
On Weak Stubborn Sets in Classical Planning

Silvan Sievers1 and Martin Wehrle
1University of Basel, Switzerland

silvan.sievers@unibas.ch

Abstract
Stubborn sets are a pruning technique for state-
space search which is well established in optimal
classical planning. In this paper, we show that weak
stubborn sets introduced in recent work in planning
are actually not weak stubborn sets in Valmari’s
original sense. Based on this finding, we introduce
weak stubborn sets in the original sense for plan-
ning by providing a generalized definition analo-
gously to generalized strong stubborn sets in pre-
vious work. We discuss the relationship of strong,
weak and the previously called weak stubborn sets,
thus providing a further step in getting an overall
picture of the stubborn set approach in planning.

1 Introduction
Planning as search is a leading approach to optimal domain-
independent planning. As the induced search spaces gener-
ally grow exponentially in the size of the compact planning
problem description, additional pruning functions are desired
to cut down the search space’s size. Pruning functions are
supposed to retain at least one (optimal) solution.

Stubborn sets have been introduced as a pruning func-
tion for model checking Petri nets [Valmari, 1989], in the
form of strong and weak stubborn sets. In the last decade,
stubborn sets have also been investigated for AI planning
in various ways [Wehrle and Helmert, 2012; Alkhazraji et
al., 2012; Wehrle et al., 2013; Wehrle and Helmert, 2014;
Winterer et al., 2017; Al-Khazraji, 2017; Keren et al., 2018;
Wilhelm et al., 2018; Schulte, 2018; Gnad et al., 2019;
Röger et al., 2020]. As pointed out by Valmari in his original
work, weak stubborn sets potentially allow for more pruning
than their strong counterpart. However, while the strong ver-
sion has been considered rather extensively, weak stubborn
sets have hardly been analyzed for AI planning so far.

In this work, we revisit weak stubborn sets for plan-
ning. We show that recently discussed pruning functions
called weak stubborn sets for planning [Winterer et al., 2017;
Al-Khazraji, 2017; Wilhelm et al., 2018] are actually not
weak stubborn sets in the formal sense as introduced by Val-
mari [1989]. Motivated by this finding, we introduce weak
stubborn sets in Valmari’s sense for classical planning. We
define them as generalized weak stubborn sets, analogously to

generalized strong stubborn sets [Wehrle and Helmert, 2014],
and investigate their relationship to existing stubborn set ap-
proaches. Altogether, our work provides a further step in get-
ting an overall picture and understanding of the stubborn set
approach in AI planning.

2 Preliminaries
We consider optimal SAS+ planning, where states of the
world are represented based on a finite set of finite-domain
variables V . Every variable v ∈ V has a finite domain D(v).
For a subset P ⊆ V , a partial state s is defined as a function
s : P → D(P) that maps the variables in P to the domain of
their variables, where D(P) is defined as ∪v∈PD(v). We say
that s is defined on variables in P . For all remaining variables
V \ P that are not contained in P , the partial state s is unde-
fined. In the special case where s is defined on all variables in
V , we call s a state. A variable/value assignment {v 7→ p} is
called a fact. For a partial state s and fact {v 7→ p}, we will
sometimes use the notation s |= {v 7→ p} to denote that v
has value p in s. Furthermore, for partial states s and s′ and a
variable v, we say that s and s′ match on v iff s(v) and s(v′)
are defined, and s(v) = s′(v). We say that s satisfies s′ if s
and s′ match on all variables where s′ is defined.

States are changed with operators o = 〈pre(o), eff (o)〉,
where pre(o) and eff (o) are partial states. Every operator o
has an associate non-negative cost cost(o) ∈ R+

0 . An opera-
tor o is applicable in state s iff s satisfies pre(o). In this case,
the application of o in s yields the successor state o(s), where
o(s) is obtained from s by changing the values of all variables
in s such that o(s) satisfies eff (o) and retains the values of the
variables in s where eff (o) is undefined. For a state s, the set
of applicable operators in s is denoted with app(s).

