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Abstract
Temporal plan preferences are natural and impor-
tant in a variety of applications. Yet users often
find it difficult to formalize their preferences. Here
we explore the possibility to learn preferences from
example plans. Focusing on one preference at a
time, the user is asked to annotate examples as
good/bad. We leverage prior work on LTL formula
learning to extract a preference from these exam-
ples. We conduct an empirical study of this ap-
proach in an oversubscription planning context, us-
ing hidden target formulas to emulate the user pref-
erences. We explore four different methods for gen-
erating example plans, and evaluate performance as
a function of domain and formula size. Overall, we
find that reasonable-size target formulas can often
be learned effectively.

1 Introduction
Temporal plan preferences are natural and important in a va-
riety of applications. The PDDL3 language [Gerevini et al.,
2009] provides support for their specification, and planning
algorithms to handle such preferences have been deeply in-
vestigated [Edelkamp, 2006; Baier and McIlraith, 2006; Baier
et al., 2009; De Giacomo et al., 2014; Torres and Baier, 2015;
Camacho and McIlraith, 2019b]. Yet users often find it diffi-
cult to formalize their preferences.

In particular, our work is motivated by a recent approach to
analyze dependencies between plan properties [Eifler et al.,
2020a; Eifler et al., 2020b] in oversubscribed planning tasks
where not all plan properties – which correspond to user pref-
erences – can be satisfied. Rather than assuming that each
preference is associated with a reward as in standard over-
subscription planning [Smith, 2004; Domshlak and Mirkis,
2015], the approach analyzes which (subsets of) preferences
exclude which other ones. The aim is to explicate the space
of possible plans in situations where rewards are inadequate
or difficult to elicit. Since the explication is done in terms
of dependencies between preferences, users need to provide a
sizable set of preferences spanning the aspects of plan space
they are interested in. How to ease this burden?

Here we explore the possibility to learn temporal plan pref-
erences from annotated example plans. We do so one pref-

erence at a time: our envisioned specification process is a
loop over preferences to be learned, where in each iteration
the user is asked to focus on one plan property of interest.
We generate example plans, and the user annotates them as
good/bad with respect to that property. We then leverage prior
work [Neider and Gavran, 2018; Camacho and McIlraith,
2019a; Kim et al., 2019] to learn an LTL formula correctly
characterizing these positive/negative examples, extracting a
formalized preference. The same steps can be repeated to ex-
tract other preferences until the user stops the process.

This approach itself is fairly straightforward, and its build-
ing blocks are known. Indeed, we employ Camacho and
McIlraith’s [Camacho and McIlraith, 2019a] techniques, and
our work is essentially an application thereof. Our contribu-
tion lies in assembling these known techniques, and empiri-
cally studying their merits for plan preference learning.

To emulate the user in systematic experiments, we employ
hidden target formulas. In each preference-learning step, we:

(1) fix an LTL target formula φ;

(2) generate a set of example plans Π;

(3) annotate each π as good (bad) if it satisfies (does not sat-
isfy) φ; and

(4) invoke LTL formula learning to extract a formula φ′ cor-
rectly characterizing these examples.

In practice, the hidden target formula φ will be inside the
user’s head. Emulating users in this form allows us to system-
atically evaluate the merits of different algorithmic methods.

We instantiate (1) with hand-made formulas suited for
a collection of benchmarks, based on PDDL3 preferences
as well as formula skeletons often used in model checking
[Manna and Pnueli, 1990; Dwyer et al., 1999; Menghi et
al., 2019]. We instantiate (4) with Camacho and McIlraith’s
[2019a] techniques, which learn a smallest LTL formula φ′.
The main question we consider is how to instantiate (2). Top-
K methods with a focus on diversity are natural candidates,
as they aim at producing K good-quality (in our context:
short) yet qualitatively different plans. This makes intuitive
sense for our purposes as the example plans should be differ-
ent, and should not be obviously bad. We experiment with
three different methods from the literature [Katz et al., 2018;
Katz and Sohrabi, 2020; Speck et al., 2020]. We furthermore
experiment with a simple randomized version of greedy best-
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first search using hFF [Hoffmann and Nebel, 2001], which
turns out to be more scalable.

