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Abstract

Influenced by the era of the sharing economy and
mobile payment, Dockless Bike-Sharing System
(Dockless BSS) is expanding in many major cities.
The mobility of users constantly leads to supply
and demand imbalance, which seriously affects the
total profit and customer satisfaction. In this pa-
per, we propose the Spatio-Temporal Mixed Inte-
ger Program (STMIP) with Flow-graphed Commu-
nity Discovery (FCD) approach to rebalancing the
system. Different from existing studies that ignore
the route of trucks and adopt a centralized rebal-
ancing, our approach considers the spatio-temporal
information of trucks and discovers station commu-
nities for truck-based rebalancing. First, we pro-
pose the FCD algorithm to detect station commu-
nities. Significantly, rebalancing communities de-
composes the centralized system into a distributed
multi-communities system. Then, by considering
the routing and velocity of trucks, we design the
STMIP model with the objective of maximizing to-
tal profit, to find a repositioning policy for each sta-
tion community. We design a simulator built on
real-world data from DiDi Chuxing to test the algo-
rithm performance. The extensive experimental re-
sults demonstrate that our approach outperforms in
terms of service level, profit, and complexity com-
pared with the state-of-the-art approach.

1 Introduction
Bike-sharing provides an environment-friendly and conve-
nient travel mode for urban transportation [Chen et al., 2018].
Dockless Bike-Sharing System (Dockless BSS), as an inno-
vation Bike-Sharing System (BSS), is expanding in many
major cities influenced by the era of the sharing economy
and mobile payment. Comparing with traditional Dock-based
BSS, Dockless BSS provides a more flexible transport mode
for customers. Customers can rent and return the bike at any
valid place through their smart-phone app. This relieves cus-
tomers’ concerns about finding empty docks when they want
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to rent bikes or getting into fully occupied stations when they
want to return them[Pan et al., 2019].

However, due to the high similar travel patterns of cus-
tomers, Dockless BSS often faces the phenomenon of asym-
metric supply and demand, which is referred as imbalance.
For example, customers ride bikes from the neighborhoods to
the subway stations or Central Business District (CBD) dur-
ing morning peak hours. Consequently, substantial idle bikes
are stacking near the subway stations and CBD, and no avail-
able bike around the neighborhoods. In the evening peak, the
situation is the opposite. This imbalance phenomenon leads
to the decrease of the overall profit and service satisfaction
of customers. In the worst case, unsatisfied customers would
leave the system forever [Ghosh et al., 2019]. Therefore, re-
balancing the system is a critical task for the sustainable de-
velopment of Dockless BSS [Hua et al., 2020].

Currently, the system operators have proposed truck-based
rebalancing and user-based rebalancing approaches to solve
the critical task. User-based rebalancing involves incentiviz-
ing users with a reward to rent or return bike to a specific lo-
cation [Li et al., 2018]. Obviously, the effectiveness of user-
based rebalancing heavily depends on users’ behavior, which
is dynamic and highly uncertain. Truck-based rebalancing
provides a more stable and useful approach, includes static
rebalancing and dynamic rebalancing. Static rebalancing re-
distributes bikes to the predetermined initial conditions only
once when the demand is negligible [Shen et al., 2018]. Dy-
namic rebalancing involves moving bikes throughout the day
to fix imbalances during rush hours. The main studies adopt
models with different objectives to generate the repositioning
policy, i.e., minimizing the moving distance [Qin et al., 2018;
Liu and Xu, 2018b], maximizing the total profit [Liu and Xu,
2018a; Barabonkov et al., 2020]. However, to simplify the
problem, existing works barely take into account the mov-
ing time of trucks, which determines whether the rebalancing
policy can be completed timely. Moreover, the system opera-
tors often use tens of trucks to rebalance bikes over hundreds
of stations simultaneously. Solving the rebalancing problem
in such a big system is a complicated NP-hard problem [Lv
et al., 2020].