A planning task Π = (V,O, s0, s?) is defined as a tuple
consisting of a finite set of finite-domain variables V , a finite
set of operators O, an initial state s0 and a partial goal state
s?. A sequence π of operators which is iteratively applicable
starting in a state s and which leads to a state s′ such that s′
satisfies the partial goal state is called a plan for s. A plan
for Π is a plan for s0 of Π. States for which a plan exists are
called solvable, other states are called unsolvable. The cost of
a plan is the summed costs of each operator of the sequence.
A plan π for s is called optimal if its cost is minimal among
all plans for s. A plan π for s is called strongly optimal if π
is optimal for s and contains a minimal number of zero-cost

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4167

operators among all optimal plans for s. Our objective is to
find an optimal plan for Π.

2.1 Safe Pruning with Stubborn Sets
We consider planning as search using safe pruning functions
that restrict the successors of a state s to subsets of app(s) as
introduced by Wehrle and Helmert [2014]. A pruning func-
tion is called safe if for every state s, the costs of an optimal
plan for s in the pruned state space and in the original state
space are the same.

As a basis for the paper, we provide the notions of gener-
alized strong stubborn sets. Stubborn sets crucially rely on
the notion of interference. In previous work, interference has
been defined both in a state-based fashion [e.g., Wehrle and
Helmert, 2014], as well as in a syntax-based fashion as an
approximation thereof [e.g., Alkhazraji et al., 2012]. As the
differentiation will be crucial for the analyses in the follow-
ing, we will introduce both the state-based notions (now) and
syntactic-based notions (later in the paper), using the naming
convention to leave out the name “state-based” for brevity.
We start by giving the definition of disabling operators and
interference according to Wehrle and Helmert [2014].

Definition 1 (disabling, conflicting). Let o1 and o2 be opera-
tors of a planning task Π, let s be a state of Π, and let o1 and
o2 be both applicable in s. Then we say that

• o1 disables o2 in s if o2 /∈ app(o1(s)).

• o1 disables o2 on fact {v 7→ p} in s if pre(o2) |= {v 7→
p} and o1(s) 6|= {v 7→ p}.
• o1 and o2 conflict in s if s12 = o2(o1(s)) and s21 =
o1(o2(s)) are both defined and differ (i.e., s12 6= s21).

Two operators interfere in a state if they cannot be executed
in both possible orderings, leading to the same state. We dis-
tinguish interference and weak interference.

Definition 2 (interference). Let o1, o2 be operators of a plan-
ning task Π, and let s be a state of Π. We say that o1 weakly
interferes with o2 in s if they are both applicable in s, and

• o1 disables o2 in s, or

• o1 and o2 conflict in s.

Furthermore, we say that o1 interferes with o2 in s if they are
both applicable in s, and

• o1 weakly interferes with o2 in s, or

• o2 disables o1 in s.

The differentiation of weak interference and interference
will be important for the differentiation of strong and weak
stubborn sets. We observe that the notion of interference is
symmetric (conflict is a symmetric notion and two operators
interfere if one disables the other, no matter the direction),
but that this is not the case for weak interference (i.e., o1 can
weakly interfere with o2 in a state s, while o2 does not nec-
essarily weakly interfere with o1 in s). Also note that weak
interference implies interference.

Furthermore, for the definition of generalized strong stub-
born sets, we need the notion of necessary enabling sets.

Definition 3 (necessary enabling set, Wehrle and
Helmert 2014). Let Π be a planning task, let o be an
operator of Π, and let Seq be a set of operator sequences
applicable in the initial state of Π. A necessary enabling set
for o and Seq is a set N of operators such that every operator
sequence in Seq which includes o as one of its operators also
includes an operator o′ ∈ N before the first occurrence of o.

We now provide the conditions needed for general-
ized strong stubborn sets, introduced by Wehrle and
Helmert [2014]. For a planning task Π = (V,O, s0, s?), a
solvable state s in Π, and an associated envelope E ⊆ O,
we define the task ΠE

s = (V,E , s, s?).1 For such a task ΠE
s ,

we define Opt as the set of strongly optimal plans for ΠE
s ,

and SOpt as the set of states that are visited by at least one
strongly optimal plan in Opt . Let T ⊆ O be a set of opera-
tors. We define the following conditions for E and T :
C1: E includes all operators from at least one strongly opti-

mal plan for s (in task Π).
C2: T contains at least one operator from at least one

strongly optimal plan for ΠE
s .