We evaluate the performance of different methods as a
function of domain and formula size. We investigate a va-
riety of aspects, including not only computational effort, but
also the quality of the learned formula φ′ relative to the hid-
den formula φ, and the quality of plan examples in the sense
of how many examples are needed to learn a high-quality for-
mula. Overall, we find that reasonable-size target formulas
can often be learned effectively.

The paper is structured as follows. Section 2 gives the plan-
ning context. Section 3 describes the building blocks that we
assemble in our approach, i. e., plan-generation techniques,
LTL formula learning, and temporal plan preferences. Sec-
tion 4 explains our system architecture and implementation.
Section 5 explains the experiments setup, before we describe
our empirical findings in Section 6.

2 Preliminaries
2.1 Oversubscription Planning
We are using a variant of oversubscription planning (OSP)
[Smith, 2004; Domshlak and Mirkis, 2015] with finite-
domain variables [Bäckström and Nebel, 1995; Helmert,
2009]. An OSP task is a tuple τ = (V,A, c, I,Ghard, Gsoft, b).
V is the set of variables, A is the set of actions, c : A→ R+

0

is the action cost function, and I is the initial state. Ghard

(Gsoft) is the hard (soft) goal, given as a partial assignment
to V . Ghard and Gsoft are defined over disjoint sets of vari-
ables. b ∈ R+

0 is the cost bound. A state is a complete
assignment to V . Facts are variable-value pairs v = d. We
represent partial variable assignments with sets of facts. Each
action a ∈ A has a precondition prea and an effect eff a,
both partial assignments to V . An action a is applicable in a
state s if prea ⊆ s. Applying a to s denoted as s[[a]] results
in state s′ where s′(v) = eff a(v) for those v on which eff a is
defined and s′(v) = s(v) otherwise. The resulting state of an
iteratively applicable action sequence π is denoted by s[[π]].
A plan is an action sequence π whose summed-up cost is≤ b
and where Ghard ⊆ I[[π]].

Following Eifler et al. [2020a], we do not define a plan
utility over Gsoft. Instead, Gsoft is a set of temporal plan
preferences (encoded into soft-goal facts [Edelkamp, 2006;
Baier and McIlraith, 2006]), and the analysis they pro-
vide identifies dependencies between these (plan-space en-
tailments, see below). The issue we tackle here is the specifi-
cation of the temporal plan preferences Gsoft.

2.2 Finite Linear Temporal Logic
We use finite Linear Temporal Logic LTLf, an adaption of
LTL to finite traces [Baier and McIlraith, 2006; De Giacomo
and Vardi, 2013], to represent temporal preferences.

Given a planning task τ , let S be a set of symbols for all
facts in τ and L(S) the set of all first-order formulas over S .

φ ::= ϕ | l | ¬φ | φ1 ∧ φ2 | ©φ | φ1 U φ2

with ϕ ∈ L(S), l ∈ {final,true,false}

LTLf formulas are interpreted over a finite sequence of
states (finite trace) σ = s0s1 · · · sn where each state si is a
first-order interpretation over the symbols in S . We use the
abbreviation σi for si · · · sn. Given a finite trace σ and a LTLf
formula φ we say σ |= φ iff:

• σi |= final iff i = n.

• σi |= true and σi 2 false.

• σi |= ϕ, where ϕ ∈ L(S) iff si |= ϕ.

• σi |= ¬φ iff σi 2 φ.

• σi |= φ ∧ ψ iff σi |= φ and σi |= ψ.

• σi |=©φ iff i < n and σi+1 |= φ

• σi |= φ U ψ iff ∃j : i ≤ j ≤ n such that
σj |= ψ and ∀k : i ≤ k < j : σk |= φ

Additionally, the following standard temporal operators are
used: release: φ R ψ := ¬(¬φ U ¬ψ), always: �φ :=
false R φ, eventually: ♦φ := true U φ, weak until:
φ W ψ := (φ U ψ) ∨ �φ. The size of a LTLf formula
|φ| is defined as the number of subformulas.

Part of our discussion below will draw on Eifler et al.’s
[2020a] definition of plan-space entailment. Let Π be the
set of plans of τ , and φ, ψ two LTLf formulas. The subset
of plans that satisfy φ is denoted by MΠ(φ) := {π | π ∈
Π, π |= φ}. We write τ |= φ⇒ ψ ifMΠ(φ) ⊆MΠ(ψ), and
τ |= φ⇔ ψ ifMΠ(φ) =MΠ(ψ).