To overcome the above problems, we propose the Spatio-
Temporal Mixed Integer Program (STMIP) with Flow-
graphed Community Discovery (FCD) approach in this pa-
per. First, we propose the FCD algorithm to define the ab-
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stract stations and detect the station communities based on
the historical trip data. Then, we allocate trucks for each
community to conduct inner-community rebalancing. Con-
sidering the routing and velocity for trucks, we design the
STMIP model to maximize the total profit. Spatio-temporal
information of trucks are of special interest to truck-based re-
balancing, which determines whether the rebalancing policy
can be achieved timely. However, existing works mostly ig-
nore the sequence of visited stations and the moving time of
trucks. STMIP model considers the routing and velocity of
trucks and guarantees the repositioning policy can be com-
pleted in time. Furthermore, for the traditional centralized
systems, solving the rebalancing problem, especially consid-
ering the spatio-temporal information [Ghosh et al., 2019],
is of high complexity and time consuming, which makes it
challenging to adapt to the online system. FCD algorithm de-
composes it into a distributed multi-communities system and
greatly reduces the complexity. Meanwhile, the solution of
STMIP with FCD is near-optimal in aspects of service level
and profit. Particularly, the contributions of this paper can be
summarized into three-fold:

• We propose the FCD algorithm to define stations and
discover station communities. Each station community
is inner-balanced, which represents the dense inner flow
and few inter net flow. The FCD algorithm decomposes
the centralized control system into a distributed multi-
communities system, which heavily reduces the com-
plexity of the multi-trucks routing problem.

• We design the STMIP model, considering the routing
and velocity of capacitated trucks, to generate a flexible
repositioning policy. And the objective of the STMIP
model is maximizing the total profit, which explores the
trade-off between repositioning cost and service level.

• A simulator is designed built on the real-world data set
from DiDi Chuxing to evaluate the effectiveness of re-
balancing approaches. The extensive experimental re-
sults show that our approach performs better than the
existing state-of-the-art approach in improving the sys-
tem profit and service level.

2 Related Works
Sparked by the development and advantages of Dockless
BSS, there have been a considerable set of works focused on
station definition and rebalancing methods for Dockless BSS.

Station Definition. Most of existing studies easily defined
the small squares with equal size as abstract stations. [Ke
et al., 2017] and [Ai et al., 2019] partitioned the urban into
I × J grid areas to forecast short-term demand. [Dong et
al., 2019] proposed the points of interest-based (POI-based)
clustering to find stations. Nevertheless, all of the above ap-
proaches only considered the geographical information, and
ignored the information of historical trip records, i.e., start
and end locations. Locations information is crucial for Dock-
less BSS study, especially for system rebalancing. [Jing et
al., 2018] proposed determining the most suitable places to
deploy abstract stations by studying the taxi trajectory data.
Meanwhile, [Liu and Xu, 2018b; Barabonkov et al., 2020]

used the k-means algorithm to get the clusters of historical
locations, and treated cluster centers as stations. The results
of k-means fully reflected the feature of historical trips, and
make the station distribution uniform. However, since the ex-
pansion of urban size, the number of stations highly increases,
which raises the difficulty and complexity of the rebalancing
and routing problem. Discovering station communities pro-
vided a straightforward way to reduce the problem complex-
ity. However, there are rare studies that focus on this field.

Rebalancing Method. The foremost problem of Dockless
BSS is the imbalance problem. The main methods to solve
this problem are truck-based rebalancing and user-based re-
balancing. For user-based rebalancing, [Waserhole and Jost,
2016] formulated heuristic algorithm based on Maximum
Circulation as a convex integer program to optimize the num-
ber of trips. [Ghosh et al., 2019] and [Duan and Wu, 2019]
used reinforcement learning to generate price scheme for in-
centive. For truck-based rebalancing, the main method to
generate repositioning policy is optimization model. [Lv et
al., 2020] proved that finding an optimal solution for the bike
rebalancing problem is NP-hard, and proposed a two-stage
approximate mechanism to get the repositioning policy. [Pal
and Zhang, 2017] designed Mixed Integer Linear Program
(MILP) to solve the static rebalancing problem, and proposed
the Nested Large Neighborhood Search and Variable Neigh-
borhood Descente (NLNS + VND) algorithm to find the so-
lution. Their algorithm can adapt to the scale increasing of
static rebalancing problem. [Liu and Xu, 2018a] formulated
static rebalancing problem as a multi-objective Mixed Integer
Program (MIP) model about maximizing overall revenue in
the shortest moving distances. Obviously, the effect of static
rebalancing is limited, and experiments show that dynamic
rebalancing often performs better than static. [Qin et al.,
2018] offered an Improved Local Search Algorithm (ILSA)
for multiple carriers routing to minimize routing cost. But the
effect of ILSA fully depended on the prediction accuracy of
demand. [Barabonkov et al., 2020] defined abstract stations
by historical trip locations, and developed an MIP framework
minimizing the lost profit. The experiment proved that their
dynamic rebalancing always outperforms static. However,
most of the above studies ignored the sequence of visited sta-
tions and the velocity of trucks, which determines whether
the repositioning policy can be finished timely and affects the
effectiveness of system rebalancing.