C3: For every o ∈ T not applicable in s, T contains a neces-
sary enabling set for o and Opt .

C4: For every o ∈ T applicable in s, T contains all operators
o′ ∈ E such that o′ interferes with o in any state s′ ∈
SOpt .

We can now define generalized strong stubborn sets.
Definition 4 (generalized strong stubborn set, Wehrle and
Helmert 2014). Let Π = (V,O, s0, s?) be a planning task,
E an associated envelope, and s a state of Π. A generalized
strong stubborn set (GSSS) in s is a set of operators T ⊆ O
with the following properties. If s is an unsolvable state or a
goal state, every set T ⊆ O is a GSSS in s. If s is a solvable
non-goal state, then T is a GSSS in s if conditions C1, C2, C3
and C4 are true for E and T .

Applying only the operators from a GSSS in a state s guar-
antees that for at least one strongly optimal plan π in s, there
is a permutation π′ of π such that π′ is not pruned in s and π′
is a plan in s. Hence, GSSS yield safe pruning functions.

As computing the interference relationship effectively re-
lies on computing the set of states in SOpt , which is com-
putationally as hard as solving the planning task itself, this
computation has been approximated in practice. A simple
approximation is checking the interference based on the pure
operator syntax (we will come back to this in the next sec-
tion). A more sophisticated approximation for both SOpt and
the operator interference relation is to use mutex-based inter-
ference. Two facts f and f ′ are called mutex if no reach-
able state satisfies both f and f ′ [Bonet and Geffner, 2001].
While the general computation of mutexes is as hard as solv-
ing the original planning task, there exist sound but incom-
plete polynomial-time algorithms to compute mutexes up to
a fixed size [e.g., Rintanen, 2008; Helmert, 2009]. Two oper-
ators o and o′ are called mutex if there exists a pair of facts

1Wehrle and Helmert [2014] characterize an envelope as “an op-
erator set that is known to be sufficient in the sense that we can safely
treat all operators outside the envelope as if they did not exist”.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4168

(f, f ′) such that f and f ′ are mutex, f is contained in the
precondition of o, and f ′ is contained in the precondition of
o′. For mutex operators, we know that there is no reachable
state where both of them are applicable, hence in particular
they do not interfere in any state in SOpt .

3 The Operator Shifting Property
In his original work, Valmari [1989] stated that stubborn sets
T in a state s remain stubborn sets in the successor state o(s)
if o is not contained in T (see Theorem 1.19 in his paper).
While this stubborn property holds for strong and weak stub-
born sets, it does no longer hold for GSSS, as GSSS restrict
the consideration to preserve only at least one strongly opti-
mal plan (instead of preserving a permutation of every plan)
for s: If there are strongly optimal plans π1 and π2 for s, and
a GSSS T only contains operators in π1, then T does not need
to be a GSSS in o(s) if o is the first operator of π2.2

In the following, we focus on a slightly more general prop-
erty to characterize stubborn sets, which reflects the original
key idea of stubborn sets on the one hand, but abstracts away
from the set of plans that are preserved. We call this property
“operator shifting property”.

Definition 5 (operator shifting property). Let Π be a planning
task, s be a state of Π and T be a subset of the operators of
Π. We say that T has the operator shifting property in s if for
all plans π = o1 . . . on for s with {o1, . . . , on} ∩ T 6= ∅, the
following holds, assuming oi to be the operator with minimal
index that is contained in T (i.e., o1, . . . oi−1 6∈ T):

1. oi can be shifted to the front of π, i.e., π′ =
oio1 . . . oi−1oi+1 . . . on is a plan, and

2. oi is also applicable in all intermediate states
oj(. . . (o1(s)) . . .) for j = 1, . . . , i− 1.