3 Building Blocks
The two main building blocks of our approach are the gener-
ation of plans and the learning of LTLf formulas. In the fol-
lowing, we point to related work in this area, while describing
the approaches we decided to use in more detail.

3.1 Plan Generation
To provide a set of sample plans Π to the user, we have to
generate multiple plans for the given planning task τ . These
plans ideally should cover different parts of the search space,
exhibiting different possibilities to reach Ghard. Optimality
with respect to plan cost is not a necessity, indeed is undesir-
able as it may exclude interesting plan options. So we want
to allow sub-optimal plans, up to the cost bound b. Neverthe-
less, a bias to small plan cost can make sense as cheap plans
are generally preferrable.

Given this, we explore four different plan generation tech-
niques. Three of these are variants of top-k planning (TopK)
[Katz et al., 2018; Speck et al., 2020], which is adequate as it
is specifically designed to provide multiple plans. The default
variant returns the best k plans in terms of cost. In domains
with independent objects (like two trucks which can move
independently) TopK often leads to plans which are permu-
tations of each other. So as a second approach we use top-k
planning with an additional filter, removing plans that are per-
mutations of already found plans. This leaves us with plans
that pairwise have at least one distinct action (TopKFil).
Our third variant is agile diverse planning (AgDiv) by [Katz
and Sohrabi, 2020] which takes not only plan quality but also
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solution diversity into account, and thus is a very natural ap-
proach for our purposes. It uses satisficing planning and it-
eratively computes new plans while forbidding all possible
reorderings of already given plans.

As a simple method that actually turns out to work quite
well, we also run a randomized version of hFF [Hoffmann and
Nebel, 2001] in greedy best-first search (RNDhFF). The ran-
domization adds a positive random number to each heuristic
value. As this approach does not guarantee to find different
plans, the plans are filtered for uniqueness in a post-process.

All of these approaches can be run as an anytime search,
allowing to generate plans until a time limit is reached or a
certain amount of plans is found.

3.2 Learning
There is substantial work [Neider and Gavran, 2018; Cama-
cho and McIlraith, 2019a; Kim et al., 2019] in the area of
learning LTL formulas from sample traces we can build on.
The approach by [Kim et al., 2019] is based on probabilis-
tic Bayesian models. It relies on templates so it cannot learn
arbitrary LTL formulas. The probabilistic model enables ro-
bustness with respect to noise in the input data. In our con-
text, such noise would reflect plans incorrectly annotated by
the user. This could be an interesting consideration for future
work, but for now we assume that such noise does not exist
(the user either annotates an example plan correctly or not at
all). Therefore, we follow instead other works [Neider and
Gavran, 2018; Camacho and McIlraith, 2019a] that use SAT
encodings to learn a smallest formula identifying the posi-
tive and negative examples perfectly. These do not rely on
templates and can learn arbitrary formulas. In our implemen-
tation we use a modified re-implementation of the approach
by Camacho & McIlraith [2019a].

The input of the learner are two sets of finite traces reflect-
ing the positive and negative examples. The learning is an
iterative process over the size of the learned formula. In each
step a SAT encoding of all LTLf formulas with the given size
and the input traces is generated. The first satisfiable assign-
ment the SAT-solver can find is then used to reconstruct the
corresponding LTLf formula. If the SAT encoding is unsatis-
fiable the size bound is increased.

3.3 Plan Preferences
We focus on commonly used temporal formulas in plan-
ning and model checking. We use those PDDL3 Prefer-
ences [Gerevini et al., 2009] that do not have a numeric argu-
ment. Additionally, we include templates often used in model
checking [Manna and Pnueli, 1990; Dwyer et al., 1999;
Menghi et al., 2019]. Table 1 lists the formula templates we
will consider (for the construction of hidden target formulas)
in our empirical evaluation. While these do not exploit the
full expressiveness of LTLf, arguably user preferences tend
to be temporally simple (reflected for example in the fact that
PDDL3 caters for only a small fraction of LTLf.