3 Problem Statement
Definition 1 (Flow). Inner flow for the community is the sum
of trips whose start and end locations both belong to the cur-
rent community. Inflow is the number of trips that start out-
side of the current station or community while end within it.
Outflow is the opposite. Inter flow is the sum of inflow and
outflow. Inter net flow is the difference between inflow and
outflow. Total flow is the sum of inner flow and inter flow.

For truck-based rebalancing approach, there is a set of sta-
tions S = {1, 2, ..., N}, where N represents the number of
stations. Depending on the demand d#i and the bike distri-
bution d∗i of station i (i ∈ S), station i is defined as pickup
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station, if d∗i − d
#
i > 0, or delivery station, if d∗i − d

#
i ≤ 0.

Meanwhile, there is a set of trucks V = {1, 2, ...,M}, where
M represents the number of trucks. The operator assigns
repositioning policy to trucks. Truck j (j ∈ V) follows the
policy to remove bikes from pickup stations to delivery sta-
tions. Furthermore, to get the feasible repositioning policy
for Dockless BSS, we face two basic problems about station
setting and dynamic rebalancing and routing.

3.1 Station Setting
We extract the start and end locations from historical trip
records of the last D days, and aggregate locations into N
aggregation centers. N is determined by the area of rebal-
ancing region. We define the aggregation centers as the ab-
stract stations and get the weighted graph of flow based on
historical trip records. Then, we apply community discov-
ery process to get station communities C = {c1, c2, ..., cK},
where K represents the number of communities. The objec-
tive of community discovery is to make each community has
dense inner flow and few inter net flow. Modularity is pro-
posed to measure the quality of community discovery, and
greater modularity index reflects the better effect of commu-
nity discovery [Newman and Girvan, 2004]. Combining the
definition of modularity [Blondel et al., 2008] with weighted
graph of flow, we define the weighted modularity as:∑

ck∈C
[

∑
in

m
− 1

2
(

∑
tot

m
)2] (1)

where
∑

in and
∑

tot respectively represent the inner flow
and the total flow for community ck, and m is the number of
trips of the whole system.

After station setting, the centralized system becomes a
distributed multi-communities system. We allocate trucks
for each community to conduct inner-community rebalanc-
ing and without inter-community bikes moving. The number
of trucks for each community is approximately linear with the
number of stations belonging to it.

3.2 Dynamic Rebalancing and Routing
We extend the generic model of dynamic rebalancing and
routing problem (DRRP) introduced by [Ghosh and Varakan-
tham, 2017] for defining our problem. For each community
ck, the problem can be represented using the following tuple:

< Sk,Vk, Cp∗, d∗, d#, {σ0
s,v},Pk >

There is a set of stations Sk = {sk1
, sk2

, ..., skn
}, where n

represents the number of stations belonging to the community
ck, and a set of trucks Vk = {vk1 , vk2 , ..., vkm}, wherem rep-
resents the number of trucks allocated to community ck. Cp∗v
denotes the capacity of truck v, v ∈ Vk. d∗s and d#s respec-
tively represent the bike distribution and predicted demand of
station s, s ∈ Sk. Particularly, the predicted demand of sta-
tion is calculated from the mean of its outflow of the last D
days. σ0 represents the positional relationship between trucks
and stations. Briefly, σ0

s,v is set to 1 if truck v is at station s
and is 0 otherwise. Pk is a matrice and represents the distance
between any two stations belonging to community ck.

For the ease of representation and evaluation, we make the
following assumptions: (a) Customers are impatient with the
system. Hence, if the original station has no available bike,
customer leaves the system immediately instead of visiting
other stations; (b) Bikes belonging to the same station are
equivalent for customers. That is to say, the picked up prob-
ability of available bikes belonging to the same station are
equal, regardless of its location; (c) Once the bike is picked
up by trucks, it remains unavailable until it is dropped off at
a station.

4 Methodology
The details of the STMIP with FCD approach are described
in this section. In addition, the system simulator is illustrated
at last, which simulates the dynamic process of STMIP with
FCD approach for Dockless BSS.