Valmari [1989] already showed in the derivation of stub-
born sets that this property holds for both strong and weak
stubborn sets. Later on, Wehrle and Helmert [2014] showed
in the safety proof of GSSS that the operator shifting property
also holds for GSSS. However, as we will see in the follow-
ing, the recently considered pruning techniques in planning
which have been called weak stubborn sets, including the ap-
proaches by Winterer et al. [2017], Al-Khazraji [2017], and
Wilhelm et al. [2018], do not satisfy (the second part of) the
operator shifting property. All of these recent techniques use

2To see this, consider the planning task with initial state s0 =
{vi 7→ 0} ∪ {G 7→ 0} for 1 ≤ i ≤ 6, goal s? = {G 7→ 1}, and
operators oi with pre(oi) = {vi 7→ 0} and eff (oi) = {vi 7→ 1}
for i = 1, . . . , 4, and operators o5 and o6 with pre(o5) = {v1 7→
1, v2 7→ 1}, pre(o6) = {v3 7→ 1, v4 7→ 1} and eff (oj) = {G 7→
1} for j = 5, 6, all with costs of 1. Note that we generally use
upper case letters to denote variables mentioned in the goal. In s0,
one can choose to use o1, o2 and o5 or alternatively o3, o4 and o6 to
optimally achieve the goal. For example, T = {o1} is a GSSS in
s0 because it contains an operator from a strongly optimal plan for
s0, and all interfering operators are contained as well (as there are
none of those). However, as o3 starts a strongly optimal plan in s0
as well, T is no longer a GSSS in s′ := o3(s0) because o1, o2, o5
yield a plan of higher cost for s′ than o4, o6 (and hence, T does not
contain an operator from a strongly optimal for s′).

notions of interference solely based on syntactically check-
ing preconditions and effects of operators. We restate their
definitions in the following.

Definition 6 (syntactic weak interference). Let o1, o2 be op-
erators of a planning task Π. We say that o1 syntactically
weakly interferes with o2 if there are facts f1 = {v 7→ p}
and f2 = {v 7→ p′} with p 6= p′ such that eff (o1) |= f1 and

• pre(o2) |= f2, or

• eff (o2) |= f2.

Furthermore, o1 syntactically interferes with o2 if it syn-
tactically weakly interferes with o2 or eff (o2) |= f2 and
pre(o1) |= f1.

Using interference approximations like Def. 6 is sound be-
cause every superset of interference relations still yields a
safe pruning function, to the expense of less pruning power.
For our later analysis, we restate the definition of weak stub-
born sets along the lines of the definition used by Winterer et
al. [2017], Al-Khazraji [2017], Wilhelm et al. [2018]. As we
will see that these sets are not weak stubborn sets in the sense
of Valmari, we redefine their name and call them “compli-
ant stubborn sets” in the following. The definition needs the
further notion of disjunctive action landmarks for a state s
[Helmert and Domshlak, 2009], i.e., sets of operators L such
that every plan for s contains at least one operator in L.

Definition 7 (compliant stubborn sets). Let Π =
(V,O, s0, s?) be a planning task, and let s be a state
of Π. A compliant stubborn set (CSS) in s is a set of
operators T ⊆ O with the following properties. If s is an
unsolvable state or a goal state, every set T ⊆ O is a CSS
in s. If s is a solvable non-goal state, then the following
conditions must be true for T to be a CSS in s:

1. T contains a disjunctive action landmark for s.

2. For every o ∈ T that is not applicable in s, T contains a
necessary enabling set for o and the set of all applicable
operator sequences in s.

3. For every o ∈ T that is applicable in s, T contains all
operators o′ such that o syntactically weakly interferes
with o′.

In contrast to GSSS, the condition for applicable operators
is simplified to syntactic weak interference. As pointed out
in the literature, CSS yield safe pruning functions. However,
they do not satisfy the operator shifting property.

Theorem 1. Compliant stubborn sets do not satisfy the oper-
ator shifting property.