4 Architecture
We now discuss how to assemble these building blocks into
an architecture for plan preference learning. We first briefly

meaning formula size

PD
D

L
3

always �a 2
sometimes ♦a 2
at most once �(a→ (aW�¬a)) 8
sometimes before (¬a ∧ ¬b)W(a ∧ ¬b) 10
sometimes after �(a→ ♦b) 5
never �¬a 3
a before b ¬b U a 4
at the same time ♦(a ∧ b) 4
not together �¬(a ∧ b) 5
sequence ♦(a ∧ ♦b) 5
b forbids a ♦(b→ �¬a) 6
response �(a ∧©♦b) 6
persistent response ♦(a ∧©�b) 6
stability ♦�a ∧�(a→ �a) 9

Table 1: LTL templates used to simulate the user.

re-explain the workflow in our approach, highlighting the is-
sues and relevant special cases that can arise. We then briefly
outline our implementation. Recall in what follows that in our
experiments we will assume a hidden target formula, denoted
φt, inside the user’s head.

4.1 Workflow: Issues and Special Cases
Step 1: Plan Generation. In the first step we generate a set
Πg of plans for the given planning task, using one of the in-
troduced approaches RNDhFF, TopK, TopKFil or AgDiv.
As φt is hidden, the plan generation cannot be tailored to gen-
erate positive and negative examples for φt. So we simply
consider the first n plans generated. We will experimentally
explore the impact of the parameter n.

An important complication is that the learning step requires
at least one example from each class, i. e., at least one posi-
tive and at least one negative example. Obviously this may
not be true in the first n plans, in which case one has to either
give up or increase the value of n. An issue with the latter is
that the hidden user preference may actually be a tautology in
the planning task, i. e., may be true (or false) in all plans. In
practice we won’t be able to check that. Note though that tau-
tological preferences are not meaningful (they do not distin-
guish between plans at all). Presumably, users will typically
know enough about the task at hand to come up with mean-
ingful preferences only. In our experiments, we consider only
non-tautological preferences.

Step 2: Plan Annotation. We provide the set of plans Πg

to the user and ask her to annotate the plans with respect to
her hidden target preference φt as positive Πp and negative
Πn examples. Clearly, the number n of plans the user has
to annotate should be as small as possible. We will evaluate
empirically how many plans are necessary to learn φt.

Importantly, in practice, one could interleave plan anno-
tation and formula learning until the user is satisfied with the
result. In our setting here, this corresponds to analyzing learn-
ing performance as a function of n.

Step 3: Learning. Given Πp and Πn, we call the learner
to obtain the set Φl of smallest LTLf formulas perfectly iden-
tifying Πp and Πn. As φt is not known, Φl can not be filtered
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further without additional information from the user. Hence
all formulas in Φl are forwarded to the user for inspection.

Observe that the formulas φl ∈ Φl can be related to the
target formula φt in exactly one of the following ways:

(a) we learn the same formula: φl = φt

(b) φl is equivalent to φt: τ |= φl ⇔ φt

(c) φl is an overapproximation of φt: τ |= φl ⇒ φt

(d) φl is an underapproximation of φt: τ |= φt ⇒ φl

(e) no direct relation, i. e., none of (1)–(4) holds.

Case (a) is the ideal case and provides the result the user is
expecting. In the worst case (e), the user is confronted with a
set of formulas not related to what she has in mind at all.

The intermediate cases are more difficult to judge. As for
equivalence (b), this may seem unproblematic, but depend-
ing on how similar φl and φt are, the user may not be able to
recognize the equivalence. In our experiments, we observed
surprising equivalent formulas, that identified subtle depen-
dencies in the planning task. On the positive side though, this
form of dependency identification constitutes an alternative
application of our techniques, as a new form of plan-space
explication in the sense of Eifler et al. [2020a]. The plan an-
notation and formula learning then used to automatically find
new formulas that relate in particular ways to previously iden-
tified preferences. We illustrate this possible alternative use
of our techniques at the end of the experiments (Section 6.5).

The usefulness of over/under-approximations (c) and (d)
of φt also highly depends on their similarity to φt. A useful
result would for example be φl = �a given the target for-
mula φt = �(a ∨ b), or in general if φl → φt based on the
LTLf semantic regardless of the planning task. In our exper-
iments we often observed that the learning identified instead
subtle unexpected dependencies, again suggesting the above-
mentioned alternative use in the sense of Eifler et al. [2020a].

