polynomial-time” is relative to the size of a
grounded task representation. This is in contrast to the actual

PDDL input of the planning system, which is lifted, specify-
ing predicates and action schemas parameterized with vari-
ables ranging over a finite universe of objects. The grounded
representation size is exponential in the size of that input,
specifically in the arity of the predicates and action schemas.
This is not a practical problem when the grounded represen-
tation is small enough to be feasible. Yet in a variety of
application scenarios that is not so (e. g. [Hoffmann et al.,
2006; Koller and Hoffmann, 2010; Koller and Petrick, 2011;
Haslum, 2011; Matloob and Soutchanski, 2016]).

Lifted planning has always been considered (e. g. [Pen-
berthy and Weld, 1992; Younes and Simmons, 2003]), and
indeed was dominant in the early 90s [Russell and Norvig,
1995]. There has been little progress however on transferring
the wealth of known heuristic functions to the lifted setting.
The only previous attempt considered the delete relaxation
and leveraged symmetries to reduce the grounding blow-up
in relaxed planning [Ridder and Fox, 2014]. Later works de-
vised lifted domain analyses to reduce task size [Röger et al.,
2018; Sievers et al., 2019; Fišer, 2020].

Here we take a more radical approach, applying an ad-
ditional relaxation to obtain a heuristic that runs in time
polynomial in the size of the PDDL input. Our relaxation
splits the predicates P (x1, . . . , xn) in the PDDL input task
Π into smaller predicates Pi(xi1 , . . . , xiK ) of arity K, where
{i1, . . . , iK} ⊆ {1, . . . , n} and |{i1, . . . , iK}| = K. Specifi-
cally, every occurrence of P is replaced by the conjunction of
Pi for all size-K subsets of P ’s parameters. The size of the
resulting lifted planning task Π|K is exponential only in K,
hence polynomial for fixed K. This is a relaxation in conjunc-
tion with the delete relaxation, in the sense that every plan for
Π is a delete-relaxed plan for Π|K . We show that computing
a delete-relaxed plan for Π|K is still NP-hard (in PDDL in-
put size) for K ≥ 2, but is polynomial-time for K = 1. We
implement a heuristic function for K = 1, and we devise an
optimization that leverages some K = 2 information from
static predicates.

We implement our heuristic on top of the Power Lifted
Planner recently introduced by Corrêa et al. [2020], which
grounds predicates and actions lazily during the forward
search process. Standard International Planning Competition
(IPC) benchmarks are not suited for evaluation as they are
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designed to challenge search rather than the grounding pro-
cess. The only benchmarks currently available to challenge
grounding are the ones by Areces et al. [2014], which con-
tain action schemas of large arity (their work was about split-
ting large action schemas into several smaller ones). Cor-
rea et al. used these benchmarks. Here we go beyond this
by exploring different reasons for being hard-to-ground: (a)
large action-schema arity; (b) large predicate arity, which
entails large action-schema arity but may have other conse-
quences; (c) large object universe, which can be problematic
even for small action/predicate arity. For (a) we use Areces
et al.’s benchmarks; for (b) we generalize two IPC domains
(Visitall and Childsnack) that have a naturally scalable di-
mensionality parameter; for (c) we generate larger instances
of some IPC benchmark domains in a spirit similar to one
experiment reported about by Ridder and Fox [2014]. For
both (b) and (c), we take care to generate huge instances
that are however within (and just beyond) reach of current
lifted planners, in a manner similar to typical benchmark de-
sign in the IPC [Long and Fox, 2003; Hoffmann et al., 2006;
Gerevini et al., 2009; Coles et al., 2012; Vallati et al., 2018;
Torralba et al., 2021]. The design of this benchmark suite
tailored to the evaluation of lifted planning is another con-
tribution of our work. Our experiments show that our new
polynomial-time lifted heuristic functions can improve the
state of the art on these benchmarks, in particular through
combination with goal counting.

2 Background
A lifted planning task is a tuple Π = (P,O,A, I,G) whereP
is a set of (first-order) predicates,A is a set of action schemas,
O is a set of objects, I is the initial state, and G is the goal.
Predicates P ∈ P have a tuple of parameter variables XP ,
and we write P (x1, . . . , x|XP |) whenever we want to explic-
itly declare them. The arity of P is |XP |. We denote in-
dividual parameters with x, y, z ∈ XP . We can instantiate a
predicate, i.e., replace the set of parameters by objects fromO
or other variables by applying a substitution. If all variables
have been replaced by objects, then P is a ground predicate
or atom. The set of ground atoms of P , resulting from all
possible substitutions of variables in XP by objects in O, is
denoted PO. By PO we denote the set of all ground atoms in
the task. The initial state and goal are sets of ground atoms.

An action schema a = (Xa, pre(a), add(a), del(a)) is a
tuple with a set of parameter variables Xa, as well as pre-
conditions, add list, and delete list, all of which are sets of
predicates in P instantiated by substituting each of their vari-
ables by some element in Xa ∪ O. As with predicates, the
arity of a is |Xa|, and we can instantiate action schemas by
replacing each x ∈ Xa by some o ∈ O to obtain ground ac-
tions. The set of ground actions (or actions for short) is AO.
Note that, as the arity of predicates and action schemas is not
bounded, PO and AO are of size exponential in the size of
Π.