Proof. We provide an example to show that Def. 5 is not
satisfied. Consider the planning task with initial state s0 =
{v 7→ 0, X 7→ 0, Y 7→ 0, Z 7→ 0}, goal s? = {X 7→ 1, Y 7→
1, Z 7→ 1}, and operators o1, o2, o3 (cost = 1) with

• pre(o1) = {v 7→ 0}, eff (o1) = {v 7→ 1, X 7→ 1}
• pre(o2) = {v 7→ 1}, eff (o2) = {v 7→ 0, Y 7→ 1}
• pre(o3) = {v 7→ 0}, eff (o3) = {Z 7→ 1}

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4169

s0
o 1

o 2

o
3

o
3

o 1

o 2

s0
ō 1

ō 2

ō
3

ō
3

ō
3

ō 1

ō 2

Figure 1: Compliant vs. stubborn sets

The set T = {o3} is a CSS in s0: T is a disjunctive action
landmark in s0 and the only applicable operator o3 does not
syntactically weakly interfere with o1 or o2. Hence neither o1
nor o2 needs to be included in T .

We observe that there are two plans for s0, namely π1 =
o1o2o3 and π2 = o3o1o2, as illustrated in the left part of
Fig. 1. T does not satisfy the operator shifting property in
s0 because condition 2. of Def. 5 is not satisfied for π1: Al-
though o3 can be shifted to the front, yielding the plan π2, o3
is not applicable in the intermediate state o1(s0).

The example in the proof of Theorem 1 illustrates a key dif-
ference of stubborn sets and compliant stubborn sets: Stub-
born sets satisfy the operator shifting property, yielding a
state space as shown in the right part of Fig. 1. In contrast,
compliant stubborn sets only allow applying operators from
T in certain (but generally not all) intermediate states, as there
can be “blocks” of operators that (temporarily) disallow ap-
plying operators from T within such a block, yielding a state
space as shown in the left part of Fig. 1.

From a more technical point of view, the operator shifting
property does not hold for CSS because for applicable op-
erators in a CSS, the only requirement to include additional
operators is syntactic weak interference (see bullet point 3 in
Def. 7). To reflect the original idea of weak stubborn sets in
Valmari’s sense, additional operators need to be included in
this case [1989]. The definition of (generalized) weak stub-
born sets addresses this point.

4 Generalized Weak Stubborn Sets
Motivated by the results of the previous section, we formally
adapt Valmari’s weak stubborn sets for classical planning in
the following. We provide a generalized version thereof, anal-
ogously to the generalization of strong stubborn sets [Wehrle
and Helmert, 2014]. For the definition of generalized weak
stubborn sets, we additionally need the notion of enabling.

Definition 8 (enabling). Let o1 and o2 be operators of a plan-
ning task Π, let s be a state of Π. Let o1 be applicable in s,
and o2 be not applicable in s. Then we say that

• o1 enables o2 in s if o2 ∈ app(o1(s)).

• o1 enables o2 on fact {v 7→ p} in s if s 6|= {v 7→ p},
o1(s) |= {v 7→ p}, and pre(o2) |= {v 7→ p}.

Note that enabling o on a precondition fact p in s is a “lo-
cal” property in the sense that there is no conclusion on the
applicability of o in s (in contrast to disabling o on p in s).

In the following definition of generalized weak stubborn
sets, we refer to conditions C1–C3 stated in Section 2.
Definition 9 (generalized weak stubborn set). Let Π =
(V,O, s0, s?) be a planning task, E an associated envelope,
and s a state of Π. A generalized weak stubborn set (GWSS)
in s is a set of operators T ⊆ O with the following properties.
If s is an unsolvable state or a goal state, every set T ⊆ O
is a GWSS in s. If s is a solvable non-goal state, then T is
a GWSS in s if conditions C1, C2, C3 and the following C4’
are true for E and T .

C4’: For all o ∈ T applicable in s, T contains all o′ ∈ E such
that o weakly interferes with o′ in any state s′ ∈ SOpt .
Additionally, for all {v 7→ p} with pre(o) |= {v 7→ p}:
• T contains all operators o′ such that o′ disables o

on fact {v 7→ p} in any state s′ ∈ SOpt , or
• T contains all operators o′ such that o′ enables o

on fact {v 7→ p} in any state s′ ∈ SOpt .
The central difference to GSSS is that GWSS T allow for a

relaxed constraint on the applicable operators in T , i.e., they
generalize condition C4 to C4’: C4’ considers weak inter-
ference instead of interference and additionally requires, for
every precondition fact p of an applicable operator in T , that
T contains either all “disablers” of p or all “enablers” of p.
Always including all disablers yields GSSS (C4’ = C4 in this
case) because including disabling operators means including
interfering operators. Alternatively, GWSS also allow includ-
ing all enablers of p instead.