4.2 Implementation
For plan generation we used the publicly available implemen-
tations of SymK [Speck et al., 2020] for TopK and TopKFil,
forbiditerative [Katz and Sohrabi, 2020] for AgDiv, and Fast
Downward [Helmert, 2006] for RNDhFF. The plan selection
for TopKFil is supported by SymK as an internal filter. We
extended the translator of each planner by the LTLf compila-
tion implementation by [Eifler et al., 2020b]. This is required
for our experimental setup as explained in the next section.

The preferences we consider are LTLf formulas over facts.
To convert plans to lists of fact sets we use VAL [Howey et al.,
2004]. We discard the static facts (that are always true, e. g.
defining the road connections in transportation domains).

The implementation we use for LTLf learning is a reim-
plementation of Camacho & McIlraith’s tool [Camacho and
McIlraith, 2019a]. The original implementation only outputs
one formula of the given size. As we do not have a reason to
prefer one formula over another, we extended the implemen-
tation to provide all formulas of that size: we call the SAT
solver repeatedly, adding a new clause each time to enforce
that previously found formulas are excluded.

5 Experiment Setup
Some words are in order regarding our benchmark design and
other particularities of our experiments setup.

5.1 Benchmark Design
The planning instances we consider are based on the
resource-constrained planning instances used by Eifler et
al. [Eifler et al., 2020a]. These consist of variants of
Blocksworld, Nomystery, Rovers and TPP. In all domains,
the action-cost budget b is set to 1.5 times the optimal cost
necessary to achieve all hard goals (this setting allows to
achieve some, but not very many, additional temporal soft
goals). The Blocksworld is a version with two hands. No-
mystery is a simple transportation domain over a road-map
graph. In TPP, multiple markets offer different goods, which
need to be bought and transported to a depot. In Rovers, one
has to navigate a road map, take rock/soil samples, and take
pictures of objectives with limited view. From each of these
domains we selected 10 instances with a fixed number of hard
goals (Blocksworld 6, Nomystery 4, Rovers 6 and TPP 4).

To generate hidden target formulas for our experiments, we
used the LTL templates given in Table 1. For each planning
task τ = (V,A, c, I,Ghard, Gsoft, b) we iteratively instanti-
ated each template with random facts from

⋃
a∈A eff a. For

templates up to size 4 we also included extended versions,
by instantiating a or b with a conjunction or disjunction of
two facts. Then, for each candidate formula φ we checked
whether φ is non-tautological: (τ, φ) is added to our bench-
mark set only if both Ghard ∪ {φ} and Ghard ∪ {¬φ} are solv-
able. For each task τ , we included at most two formulas based
on the same template. To guaranty termination we skip a tem-
plate after at most 30 failed candidate formula checks. This
procedure generated on average 30 formulas per task, result-
ing in a benchmark set of 1284 task-formula pairs.

5.2 Hypothetical Best-Case for Plan Generation
In practice, plan generation cannot be tailored to the plan-
ning formula φt, as that is hidden in the user’s head. Yet,
intuitively, it is important for the example plans to be bal-
anced: same numbers of positive and negative instances. A
highly imbalanced set of examples can be expected to impede
formula learning, as it will fail to clarify the distinction line
between the two classes.

We evaluate this hypothesis here by exploring two differ-
ent setups for plan generation: the realistic application setup
Genapp where plans are generated without knowledge of φt;
vs. the hypothetical idealized setup Genideal where we gener-
ate perfectly balanced example plan sets by enforcing φt and
¬φt each in half of the plan-generation runs. (Kim et al.’s
[2019] experiment setup featured a related construction.)

The idealized setup also serves to shed light on what could
potentially be achieved in future work by advanced methods
trying to incorporate partial information about the user pref-
erence (i. e., what kinds of structures are of interest).

5.3 Evaluation with Respect to the Target Formula
In our experiments, to evaluate the quality of the learned for-
mula, our foremost criterion naturally is the degree of direct
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relation to the hidden target formula φt, according to the cat-
egories (a)–(e) discussed in Section 4.1. Note that checking
these relations involves expensive implication tests, identify-
ing entailments in plan space. Our implementation works as
follows. The context of each test is a planning task τ with
hard goalsGhard. Given target formula φt and learned formula
φl, we test whether (1) τ |= φl ⇒ φt and (2) τ |= φt ⇒ φl.
Each of these tests is performed through compilation into a
modified planning task, namely Ghard ∪ {φl,¬φt} for (1) and
Ghard ∪ {¬φl, φt} for (2), where LTL hard goals are encoded
through compilation into goal facts. Each test succeeds iff the
corresponding planning task is unsolvable.