A ground action a is applicable in a state s if pre(a) ⊆
s. The resulting state of applying a on s is (s \ del(a)) ∪
add(a). A sequence of actions a1, . . . , an is applicable in
a state s if there exists a sequence of states s0, . . . , sn such

that s0 = s, and si is the result of applying ai in si−1 for
all i ∈ [1, k]. We deal with the problem of finding a plan for
an arbitrary planning task Π, that is, a sequence of ground
actions applicable in I and resulting in some sn such that
G ⊆ sn.

The delete-relaxation consists of ignoring the delete list
del(a) of all action schemas. The FF heuristic [Hoffmann
and Nebel, 2001] estimates the distance from any state s as
the length of a relaxed plan, which can be computed in poly-
nomial time in the size of the ground task.

Previous work by Corrêa et al. [2020] has shown that
evaluating whether there exists an instantiation of an action
schema that is applicable on a state is closely connected to
the problem of resolving conjunctive queries in database the-
ory [Ullman, 1989]. A database DB = (D,R) has a domain
D and a set of relationsR over D, such that each Ri ∈ R is a
set Ri ⊆ Dar(Ri) where ar(Ri) is the arity of Ri. Following
planning nomenclature, sDB =

⋃
Ri∈RRi is a state over a set

of predicates PDB = {Pi | Ri ∈ R} and objects ODB = D.

A conjunctive query Q over a database DB consists of a
set of variables XQ and set of predicates Pi ∈ R instantiated
with objects in D and/or variables in XQ. Q corresponds to
the problem of finding a substitution of variables in XQ by
objects in D such that all atoms in the query belong to the
database. The preconditions of an action schema can be seen
as a conjunctive query that corresponds to finding which in-
stantiations of the action schema are applicable in sDB. Evalu-
ating conjunctive queries (hence, lifted successor generation)
is NP-hard in general [Chandra and Merlin, 1977], but it is
tractable for acyclic conjunctive queries [Yannakakis, 1981].
We say that an action schema has acyclic preconditions if the
corresponding conjunctive query is acyclic. For a detailed
introduction, we refer the reader to the work by Corrêa et
al. [2020].

As running example we will use an extension of the Vis-
itall IPC domain, where an agent must visit all tiles in a 2D
grid. We generalize this to d-dimensional hypercube grids
with side length l, and we permit goals requiring to visit a
subset of the locations. Figure 1 sketches the encoding of our
running example for d = 3.

The positions in the hypercube are tuples of indices in
Nl = {i ∈ N | 1 ≤ i ≤ l}. The set of all positions is
Nd

l . Similar to the original domain, the player is at some po-
sition in the beginning and can move to adjacent positions.
Note that we specify a separate move- action schema for each
dimension, so that we need to encode adjacency only over
the numbers {1, . . . , l} (next predicate), not over positions
(number tuples) as in the standard benchmark. Furthermore,
instead of requiring the player to visit all positions, the re-
quirement is to visit a subset of positions G ⊆ Nd

l . This ex-
ample’s grounded representation is exponential in d (which
equals maximal predicate arity) as it needs to enumerate all
possible positions so |PO| ≥ ld. The same blowup occurs in
the lifted task in case all positions need to be visited, i.e. if
G = Nd

l . Yet if the number of goal positions is polynomial in
d, then the ground task is exponentially larger than the lifted
task.
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P={at(x, y, z), visited(x, y, z), next(x, x′)}
O={1, . . . , l}
I={at(1, 1, 1)} ∪ {next(i, j) | 1 ≤ i, j ≤ l, |i− j| = 1}
G={visited(3, 2, 4)}
A={move-x(x, y, z, x′), move-y(x, y, z, y′), move-z(x, y, z, z′)}

where move-x(x, y, z, x′):
pre : {at(x, y, z), next(x, x′)}
add : {at(x′, y, z), visited(x′, y, z)}
del : {at(x, y, z)}

Figure 1: Running example: d-dimensional Visitall with d = 3.

3 Complexity of Lifted Relaxed Planning
It is well known that a relaxed plan can be computed in poly-
nomial time in the size of the ground task [Bonet and Geffner,
2001; Hoffmann and Nebel, 2001]. In lifted planning, how-
ever, there are (at least) two sources of hardness:

1. The number of ground actions |AO| is exponential in
lifted task size. This might incur exponential effort in
determining applicable actions, a key step underlying all
known relaxed planning algorithms.

2. The number of ground atoms |PO| also is exponential
in lifted task size. Hence both trivial upper bounds on
relaxed plan length – number of ground atoms, number
of ground actions – are not polynomial in this setting.

Indeed, delete-relaxed planning on lifted planning tasks
was shown to be EXPTIME-complete [Erol et al., 1995]. To
better understand the sources of complexity at play here, we
consider two further restrictions, and show that the problem
is still hard (1) even if the predicate arity is restricted to be
constant and (2) even if checking action applicability can be
performed efficiently.