We remark that in contrast to the definition of GSSS, which
is purely based on the semantics of the planning task, the def-
inition of GWSS additionally relies on a fact-based, and thus
syntax-based, notion of enabling and disabling (cf. Def. 8).
While defining GWSS purely based on the semantics would
be possible by using only the state-based notion of enabling
and disabling, such a definition would no longer allow for
including both enablers and disablers for different precondi-
tion facts of the same operator, thus resulting in a less general
definition. As the original definition of weak stubborn sets
by Valmari [1989] already allowed choosing enablers or dis-
ablers on a fact basis, we define GWSS in the same style.

The correctness proof for GWSS works analogously to the
corresponding proof for GSSS [Wehrle and Helmert, 2014].
Theorem 2. Let T be a GWSS in s. Then the successor prun-
ing function defined as succ(s) := T ∩ app(s) is safe.

Proof. Let s be a solvable non-goal state and T be a GWSS
in s. With the same proof arguments of Wehrle and Helmert,
due to C1, strongly optimal plans for ΠE

s are also strongly
optimal for state s in Π. Hence it suffices to show that T
contains the first operator of a strongly optimal plan for ΠE

s .
Consider a strongly optimal plan π = o1, . . . , on for ΠE

s
where at least one of π’s operators is also contained in T .
Such a plan must exist because of C2. Let k ∈ {1, . . . , n} be
the minimal index for which ok ∈ T , and let s0, . . . , sn be
the sequence of states that are visited by π, such that s0 = s,
and si = oi(s

i−1) for all 1 ≤ i ≤ n. Using the same proof
arguments as Wehrle and Helmert, we observe the following:
• The states s0, . . . , sn are contained in SOpt because π is

strongly optimal.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4170

• The operator ok is applicable in s: Otherwise, because
of C3, T would contain a necessary enabling set N for
ok and Opt . By the definition of necessary enabling sets
and because π ∈ Opt , π would include an operator from
N before ok, thus contradicting the minimality of ok.
• The operator ok does not weakly interfere with any of

the operators o1, . . . , ok−1 in any of the states sj for 0 ≤
j ≤ k − 1: Otherwise, the weakly interfering operators
would be contained in T because of C4’ with o = ok,
which would contradict the minimality of k.

We show that if ok is not already the first operator in π
(i.e., for k > 1), it can be shifted to the front of π. We already
know that ok is applicable in s0, and that o1 is applicable in
s0 (otherwise π would not be applicable in s).

We observe that ok must also be applicable in s1: Assume
the opposite, i.e., assume o1 disables ok in s0. According to
C4’, as ok is applicable in s = s0, for all precondition facts
p of ok, either all disablers or all enablers for p in some state
in SOpt are contained in T , hence in particular all disablers or
enablers for p in states s0, . . . , sk−1.
• Case “all disablers in T ”: If all disablers of p (in partic-

ular in s0) are contained in T , then T must contain o1,
contradicting the minimality of k. Hence in this case, o1
cannot disable ok.

• Case “all enablers in T ”: If o1 disables ok in s0, then o1
disables ok on some precondition fact p in s0. As ok is
applicable in sk−1 (because ok is part of π), it follows
that there must be an operator among o2, . . . , ok−1 that
enables ok on p again in some state s2, . . . , sk−2 (other-
wise ok would not be applicable in sk−1 in π). However,
as all enablers of p in states s1, . . . , sk−2 are already
contained in T , this contradicts the minimality of k.

Overall, we observe that ok is applicable in s1. With the
same proof arguments of Wehrle and Helmert, this argument
can be repeated to show that ok−1 and ok can be swapped in
π, still yielding a valid plan because ok does not weakly inter-
fere with ok−1. Finally, this argument in turn can be repeated
to swap ok to position k − 2, k − 3, . . . , until we get the plan
π′ = ok, o1, . . . , ok−1, ok+1, . . . , on. We observe that π′ is a
permutation of π for which the first operator is contained in
T . This concludes the proof.