All experiments were run on Intel E5-2660 machines run-
ning at 2.20 GHz with a memory limit of 4GB. The example
plan generation and the formula learning had time limits of
30min each. As evaluating φt with respect to φl can be very
time consuming, we used a timeout of 2h for this step. For
Genapp we generated up to 50 example plans, and for Genideal
we generated up to 25 positive and 25 negative examples.

6 Experimental Results
Our evaluation is structured into five parts. The first two parts
evaluate plan generation, in terms of computational perfor-
mance, and the balance of the resulting plan sets. The third
part evaluates the quality of the learned formulas relative to
the hidden target formula, as a function of target formula size,
plan generation method, and number n of annotated example
plans. In the fourth part we give some illustrative examples
and conclude in the fifth part with a brief evaluation of the al-
ternative application of our techniques as a new form of plan-
space explication.

6.1 Plan Generation: Computational Performance
Figure 1 shows the average number of plans generated over
time. Top-k planning (TopK) clearly produces most plans
fastest, followed by randomized hFF (RNDhFF). Agile diverse
planning (AgDiv) generates about half of the requested 50
plans within the given time limit. Top-k planning with per-
mutation filter (TopKFil) is least apt at generating many
example plans; the permutation filtering turns out to be quite
aggressive given the top-k search output, effectively cutting
off plan generation after a few seconds.

100 101 102 103

1
5
10
15
20
25
30
35
40
45
50

time in sec

av
g
#p

la
ns TopK
TopKFil
AgDiv
RNDhFF

Figure 1: Average number of plans generated over time.

6.2 Plan Generation: Balance
At least one positive and negative example is necessary for the
learning step. So the first question is in how many of our 1284
benchmark instances (task-formula pairs) this is the case. The

answer is: 205 for TopK, 536 for TopKFil, 659 for AgDiv,
and 628 for RNDhFF. The most striking observation concerns
TopK, which generates the largest number of example plans,
yet often yields examples of only one category. This is due to
its tendency to generate plan permutations.

In what follows, we consider, for each plan-generation
method, only those benchmark instances where both positive
and negative example plans are generated. The set of all these
benchmark instances (union across plan-generation methods)
is denoted Ip&n. Figure 2 (left) evaluates how balanced the
sets of example plans are for each plan-generation method.

It may seem surprising here at first, given the above, that
TopK generates the most balanced example plan sets within
Ip&n. On closer inspection, this is somewhat due to the
smaller benchmark basis underlying the data for TopK. As
Figure 2 (right) shows, on these 205 benchmark instances also
AgDiv and RNDhFF tend to be more balanced. Overall, the
superior plan generation algorithm in terms of balancedness
is TopKFil, which exhibits strong behavior especially for
target formulas relating to reachability (e.g. ♦φ).
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Figure 2: Relative number of negative examples for each plan-
generation method, over all benchmark instances Ip&n (left), and
over only those 205 instances usable with TopK (right). Plot breadth
as a function of y indicates the number of benchmark instances for
which y% of the generated examples plans are negative.

6.3 Quality of Learned Formulas
Figure 3 provides our evaluation of learning quality. Our
main criterion for assessing quality are categories (a)–(e) rel-
ative to the target formula. We say that an instance is solved if
either the target formula or an equivalent formula is learned.

Consider first the leftmost part of the figure. It provides
data for the realistic plan-generation setup Genapp where the
hidden target formula is not taken into account in plan gener-
ation. To make the complete picture visible, we also include
those cases where learning was not possible as only posi-
tive/negative example plans were generated. For very small
formulas (size 2 and 3), all plan generation approaches solve
a large fraction of those benchmark instances (Ip&n) where
learning could be run. For larger target formulas performance
drops sharply though, with less than a quarter of the bench-
mark instances being solved.

Comparing across plan-generation methods, up to size 5,
AgDiv is best, closely followed by RNDhFF and TopKFil.
For larger sizes, there is no superior method. This ranking
of plan generation approaches is exactly the ranking accord-
ing to the number of instances in Ip&n (659 AgDiv, 628
RNDhFF, 536 TopKFil, 205 TopK). While TopK tends to
produce highly balanced plan sets (Figure 2), it does not pro-
duce a notably better ratio of high-quality learned formulas.
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Figure 3: Relative number of instances where the same, an equivalent formula, an over/under-approximation, or no related formula at all
is found. Order of plan-generation approaches for each formula size: TopK, TopKFil, AgDiv, RNDhFF. Rightmost plot: distribution of
number of plans needed, in Genideal setup, to solve an instance , for those instances commonly solved by TopKFil, RNDhFF, and AgDiv.