The first result follows directly from results of recent work
on the problem of lifted successor generation [Corrêa et al.,
2020], which showed an equivalence to answering conjunc-
tive queries, viewing action-schema preconditions as queries
over the state. Answering such a query is hard if it is cyclic in
a certain sense. We can use this insight for a simple reduction
from query answering to planning, in which a relaxed plan
exists iff an applicable action exists in the initial state iff the
answer to a query is true.
Theorem 1. It is NP-hard to decide relaxed plan existence in
lifted planning, even if predicate arity is constant.

Proof. We use a reduction from conjunctive queries, which
are NP-hard even with 2-arity predicates [Chandra and Mer-
lin, 1977]. Let Q be a conjunctive query over a database
DB. Consider a task ΠQ = (P,O,A, I,G) where P =
PDB ∪ {goal} (goal is a 0-arity predicate), I = sDB, G =
{goal}, and A = {a} with Xa = XQ, pre(a) = Q,
add(a) = {goal}. Then ΠQ is (relaxed) solvable if and only
if some instantiation of a is applicable on I: i.e., if the con-
junctive query Q is not empty.

For our second result, we encode a counter with n binary
variables, where the plan is to count from 0 to 2n − 1. No-

P={at1(x), at2(x), at3(x), v1(x), v2(x), v3(x), n1(x), n2(x)}
O={1, . . . , l}
I={at1(1), at2(1), at3(1)} ∪ {n1(i), n2(j) | i, j ∈ [1, l]}
G={v1(3), v2(2), v3(4)}
A={move-x(x, y, z, x′), move-y(x, y, z, y′), move-z(x, y, z, z′)}

where move-x(x, y, z, x′) :

pre : {at1(x), at2(y), at3(z), n1(x), n2(x′)}
add : {at1(x′), at2(y), at3(z), v1(x′), v2(y), v3(z)}
del : {at1(x), at2(y), at3(z)}

Figure 2: 1-ary (also: unary) relaxation for our running example.

tably, this can be done with extremely simple action schemas,
in particular ones with acyclic precondition queries, so that
this source of complexity is independent from the previous
one:

Theorem 2. There exist families of lifted planning tasks
{Π1,Π2, . . . } with acyclic action-schema preconditions
where delete-relaxed plans have exponential length.

Proof. We define Πn as (Pn,O,An, In,Gn) where O =
{o0, o1}, Pn = {P (x1, . . . , xn)}, In = {P (o0, . . . , o0)},
Gn = {P (o1, . . . , o1)}, and An = {a1, . . . , an}.
The action schemas are ai(x1, . . . , xi−1) for 1 ≤
i ≤ n (note that a1 has no parameters), with
pre(ai) = {P (x1, . . . , xi−1, o0, o1, . . . , o1)} and add(ai) =
{P (x1, . . . , xi−1, o1, o0, . . . , o0)}. Every relaxed plan has to
achieve 2n − 1 ground atoms, applying 2n − 1 actions.

4 K-ary Predicate Splitting
To simplify the computation of relaxed plans at a lifted level,
we apply a relaxation based on splitting each n-ary predi-
cate into several K-ary predicates where K < n is a param-
eter for our approach. For a given K, the splitting operation
(|K) replaces the predicate by

(
n
K

)
sub-predicates that cor-

respond to all possible combinations of K parameters. For
example, consider the predicate at(x, y, z) from our exam-
ple in Figure 1. Then, at|1 = {at1(x), at2(y), at3(z)} and
at|2 = {at1(x, y), at2(y, z), at3(x, z)}. The same operation
can be applied to ground atoms in the initial state or goal as
well as to action schemas by applying it to pre , add and del
(e.g. see Figure 2). We also define this operation over sets of
predicates, action schemas, etc, as the union of applying (|K)
to each individual in the set, e.g., P|K =

⋃
P∈P{P |K}.

Based on this splitting operation, we define the K-ary re-
laxation of a lifted planning task.

Definition 1 (K-ary Relaxation). Let Π = (P,O,A, I,G)
be a lifted planning task and K be a constant. We define the
K-ary relaxed task Π|K as a task (P|K ,O,A|K , I|K ,G|K).

Obviously, plans for Π|K are not necessarily plans for Π,
so this is an approximation. Observe that, together with the
delete relaxation, it is an over-approximation and thus indeed
constitutes a relaxation:
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Theorem 3. Let Π = (P,O,A, I,G) be a lifted planning
task, K be a constant, and Π|K = (P|K ,O,A|K , I|K ,G|K)
be the K-ary relaxed task. Then every plan for Π is a delete-
relaxed plan for Π|K .