4.1 FCD Algorithm
The FCD algorithm has two key components: station defi-
nition and community discovery. We provide the details of
these two components and identify the whole algorithm in
Algorithm 1.

1) Station Definition. We extract the start and end loca-
tions from the historical trip records of the last D days,and
use k-means clustering approach [Forgy, 1965] to find N ag-
gregation centers, which are identified as abstract stations S .
According to the sets of historical trip records and stations, it
is easy to construct the weighted graph of flow. If there have
trips between two stations, we add an edge between these two
stations with weight of trips number wij , i, j ∈ S . Conse-
quently, larger weight signifies higher frequency and denser
relationship between two stations.

2) Community Discovery. Based on the weighted graph of
flow, we propose an Improved Fast Unfolding (IFU) algo-
rithm extended from [Blondel et al., 2008] to generate station
communities C with maximizing the weighted modularity Q
formulated as Eq.(1). We get the initial communities through
modularity optimization and community aggregation stages.
For modularity optimization, we firstly creat community set C
based on the label set Label, which means collecting the sta-
tion i (i ∈ S) that have same label value, i.e. labeli = k, into
community ck. Then we change the community partition and
numbers, until getting the maximum weighted modularity Q
and corresponding label set Label. In particular, to avoid the
situation that a community consists of only one station, we
add the post-process to re-cluster the communities that only
contain one station into other communities, according to min-
imum the inter net flow inf , defined as:

infi,j = |
∑
in

−
∑
out

| (2)

where
∑

in and
∑

out denote the total inflow and outflow of
station i (i ∈ S ′

) and community cj (j ∈ K), respectively.

4.2 STMIP Model
In this section, we formulate the objective and constraints of
the STMIP model to generate a feasible repositioning policy
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Algorithm 1 Flow-graphed Community Discovering (FCD)
Input: Location set L = {l1, ..., lp}, station number N .
Output: Community set C

1: Selecting the centroides S = {1, 2, ..., N} through K-
means algorithm [Forgy, 1965].

2: for i = 1→ N do
3: labeli ← i.
4: end for
5: Label,Q←Modularity Optimization(Label, S).
6: Qbest = 0.
7: while Qbest! = Q do
8: Qbest = Q.
9: Creating community set C based on Label.

10: for k = 1→ K do
11: s′k ← center of ck.
12: label′k ← k.
13: end for
14: Label′, Q←Modularity Optimization(Label′, S′)
15: for each j ∈ S do
16: labelj ← label′k, where sj ∈ ck.
17: end for
18: end while
19: for each ck only contains one si do
20: labeli ← arg minj∈Konfij .
21: cj ← cj

⋃
ci.

22: C ← C \ ci.
23: end for
24: return C

for each community. At the start of rebalancing time slot t,
the initial bike distribution d∗ and predicted demand d# of the
community are given as the input to STMIP model. Mean-
while, we input the distribution of trucks including its loca-
tion and the number of bikes present at it, which represented
by σ0

s,v and d0v . Similar to the previous work focused on the
Dock-based BSS rebalancing [Ghosh et al., 2019], we as-
sume that the truck can visit a maximum of R stations within
one time-slot t. To represent the sequence of visited stations
for the truck, we divide time-slot t equally into R small time
slots, referred to as episode r, r ∈ {1, . . . , R}.

The variables used in the STMIP model are defined as fol-
lows: Os denotes the maximum number of serviceable or-
ders at station s during time-slot t. y+s,v,r and y−s,v,r represent
the number of bikes picked up and dropped off by truck v at
episode r at station s, respectively. drv denotes the number of
bikes on the truck v at episode r. As noted, we define σr

s,v
to repersent the relationship of position between truck v and
station s. And if truck v at episode r is present at station s,
σr
s,v is set to 1 and is set to 0, otherwise. Lr

s,s′,v denotes the
routing of truck v. Lr

s,s′,v = 1 if truck v is present at sta-
tion s at episode r − 1, and arrives at station s′ at episode r;
Lr
s,s′,v = 0, otherwise. Ps,s′ denotes the distance between

station s and station s′. u represents the reciprocal of con-
stant velocity of trucks. Q represents the time length of one
episode r, in second. The price of per order and the mov-
ing cost of per bike are represented by α and β. Then we
present the formulation of the STMIP model in Table 1, and

max Σs(α ∗Os − β ∗ Σv,ry
−
s,v,r)

s.t. Os ≤ d∗s + Σv,r(y−s,v,r − y+s,v,r) ∀s (3)