The main difference to the proof of Wehrle and Helmert
is the argument why ok can be shifted to the front of π, still
being applicable in all intermediate states s1, . . . , sk−1. In-
formally, if applicable in s0, then ok must stay enabled be-
cause it cannot be disabled, either because all disablers are
already contained in T , or if ok were disabled, then it could
not be enabled once again because all enablers are contained
in T . Hence it is not possible that ok gets disabled and then
enabled again later in s1, . . . , sk−1. In particular, this means
that T satisfies the operator shifting property in s (Def. 5).

We conclude the section with the following result.
Theorem 3. The pruning power of GWSS is exponentially
higher than the pruning power of GSSS.

Proof. We extend Example 2 by Al-Khazraji [2017, Section
4.1.2] which applies for CSS but not directly for GWSS.

For n ≥ 1, consider the planning task with variables V =
{x, y,G1, G2} ∪ {vi | 1 ≤ i ≤ n}, initial state s0 = {V 7→
0 | V ∈ V}, goal s? = {G1 7→ 1, G2 7→ 1}, and operators
o1, o2, o3, ôi, ô

′
i for 1 ≤ i ≤ n (cost = 1) with

• pre(o1) = {x 7→ 0}, eff (o1) = {G1 7→ 1}
• pre(o2) = {x 7→ 0}, eff (o2) = {G2 7→ 1}
• pre(o3) = {x 7→ 0}, eff (o3) = {x 7→ 1, y 7→ 1}
• pre(ôi) = {vi 7→ 0}, eff (ôi) = {y 7→ 1, vi 7→ 1}
• pre(ô′i) = {vi 7→ 1}, eff (ô′i) = {y 7→ 0, vi 7→ 0}.
For both GWSS and GSSS, we use envelopes containing

all operators to satisfy C1 and we use disjunctive action land-
marks to satisfy C2.

In s0, both T1 = {o1} and T2 = {o2} are disjunctive ac-
tion landmarks. We argue that both T1 and T2 already satisfy
the conditions of being GWSS in s0: o1 and o2 are applicable
in s0 and thus, to satisfy C4’, we need to include all opera-
tors o such that o1 or o2 weakly interfere with o. However,
neither o1 nor o2 conflict with or disable any other operator
in the task. Furthermore, we can choose to include all en-
ablers (rather than all disables) of the precondition {x 7→ 0}
of o1 and o2. As there are no such enablers, we do not need
to include any further operators and we conclude that both T1
and T2 are GWSS in s0. The pruned state space with either
of these GWSS contains 3 states (assuming no successors of
goal states are considered): s0, one intermediate state where
either G1 or G2 is set to 1 depending on using T1 or T2, and
a goal state where both G1 and G2 are set to 1.

In contrast, GSSS do not allow the option to include the
enablers, but require including all disablers of {x 7→ 0} in-
stead: Recall that C4, in contrast to C4’, requires including
all operators o which interfere with o1 or o2, which translates
to including all operators o which disable o1 and o2 in any
state, or, in other words, for any precondition of o1 and o2.
(There are no operators conflicting with o1 or o2, and if there
were, they would need to be included in the case of GWSS,
too.) Therefore, any GSSS T in s0 must not only include o1
or o2, but also include o3 because o3 disables o1 and o2 in s0
on {x 7→ 0}. This directly leads to the inclusion of o1 or o2,
depending on which of both we start with. Furthermore, since
o3 is applicable in s0, T must also include ô′i for 1 ≤ i ≤ n
because they conflict with o3. As the operators ô′i are not ap-
plicable in s0, T must also include necessary enabling sets
for them: since every operator ôi is a necessary enabling set
for ô′i for 1 ≤ i ≤ n due to its effect vi 7→ 1, T also includes
all ôi. As a consequence, T contains all operators and there
is no pruning obtained. Since ôi and ô′i can be applied in any
permutation of 〈1, . . . , n〉, leading to different intermediate
states, the state space of the task grows exponentially in n.
Thus GSSS generate a state space exponentially larger than
GWSS, concluding the proof.