Proof. Every plan for Π is a delete-relaxed plan for Π, so
it suffices to show that delete-relaxed plans are preserved in
Π|K . Let a1, . . . , an be a delete-relaxed plan for Π, let I =
s0, s1, . . . , sn be the (relaxed) states traversed by that plan in
Π, and let I|K = s′0, s

′
1, . . . , s

′
n be the states traversed by that

plan in Π|K . We show, by induction over i, that (1) ai|K is
applicable in s′i−1 and (2) s′i = si|K . For the base case i = 0,
(1) is empty and (2) holds by construction. For the inductive
case, say the claim holds for i − 1. Then s′i−1 = si−1|K , so
(1) ai|K is applicable in s′i−1 by construction of pre(ai|K).
Regarding (2),

si|K= [si−1 ∪ add(ai)]|K [Def. of action application]
= [si−1]|K ∪ [add(ai)]|K [Prop. of set projection]
= s′i−1 ∪ [add(ai)]|K [Induction Hypothesis]
= s′i−1 ∪ add(ai|K) [Def. of a|K]
= s′i [Def. of action application]

Importantly, the same is not true without the delete relax-
ation: we do not have a guarantee that every plan for Π is
a (non-delete-relaxed) plan for Π|K . This is because, when
deleting P |K in Π|K , we may delete split atoms associated
also with other instantiations of the same predicate. For ex-
ample, in a state that contains both P (a, b) and P (a, c), an
action that deletes P (a, b) in Π deletes P1(a) in Π|1, so that
the outcome state in Π|1 does not contain P (a, c)|1.1

Regarding the complexity of delete-relaxed planning in
Π|K , all predicates in Π|K have a bounded arity of at most
K. So the length of a relaxed plan for Π|K is polynomial in
the size of Π and the complexity source identified by Theo-
rem 2 disappears. The complexity source identified by The-
orem 1 remains valid though for K ≥ 2, as answering con-
junctive queries is NP-hard even in this case. Indeed, the
action schemas resulting from 2-ary predicate splitting have
cyclic preconditions. So deciding whether a relaxed plan for
Π|K exists remains hard in general. Here we exploit the case
K = 1, unary predicate splitting, where as we shall see next
relaxed plans can be computed in polynomial time.

5 Unary Relaxed Planning
Even though the number of ground actions in the unary-split
task Π|1 is still exponential in the size of Π, delete-relaxed
plans for Π|1 can be computed in polynomial time.

The unary relaxation heuristic (hur, Alg. 1) accomplishes
this, in a manner analogous to the computation of relaxed
plans in ground tasks [Hoffmann and Nebel, 2001]. It con-
structs a best-supporter function that maps each ground atom
in Π|1 to a ground action. Starting at the initial state, the al-
gorithm iteratively computes a larger set of reachable atoms

1Higher-arity predicates can be compiled into binary predicates
equivalently, i. e., without information loss. This compilation how-
ever requires the introduction of an ID (a new object) for every
ground atom, and is thus of size exponential in the lifted encoding.

Algorithm 1: Unary Relaxed Plan Computation (hur)
Input: Planning Task: Π = (P,O,A, I,G)
Output: Relaxed Plan for Π|1 or “Unsolvable”

1 F0 ← I|1
2 i← 0
3 do
4 i← i + 1
5 Fi ← Fi−1

6 foreach P (o) ∈ P|O1 \ Fi−1 do
7 bs[P (o)]←

GetBestSupporter(Π, P (o), Fi−1)
8 if bs[P (o)] 6= None then
9 Fi ← Fi ∪ {P (o)}

10 while G|1 6⊆ Fi ∧ Fi 6= Fi−1

11 if G|1 ⊆ Fi then
12 return ExtractRelaxedPlan(Π, bs)

13 else return “Unsolvable”

14 function GetBestSupporter(Π, P(o), F):
15 foreach a(x1, . . . , xn) ∈ A|1, i ∈ {1, . . . , n}, s.t.

P (xi) ∈ add(a) do
/* ∃o1, . . . , on ∈ O s.t.

oi = o ∧ pre(a(o1, . . . , on)) ⊆ F */
16 foreach j ∈ {1, . . . , n} do
17 Oj ← {o} if j = i else O
18 foreach Q(xj) ∈ pre(a) do
19 Oj ← Oj ∩ {o′ | Q(o′) ∈ F}

20 if ∀j∈[1,n]Oj 6= ∅ then
21 return any a(o1, . . . , on) s.t. oj ∈ Oj

22 return None

23 function ExtractRelaxedPlan(Π, bs):
24 queue ← G|1 \ I|1
25 plan← 〈〉
26 while queue 6= ∅ do
27 f ← queue .pop()
28 if bs[f ] 6∈ plan then
29 plan.append(bs[f ])
30 queue ← queue ∪ pre(bs[f ]) \ I|1

31 return reverse(plan)

Fi, enabling in each iteration the preconditions of best sup-
porter actions for new atoms. All atoms in the ith layer, Fi,
are reachable by applying an action whose preconditions have
been reached in the previous layers. In other words, among
all possible supporters, we choose one whose precondition
has minimal hmax value in Π|1 [Bonet and Geffner, 2001].