Os ≤ d#s ∀s (4)

drv = dr−1v + Σs(y
+
s,v,r − y−s,v,r) ∀v, r (5)

y+s,v,r + y−s,v,r ≤ Cp∗v ∗ σr
s,v ∀s, v, r (6)

Σv,ry
+
s,v,r ≤ d∗s − d#s ∀s (7)

Σsσ
r
s,v = 1 ∀v, r (8)

u ∗ Σs,s′(L
r
s,s′,v ∗ Ps,s′) ≤ Q ∀v, r (9)

Lr
s,s′,v ∈ {0, 1}, σr

s,v ∈ {0, 1} (10)

0 ≤ y+s,v,r, y−s,v,r, drv ≤ Cp∗v (11)

Table 1: Spatio-Temporal Mixed Integer Program.

the physical meaning of the objective and constraints in the
optimization problem are explained next.

The objective of the STMIP model is composed of order
revenue and moving cost of the station set Sk. Here, the order
revenue refers to the number of serviceable orders multiplied
by the parameter α. And moving cost is the number of bikes
dropped off multiplied by the parameter β.

Serviceable orders: Constraints (3)-(4) ensure that, during
current rebalancing time-slot t for any station s, the maxi-
mum of serviceable orders is the minimum of available bikes
and predicted demand of station s. We consider the situation
that each bike is only rented once during the time-slot t.

Truck Capacity: Constraint (5) enforces that, for truck v at
the episode r, the number of bikes at it is equivalent to the
sum of bikes number of the previous episode r − 1 and the
net flows of bikes picked up during episode r. Constraint (6)
guarantees that if the truck v is present at station s at episode
r, the number of bikes that picked up or dropped off by truck
v at station s during episode r is bounded by the capacity of
truck Cp∗v . Otherwise, the number is equal to 0. For each
truck v at any episode r, constraint (11) guarantees that the
number of bikes is less than the truck capacity.

Bike Availability: For each station s, the number of avail-
able bikes that can be picked up is the difference between
supply d∗s and predicted demand d#s of it when d∗s − d#s > 0.
Otherwise, station s has no available bike that can be picked
up. Constraint (7) ensures that, during the rebalancing time-
slot t, the total number of bikes picked up by all trucks at sta-
tion s does not exceed the available bikes at it. The constraint
enforces that the moving of bikes is under the premise that
does not affects the original service level, which guarantees
the effectiveness of repositioning policy.

Truck routing: Constraint (8) enforces that truck v can visit
only one station s at any episode r. Constraint (9) ensures
that, under the constant velocity, the time of truck v moving
from current station s to next station s′ during episode r is
not exceed the episode time Q.

We solve the STMIP model using the Python extension of
the IBM ILOP CPLEX Optimization Studio version 12.9.
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4.3 System Simulator
We establish a simulator to evaluate the approach’s perfor-
mance on real-world data. First, at the start of the day, FCD
algorithm generates the stations S and station community set
C, based on the historical trips of the lastD days. Meanwhile,
the predicted demand for each station during time-slot t is
the mean of the last D days’ trips during the same time-slot.
We allocate Vk for each community ck to rebalancing bikes
among stations belonging to ck. Then, we iterate the STMIP
model over time-slot t increasing to achieve dynamic system
rebalancing. At the beginning of time-slot t, we respectively
input the distribution of bikes d∗ and predicted demand d# of
the community to the STMIP model. And the distribution of
trucks Vk is also given as an input. The solution of the STMIP
model describes the repositioning policy, includes truck rout-
ing and the number of bikes that are picked up and dropped
off by truck v at station s at episode r. Following the repo-
sitioning policy, we simulate the rent, return and reposition
process in turn at each episode, and repeat it until the end of
time-slot. For all communities, the above three processes are
simulated simultaneously.