Turning now to the middle part of Figure 3, we vividly see
that the bottleneck of our approach is the quality of plan gen-
eration. Recall that in Genideal, the plan-generation methods
have access to the target formula and produce perfectly bal-
anced example plan sets. Learned-formula quality increases
dramatically relative to Genapp, with formula sizes 1 and 2
consistently solved perfectly, equivalent formulas learned fre-
quently even for large formulas, and formulas unrelated to the
target learned almost never. The key question for future work
is how to alleviate this performance gap between Genapp and
Genideal. We get back to this in the conclusion.

Consider finally the rightmost part of Figure 3, which pro-
vides an evaluation of plan-generation methods in terms of
the number n of example plans needed to solve a benchmark
instance. To enable a meaningful comparison, we require
commonly solved benchmarks, need to exclude TopK, and
exclude uninteresting instances solved by any method with
n = 1. Given these restrictions, Genapp does not provide a
sufficient basis for a meaningful comparison, so we consider
Genideal instead. Overall RNDhFF performs best. Its median
is never larger than n = 10, and variance is small. TopKFil
and AgDiv in contrast frequently suffer from high n. We em-
phasize that these results are important, as annotating many
example plans (larger n) is a burden on the user.

6.4 Illustration: Example Learned Formulas
Let’s consider some examples for illustration, covering the
different possible relations to the target formula.

For simple ordering constraints like the Rovers target
formula ¬have-soil-analysis(r0, w0) U at(r1, w2), often the
exact target formula is learned. For the target formula
♦(in(p1, t1)∨at(t1, l5)) in Nomystery, we learned the smaller
equivalent formula ♦in(p1, t1), which is obviously an under-
approximation though equivalence is difficult to see. In TPP,
the underapproximation ♦at(t1,m0) learned for the target
¬at(t0,m0) U at(t1,m0) should also be recognizable.

One bad case is the target formula �¬(holding(b2, h0) ∨
holding(b0, h1)), restricting the hand usage for two blocks in
Blocksworld. On this benchmark instance, we learned the
overapproximation ¬holding(b2, h0) U holding(b0, h0). Al-
though the formulas partially contain the same facts, it is quite
difficult to determine how they relate to each other.

6.5 Alternative Use: Plan Space Explication
While learned formulas not identical to the target formula
may not be easily recognizable to the user, as mentioned be-
fore they can also serve for plan space explication in the sense
of Eifler et al. [2020a]. In this alternative application setting,
the task is not to learn a hidden target formula, but instead to
automatically identify new formulas entailing, or entailed by,
a known (previously already specified) plan preference φt.
This may elucidate non-obvious properties of plan space.

For illustration, in TPP for target formula ♦at(t1,m1)
we learn the underapproximation ♦¬at(t1, d), and hence
uncover the entailment τ |= ♦¬at(t1, d) ⇒ ♦at(t1,m1)
which shows that, if truck t1 leaves depot d, then it
must visit market m1. In Blocksworld for target formula
♦(ontable(b4)∧ontable(b1)) we learn the overapproximation
clear(b3) U ontable(b1), and uncover the entailment τ ′ |=
♦(ontable(b4) ∧ ontable(b1)) ⇒ clear(b3) U ontable(b1)
which shows that, if b1 and b4 are both on the table at some
point, then b3 must stay clear until b1 is on the table.

7 Conclusion
We have assembled technology learning user preferences
from annotated plan examples. The results are encouraging
and constitute a first step towards the deeper investigation of
this form of preference elicitation in planning.

The key question for future work is how to alleviate the
large performance gap between practical plan generation
(without access to the hidden target formula) and idealized
plan generation (with such access). Presumably, addressing
this requires some information about the target formula, e. g.
what kinds of objects or predicates are of interest, which for-
mula templates/temporal structures are of interest, etc. Given
such information, it may be possible to devise plan-diversity
measures tailored to produce balanced example sets.
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