The key to polynomial-time behavior is that, in contrast to
the algorithms commonly used on ground tasks, we do not
enumerate applicable ground actions in each step. Instead,
we merely keep track of a best supporter for each ground
atom. There are polynomially many ground atoms in Π|1,
and it turns out we can identify best supporters efficiently.
Namely, the function GetBestSupporter iterates over
action schemas instead of ground actions. We consider ac-
tion schemas a(x1, . . . , xn) ∈ A where P (xi) ∈ add(a).
Then, we check for each parameter j 6= i separately with
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which objects can xj be instantiated such that the action pre-
conditions are contained in F . The check in line 20 eval-
uates to true iff ∃o1, . . . , oj−1, oj+1, . . . , on ∈ O such that
pre(a(o1, . . . , oi−1, o, oi+1, . . . , on)) ⊆ F , i. e., iff there ex-
ists an instantiation of a that achieves the atom P (o) and
whose precondition is contained in F . This holds because,
all preconditions being unary, the objects able to instantiate
each parameter can be checked independently.

Once the best supporters have been chosen, relaxed plan
extraction (ExtractRelaxedPlan) can easily be done in
polynomial time. We process atoms one by one, starting with
the goal atoms, inserting best-supporter actions into the re-
laxed plan and adding their preconditions to the atoms queue.

Theorem 4. Algorithm 1 runs in time polynomial in the size
of Π, and returns a delete-relaxed plan for Π|1 iff such a plan
exists.

Proof. If Algorithm 1 returns a plan, then it is a valid relaxed
plan for Π|1. This plan achieves all goals, as it contains bs[f ]
for all f ∈ G|1, and f ∈ add(bs[f ]). It is applicable in I as,
for every action included in the plan, a supporting action will
be inserted for every precondition not already true in I.

If the algorithm terminates without finding a relaxed plan
(i.e., the main loop ends due to Fi = Fi−1) then the last Fi

contains all reachable ground atoms, so some goal atom is
unreachable from I, meaning that no plan exists.

The algorithm runs in time polynomial in the size of Π.
Those “for each” loops in Algorithm 1 that iterate over el-
ements of the lifted task Π obviously perform a polynomial
number of iterations. The same is true for all other loops be-
cause the number of ground atoms |P|O1 | is polynomial in |Π|.
This is immediate for the loop in line 6, as it simply iterates
over the elements in P|O1 . Similarly, the main do-while loop
in line 10 has at most one iteration per ground atom because in
each iteration at least one new ground atom is added to Fi (or
else the loop stops immediately). Regarding the relaxed plan
extraction, the loop in line 26 iterates over the elements in the
goal, G|1 and the preconditions of all selected best supporters.
Note that there is at most one supporter for each ground atom
in P|O1 , so at most polynomially many atoms are inserted in
the queue.

Our implementation of Algorithm 1 has an additional tie-
breaking for the choice in line 21, selecting the object in Oj

whose preconditions Q(o) for all Q(Xj) ∈ pre(a) where in-
serted first (i.e., achieved in an earlier layer). The intuition
is that the preconditions of those best supporters are easier to
achieve from the initial state, leading to better relaxed plans.
Note that, as in the FF heuristic, the relaxed plans are not
guaranted to be optimal, therefore hur is not an admissible
heuristic.

In our running example, all (unary) atoms are
reachable in layer F1. The resulting relaxed plan is
move-x(1, 1, 1, 3), move-y(1, 1, 1, 2), move-z(1, 1, 1, 4), so
that hur(I) = 3. Note that this is a valid relaxed plan for the
unary task from Figure 2.

6 Disambiguation with Static Predicates
We next devise an optimization leveraging static predicates to
obtain a better heuristic function. To motivate this, consider
again the running example in Figures 1 and 2. Under unary
relaxation, the heuristic value is at most 3 · |G|1|, regardless
of which positions need to be visited in the goal, because we
can move from any coordinate to any other coordinate (e.g.,
move-x(1, 1, 1, 3) is applicable in the initial state, going from
x-coordinate 1 to 3 in a single step). This happens because
we split not only the at predicate, but also the next predicate
used to determine which numbers are adjacent to each other.

Ideally, we would like to at least obtain something resem-
bling Manhattan distance, still separating the dimensions (by
splitting the at and visited predicates), but capturing move-
ments within each dimension correctly. To achieve the latter,
we must preserve the adjacency information in next . It turns
out that this is indeed possible while still keeping the com-
putational cost at bay, i. e., while preserving independence
across the parameters of each action schema.