5 Experiment Results
To evaluate the performance of approaches, experiments are
conducted on the datasets from 8/1/2020 to 8/31/2020 of the
core area of Beijing from DiDi Chuxing. Each record in-
cludes the following field: bike ID, start time, end time, start
location (consisted of longitude and latitude), and end loca-
tion. Parameters for the STMIP with FCD approach are sum-
marized as follows: the number of stations N is determined
to be 110. The capacity of trucks C∗v is set to be 10 for the
experiments. The accumulation days’ of historical trips is set
to D = 7. We divide a day into 48 time-slots, where t = 30
minutes. We assume that the average truck speed is 5 m/s, so
the variable u is equal to 0.2 s/m. The price of per trip and
the cost of per moving bike are set to 1.5 RMB and 1 RMB,
respectively.

5.1 Baselines and Metrics
The stations set S generated by FCD algorithm is applied to
all following approaches, which avoids the impact of different
station sets on the approach. We compare the STMIP with
FCD approach with the following approaches:
No Rebalancing (NR): We simulate the Dockless BSS with-
out any system rebalancing.
MIP: [Barabonkov et al., 2020] proposed an MIP framework
to generate the repositioning policy with objective of min-
imizing the lost profit. They constrained a truck can only
drop off at a fixed number Nd and pick up from fixed number
Np of stations during one time-slot, respectively. However,
they failed to take account of the sequence of visited stations
and the velocity of trucks. Therefore, the repositioning pol-
icy is completed instantaneously at the start of each time-slot,
which is absolutely impossible in practice.
MIP with FCD: This approach combines the method pro-
posed by [Barabonkov et al., 2020] with the FCD algorithm,
which formulates the MIP framework for each community to
find repositioning policy separately.

Figure 1: FCD algorithm results. Each triangle denotes an abstract
station; the triangles with same color pertain to the same community.

Community Station
Number

Inter Net
Flow

Inner
Flow

Imbalance
Ratio

c1 21 -13 810 -0.016
c2 16 -3 456 -0.007
c3 8 1 267 0.004
c4 9 -1 344 -0.003
c5 13 26 648 0.040
c6 12 7 422 0.016
c7 25 -3 777 -0.004
c8 6 1 273 0.004

Table 2: Community Property

STMIP: This approach rebalances the global system based on
the STMIP model, which is a centralized control system.

We use the following metrics to evaluate the performance
of different approaches:
Additional Profit: The additional profit is the improved profit
brought by system rebalancing for the all-day, compared to
the profit without any system rebalancing.
Lost Demand: Lost demand is the number of unserviced or-
ders. Less lost demand signifies higher service level and cus-
tomer satisfaction.

5.2 FCD Algorithm Results

The result of the FCD algorithm is shown in Figure 1. Com-
bining the cartographic information and station distribution,
we can find that stations are mainly located on both sides of
the city’s main roads, and few stations are distributed in resi-
dential areas. Particularly, there is no station located in the
scenic spots. The reason is that the scenic spot managers
forbid customers to ride bikes into the scenic spot. Mean-
while, the FCD algorithm finally generates 8 station com-
munities. To illustrate the property of inner-balanced, we
count the inter net flow and inner flow of each commu-
nity for every time-slot. The imbalance ratio is calculated
by inter net flow / inner flow and reflects the better inner-
balanced characteristic of the community when the value is
closer to 0. In Table 2, we present the average results of the
above three statistics for each community.
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(a) Lost Demand

(b) Additional Profit

Figure 2: Comparison on lost demand and additional profit under
varying fleet size with R = 2.

5.3 Rebalancing Results
We compare our proposed approaches with baselines in three
aspects of lost demand, additional profit, and algorithm com-
plexity. For the experiment, the number of trucks allocated
for the whole system is 24, and we respectively assign trucks
of 5, 4, 1, 2, 3, 2, 6, and 1 to c1 to c8, which is approximately
linear with the number of stations for each community. Then
we consider two cases of R = 2 and R = 4. Meanwhile, we
set Nd + Np = R for the MIP model to guarantee the same
total number of visited stations during one time-slot.

Figure 2(a) shows that rebalancing the system can reduce
the lost demand with varying fleet size from 2000 to 7000.
Comparing to NR approach, our STMIP with FCD approach
and STMIP approach reduce the lost demand by 19.11% and
22.48% on average, which achieve better performance than
others. It can be seen from Figure 2(b) that our approaches
bring nearly twice additional profit to the system than others.
While in the worst case of 7000 fleet, the additional profit of
STMIP with FCD approach is still nearly 3000 RMB more
than the MIP approach. Meanwhile, with the fleet size in-
creasing, the additional profit is the trend of rising first and
then decreasing slowly. The reason could be that when the
fleet size is lower, the distribution of lost demand is concen-
trated. In this case, moving one idle bike might reduce more
than one lost demands, which brings higher profit improve-
ment. However, for the larger fleet size, the lost demand is
mainly distributed in the remote areas and scattered. Hence,
moving one bike might reduce only one lost demand.