We modify the GetBestSupporter function in Algo-
rithm 1, through a refined version of object collection at each
position j in the second foreach loop. Say we need to sup-
port the atom P (o), with action schema a(x1, . . . , xn) and
i ∈ {1, . . . , n} such that P (xi) ∈ add(a). Our modification
replaces the full set of objects O assigned to Oj in line 17
by a more restricted set Oa(xi=o),j . That set contains only
those objects which, when xi is instantiated with o, can in-
stantiate xj while satisfying the static predicates. Precisely,
let Pst be the set of static predicates, i.e., Pst ∈ P such that
Pst 6∈ add(a) for any a ∈ A. For any a ∈ A and xi, xj ∈
Xa, we denote the set of static preconditions of a and
pairs of subindices that correspond to xi and xj in the pre-
condition by prest(a, xi, xj). Formally, prest(a, xi, xj) =
{〈Pst , k, l〉 | Pst ∈ Pst , Pst(x

′
1, . . . , x

′
m) ∈ pre(a), x′k =

xi, x
′
l = xj}. In our example, prest(move-x, x, x

′) =
{〈next , 1, 2〉} as there is a precondition with the static pred-
icate next having x as first and x′ as second argument.
Then, Oa(xi=o),j :=

⋂
〈Pst ,k,l〉∈prest (a,xi,xj)

{o′ ∈ O |
∃o1, . . . , om s.t. Pst(o1, . . . , om) ∈ I, ok = o, ol = o′}. We
denote the resulting heuristic function with hur-d.

For example, say we need to achieve at1(3), and consider
move-x(x, y, z, x′) with x′ = 3. In the previous version
of Algorithm 1, the set of objects associated with the first
argument j = 1 will be simply O, allowing to move to 3
from anywhere. In our refined algorithm, that object set is
{2, 4} due to the static precondition next(x, x′). The relaxed
plan for our running example then is move-x(1, 1, 1, 2),
move-x(2, 1, 1, 3), move-y(1, 1, 1, 2), move-z(1, 1, 1, 2),
move-z(1, 1, 2, 3), move-z(1, 1, 3, 4), resulting in heuristic
value hur-d(I) = 6.

Note that this is only a (tractable) approximation of the set
of instantiations valid according to the static predicates when
using predicate splitting with K = 2 for static predicates and
K = 1 for the rest. We are instantiating each parameter in-
dependently, and therefore the set of objects associated with
each parameter can be computed in polynomial time, at ex-
penses of admitting instantiations that would not satisfy the
static preconditions in the original problem or even within
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the K = 2 relaxation. Note further that one could apply
this disambiguation to non-static predicates as well. But that
would require to re-compute the set of objects, not only for
every state during search, but also at each iteration of the al-
gorithm, for each layer Fi. Restricting the disambiguation
to static predicates, in contrast, allows us to pre-compute the
sets of objects for each action schema, object, and parame-
ter position once before the search starts, with respect to I
instead of F .

7 Experiments
We implemented hur and the static disambiguation variant
hur-d on top of the Power Lifted (PWL) planner [Corrêa et
al., 2020], which uses Breadth First Search (BFS) and Greedy
Best-First Search (GBFS) with goal counting (hgc) [Fikes and
Nilsson, 1971]. Apart from GBFS with hur/hur-d, we also
consider a combination with goal counting, using our heuris-
tic for tie-breaking [Röger and Helmert, 2010] among nodes
with the same hgc value. We also compare against the other
existing lifted heuristic search planner, L-RPG [Ridder and
Fox, 2014]. For additional reference, we report results for
grounded planning, running Fast Downward’s (FD) [Helmert,
2006] GBFS with the hgc and hFF [Hoffmann, 2001] heuris-
tics. In all runs of PWL the successor generator based on Yan-
nakakis’ algorithm [Yannakakis, 1981] was selected. The ex-
periments were run on a cluster of machines with Intel Xeon
E5-2650 CPUs with a clock speed of 2.30GHz using the Lab
framework [Seipp et al., 2017]. Timeout and memory limits
were set to 30 minutes and 4GB respectively for all runs. All
source code, experimental results and benchmarks are pub-
licly available [Lauer et al., 2021].

7.1 Benchmark Design
We contribute a new benchmark set for lifted planning, ex-
ploring different reasons why a planning task may be hard
to ground: (a) large action-schema arity; (b) large predicate
arity, which entails large action-schema arity but may have
other consequences; and (c) large object universe, which can
be problematic even for small arity domains.

Our benchmarks of category (a) are simply the ones previ-
ously used to evaluate hard-to-ground planning [Areces et al.,
2014; Corrêa et al., 2020]. These consist of three domains:
Genome Edit Distance (GED) [Haslum, 2011], Organic Syn-
thesis [Masoumi et al., 2015] and Pipesworld-Tankage [Hoff-
mann et al., 2006]. We include GED here for historical rea-
sons only: the encodings supported by the PWL planner are
actually not that hard to ground, and Fast Downward’s pre-
process succeeds on all its instances.2

We design new benchmarks for categories (b) and (c). We
extend standard IPC domains, aiming for large instances that
are hard to ground, but with simple enough goals such that
some instances can be solved by current lifted planners. We
scale the instances by parameters controlling task size and
goal complexity, allowing us to observe how the performance
of different planners is affected.

2Other encodings of GED are harder to ground, but they use ad-
vanced PDDL features unsupported by PWL and our planner.
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(1) Large action schema arity
ged (156) 2 3 156 32585 1206 156 62 43 21 156 25 25 156 156

ged-spl (156) 2 2 156 4602 734 156 35 58 18 156 18 18 156 156
orgsy-alk (18) 2 16 15 24475 74 15 15 14 13 13 13 13 13 13
orgsy-mit (18) 2 31 2 2946 36 2 2 0 6 6 6 6 6 6
orgsy-org (20) 2 31 1 137784 806 1 1 0 0 0 0 0 0 0
pipeswrl (50) 3 12 16 119907 232 16 13 9 11 21 7 7 11 10

Sum (418) 346 346 128 122 69 352 69 69 342 341

(2a) Large predicate arity: Visitall
3d-clo-g1 (10) 3 4 7 140832 48386 7 7 2 8 8 10 10 10 10
3d-clo-g2 (10) 3 4 7 140832 48388 7 7 2 2 6 8 8 9 9
3d-clo-g3 (10) 3 4 7 140832 48390 7 7 2 1 7 2 1 9 9
3d-far-g1 (10) 3 4 7 140832 48386 7 7 2 0 0 1 10 1 10
3d-far-g2 (10) 3 4 7 140832 48388 7 7 2 0 0 2 5 2 7
3d-far-g3 (10) 3 4 7 140832 48390 7 7 1 0 0 1 4 2 6

4d-clo-g1 (10) 4 5 3 122005 33143 3 3 1 6 6 10 10 10 10
4d-clo-g2 (10) 4 5 3 122005 33145 3 3 1 3 8 9 5 10 10
4d-clo-g3 (10) 4 5 3 122005 33147 3 3 1 1 5 2 1 7 6
4d-far-g1 (10) 4 5 3 122005 33143 3 3 1 0 0 1 10 1 10
4d-far-g2 (10) 4 5 3 122005 33145 3 3 1 0 0 2 2 2 7
4d-far-g3 (10) 4 5 3 122005 33147 3 3 1 0 0 2 2 2 4

5d-clo-g1 (10) 5 6 2 175760 40546 2 2 0 9 9 10 10 10 10
5d-clo-g2 (10) 5 6 2 175760 40548 2 2 0 2 7 4 2 9 8
5d-clo-g3 (10) 5 6 2 175760 40550 2 2 0 1 8 3 4 10 9
5d-far-g1 (10) 5 6 2 175760 40546 2 2 0 0 0 2 10 2 10
5d-far-g2 (10) 5 6 2 175760 40548 2 2 0 0 0 2 5 2 6
5d-far-g3 (10) 5 6 2 175760 40550 2 2 0 0 0 1 2 2 6

Sum (180) 72 72 72 17 33 64 72 101 100 147

(2b) Large predicate arity: Childsnack
n1-g3 (12) 2 5 12 513 138 12 12 – 2 12 12 12 12 12
n1-g5 (12) 2 5 12 1930 218 5 12 – 0 3 4 2 12 12
n1-g7 (12) 2 5 12 5011 298 2 4 – 0 2 2 1 6 8

n2-g3 (12) 3 6 12 9758 159 5 7 – 1 3 5 5 11 12
n2-g5 (12) 3 6 12 74405 253 2 2 – 0 1 2 2 3 12
n2-g7 (12) 3 6 11 232344 332 0 2 – 0 0 0 0 1 1

n3-g3 (12) 4 8 12 65520 273 3 5 – 0 2 2 2 6 11
n3-g5 (12) 4 8 7 221398 364 0 1 – 0 0 0 0 1 6
n3-g7 (12) 4 8 3 259615 363 0 0 – 0 0 0 0 0 0

n4-g3 (12) 5 10 10 176161 819 0 4 – 0 0 3 3 5 10
n4-g5 (12) 5 10 1 376905 348 0 0 – 0 0 0 0 0 2
n4-g7 (12) 5 10 0 - - 0 0 – 0 0 0 0 0 0

Sum (144) 104 29 49 – 3 23 30 27 57 86

(3) Large object universe
blocks-g2 (10) 2 2 2 100000 50602 1 2 0 0 2 4 4 4 4
blocks-g3 (10) 2 2 2 100000 50602 0 0 0 0 0 2 2 2 2
blocks-g4 (10) 2 2 2 100000 50602 0 1 0 0 0 0 0 2 2
blocks-g5 (10) 2 2 2 100000 50602 0 0 0 0 0 0 0 0 0

logist-g1 (10) 2 4 2 1282377 2252 2 2 0 5 5 0 0 0 0
logist-g2 (10) 2 4 2 1284629 3379 2 2 0 0 5 0 0 0 0
logist-g3 (10) 2 4 2 1286881 4506 2 2 0 0 5 0 0 0 0
logist-g4 (10) 2 4 2 1289133 5633 2 2 0 0 4 0 0 0 0

rovers-g2 (10) 3 6 2 5316 2531 2 2 0 0 3 10 10 10 10
rovers-g4 (10) 3 6 1 4041 2006 1 1 0 0 1 10 3 10 3
rovers-g6 (10) 3 6 1 4983 2026 1 1 0 0 0 10 2 10 2
rovers-g8 (10) 3 6 1 3753 2965 1 1 0 0 0 8 1 8 1

Sum (120) 23 14 16 0 5 25 44 22 46 24

Table 1: Coverage results. |AO| and |PO| show average grounding
size for those instances that can be grounded (#ground).