Figure 3 presents the results about lost demand and ad-
ditional profit when the maximum of the visited station is

(a) Lost Demand

(b) Additional Profit

Figure 3: Comparison on lost demand and additional profit under
varying fleet size with R = 4.

4. And the additional profit has the same phenomenon as
R = 2. Significantly, comparing Figure 3(a) with Figure 2(a),
the lost demand of our proposed approaches when R = 4 is
lower than the lost demand when R = 2, and the lost de-
mand is essentially unchanged for MIP with FCD approach
and MIP approach. Figure 3(b) and Figure 2(b) show that
changing R from 2 to 4, our proposed approaches provide a
significant improvement in the additional profit. For the best
case when the fleet size is 3500, the additional profit of the
STMIP approach is 11870.5 RMB when R = 2 and is in-
creased to 14939.0 RMB when R = 4. However, for MIP
with FCD approach and MIP approach, the additional profit
is slightly lower. Increasing the maximum of visited stations
means that the truck can pick up bikes more than once, which
increases the total number of moving bikes for one time-slot.
Our STMIP model takes into account the sequence of visited
stations and velocity of trucks. Thus, the results of our ap-
proaches reveal that greater mobility is often associated with
the better performance of the dynamic rebalancing approach.
Oppositely, the results of approaches applied MIP model fail
to decrease the lost demand and bring about the invalid mov-
ing of bikes, which altogether contribute to reducing the ad-
ditional profit. This can be attributed to the MIP model’s ig-
norance of the spatial and temporal information.

Solving the mixed integer program is a NP-hard problem
with exponential time complexity. The complexity can be de-
noted by O(np), where p is the number of integer variables.
We compare the number of integer variables about four ap-
proaches in Table 3. For the STMIP model, the number of
variables is related to R, so the complexity of approaches ap-
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Figure 4: Additional profit analysis on truck number for 2000 fleets
and 4500 fleets.

plied STMIP model increases with the increase of R. Differ-
ently, the complexity of MIP and MIP with FCD approaches
is independent of R, because R only changes the constraints
and not affects the number of variables. However, the com-
plexity of STMIP with FCD approach is always the lowest.
In particular, when R = 2, the number of STMIP with FCD
approach’s integer variables is reduced by 93.26%, 89.02%,
58.25% compared to the STMIP approach, MIP approach,
and MIP with FCD approach, respectively. Meanwhile, ev-
ery time an integer variable is added, the computing time for
solving the exact solution will be doubled in the worst case.
In our experiment, the average running time of the STMIP
with FCD approach is only 2 seconds, so our proposed ap-
proach can be effectively applied in practice.

For the STMIP with FCD approach, we illustrate the effect
of truck’s number on additional profit under different fleet
sizes in Figure 4. In general, additional profit improves with
the increasing of truck’s number. With 8 trucks, the perfor-
mance of 4500 fleet is worse, where 8 trucks are too few for
the larger fleet. When the truck is more than 40, the addi-
tional profit of 2000 fleet remains constant. That is because
40 trucks are enough to move all the idle bikes for 2000 fleet.
Additionally, the results demonstrate that we can increase the
number of trucks to bring more profits to large-scale systems.

MIP MIP with FCD STMIP STMIP with FCD

R=2 9790 2575 15950 1075
R=4 9790 2575 31790 2125

Table 3: Variable number comparison.

6 Conclusion
In this paper, we propose the STMIP with FCD approach to
solve the dynamic rebalancing problem for Dockless BSS to
maximize total profit. Firstly, we propose the FCD algorithm
to define the abstract stations and discover the community
structure of stations. The traditional centralized rebalancing
system is decomposed into a distributed multi-communities
system, which highly reduces the algorithm complexity. Sec-
ondly, the STMIP model is designed to generate the repo-
sitioning policy, which takes into account both temporal and
spatial information of trucks. At last, we design a simulator to
test the algorithm performance. The results of the experiment

confirm that our proposed approach achieves a better perfor-
mance than baseline approaches in three aspects, which are
service level, profit, and complexity.
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