For (b), we create new variants of Visitall and Childsnack,
which have a naturally scalable dimensionality parameter that
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controls predicate arity. The Visitall extension is our running
example. We create instances with d ∈ {3, 4, 5} dimensions.
For each of these cases we control the difficulty of instances
by changing the number of goal locations from 1 to 3 and their
relative position with respect to the starting location, close
or far. For each of these categories we create 10 instances
by scaling the size of the hypercube, starting at l = 6 and
increasing l in each instance by 2 (for d = 5), 4 (for d = 4),
or 6 (for d = 3) to reach hard instances in all categories.

In Childsnack one has to prepare sandwiches, where some
children may eat only certain kind of ingredients (e.g. gluten-
free) [Fuentetaja and de la Rosa, 2016]. The dimensional-
ity parameter n is the number of contents on each sandwich
(modeled as a predicate P (s, c1, . . . , cn)), which is normally
fixed but which we scale here. Each child has preferences,
e.g., allowing only tomatoes and salad. We create different
variants scaling the number of children (3, 5, and 7), which
is also the number of goals. In each category, we scale task
size by increasing the amount of contents available, as well
as more generous preferences for the children.

Finally, for (c) we include huge instances of IPC
Blocksworld, Logistics, and Rovers, keeping the goal simple
enough so that some tasks are within reach for current lifted
planners (Ridder and Fox [2014] ran a similar experiment, but
the benchmarks are not publicly available).

For Blocksworld, we scale the number of blocks from 100
to 1900, increasing by 200 blocks per instance. In the ini-
tial state, all blocks are placed on the table (we experimented
with arbitrary initial states but were unable to find instances
too hard to ground yet within reach of lifted planners). For
Logistics, all tasks contain one city, one airplane, one truck,
and ten packages. We scale the number of locations start-
ing with 1000 and increasing by 250 in each instance. For
Rovers, we generated tasks with a single rover, one objective
and one camera. We scale the number of waypoints starting
from 1000 and increasing by 500 in each instance.

7.2 Results
Table 1 shows coverage results. L-RPG is not competitive,
which must be interpreted with care given the implementa-
tion differences. We remark that, as intended in our design,
our heuristic functions are very fast. Indeed, the node gener-
ation rate (number of generated states per second) is almost
up to the standards of goal counting: on average across all
benchmark tasks, hgc is only 1.37 times faster than hur (max
3.34) and 1.67 times faster than hur-d (max 3.47).

In Organic Synthesis, plans are usually short, and most of
the complexity lies in successor generation, to the effect that
all PWL configurations have the same coverage. In GED and
Pipesworld, our heuristics are not informative. This is partly
due to a general weakness of delete relaxation here (hgc is
better than hFF in grounded planning), but partly stems from
the information loss in unary splitting.

In our new benchmarks, grounding is hardly possible
throughout. In Visitall, expectedly hgc performs reasonably
well when goals are close (“clo”), but not when they are far.
Our new heuristics all do better, but particularly with disam-
biguation. Interestingly, the tie-breaking combination with
hgc works best by far, hinting that our heuristics are unstable

and profit from the clear progress identified by reaching more
goal atoms. The picture in Childsnack is similar, except here
there is no “goal location distance” parameter that we could
scale, and hgc is hopeless throughout. Finally, results in the
large IPC domains are mixed. In Logistics, our new heuris-
tics are uninformative and fall far behind hgc. In Blocksworld
and Rovers we obtain substantially better search information
however. In Rovers, hur achieves best results, the only case
where disambiguation is systematically detrimental.

8 Conclusion
Delete-relaxation heuristics are paramount in classical plan-
ning, yet take exponential time in the size of the lifted plan-
ning task input. To address this, we have introduced addi-
tional relaxations to achieve polynomial-time behavior. We
focused on a heuristic that is extremely fast to compute on
any lifted task, the unary relaxation, which splits all predi-
cates into unary predicates. Our results with this first sim-
ple technique are highly promising and already show that the
state of the art can be improved.

However, this barely explores the possibilities of our
framework. Exciting avenues opened by this research are,
for example, larger tractable fragments of predicate splitting,
flexible splitting onto arbitrary sets of parameter tuples, clever
methods for choosing such sets, etc.
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ning as heuristic search. Artificial Intelligence, 129(1–2):5–33,
2001.

[Cenamor et al., 2016] Isabel Cenamor, Tomás de la Rosa, and Fer-
nando Fernández. The IBaCoP planning system: Instance-based
configured portfolios. Journal of Artificial Intelligence Research,
56:657–691, 2016.

[Chandra and Merlin, 1977] Ashok K. Chandra and Philip M. Mer-
lin. Optimal implementation of conjunctive queries in relational
databases. In Proc. STOC 1977, pages 77–90. ACM, 1977.

[Coles et al., 2012] Amanda Jane Coles, Andrew Coles, Angel
Garcı́a Olaya, Sergio Jiménez, Carlos Linares López, Scott San-
ner, and Sungwook Yoon. A survey of the seventh international
planning competition. The AI Magazine, 33(1), 2012.
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