5 Relationship To Compliant Stubborn Sets
We analyze the relationship of GWSS and CSS. Although
having similar flavors, GWSS and CSS have orthogonal prop-
erties (called R1 and R2 in the following), which influence
their pruning power, i.e., how much they can prune the set of
applicable operators in a state.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4171

• R1: CSS are stricter than GWSS: CSS can only be ap-
plied with syntactic, not with state-based interference.
This has already been noted by Winterer et al. [2017].
• R2: CSS are less restrictive than GWSS: CSS do not

satisfy the operator shifting property, as operators in a
CSS need not be applicable in all intermediate states of
operator sequences (recall the left part of Fig. 1).

In the following, we consider the pruning power of GWSS
and CSS more closely. For the special case when GWSS are
applied using the syntactic interference relation for C4’ like
CSS, the same disjunctive action landmarks as CSS, and full
envelopes, CSS yield subsets compared to GWSS because
GWSS include the same operators as CSS but additionally
enablers or disablers of applicable operators to satisfy C4’.
Hence, CSS have a higher pruning power in this case.

In contrast, in the general case when GWSS are applied
with state-dependent interference relations (which cannot be
done for CSS), there is no dominance relation.
Theorem 4. GWSS and CSS are incomparable in terms of
pruning power.

Proof. To see that CSS can yield more pruning than GWSS,
consider again the example in the proof of Theorem 1. As we
have already seen there, T = {o3} is a CSS in s0 because
T is a disjunctive action landmark in s0 and o3 does not syn-
tactically weakly interfere with o1 or o2. Therefore, the state
space when using T consists of the linear chain of the fol-
lowing 4 states, which we denote in the format 〈v,X, Y, Z〉:
〈0, 0, 0, 0〉, 〈0, 0, 0, 1〉, 〈1, 1, 0, 1〉, 〈0, 1, 1, 1〉.

In contrast, we show that every GWSS T in s0, using the
full envelope E = {o1, o2, o3}, contains at least both appli-
cable operators o1 and o3. We observe that all three operators
are necessary in any strongly optimal plan. If we choose o1
to satisfy C2, we must include o3 because o1 disables o3 in
s0 and therefore weakly interferes with it. If, however, we
choose o3 to satisfy C2, there are no operators with which o3
weakly interferes, but we must either include all enablers or
disablers of its precondition {v 7→ 0}. If we choose all dis-
ablers, we have to include o1 and we are done. Otherwise,
if we choose all enablers, we have to include o2. Since o2
is not applicable in s0, we have to include o1 as a necessary
enabling set for o2 and the set of all operators. We conclude
by observing that using the minimal GWSS T = {o1, o3}
in s0 yields a state space that additionally contains the states
〈1, 1, 0, 0〉, 〈0, 1, 1, 0〉 and 〈1, 1, 1, 0〉 compared to CSS.

To see that GWSS can yield more pruning than CSS, con-
sider the planning task with initial state s0 = {v 7→ 0, w 7→
0, G1 7→ 0, G2 7→ 0}, goal s? = {G1 7→ 1, G2 7→ 1}, and
operators O = {o1, o2, o3} (cost = 1) with
• pre(o1) = {v 7→ 0}, eff (o1) = {w 7→ 1, G1 7→ 1}
• pre(o2) = {v 7→ 1}, eff (o2) = {w 7→ 2, G2 7→ 1}
• pre(o3) = >, eff (o3) = {v 7→ 1}.
We denote states in the format 〈v, w,G1, G2〉. Consider

GWSS with envelope E = O and the policy to include all
enablers for every precondition fact of an applicable opera-
tor. We show that T = {o1} is a GWSS for s0. Apparently,
choosing o1 satisfies C2. As o1 is applicable in s0, T has to

include all operators o such that o1 weakly interferes with o
in any state. However, o1 does not weakly interfere with o2 in
any state because they cannot be both applicable in any state
(they have mutex preconditions), and o1 does not weakly in-
terfere with o3 because o3 has no precondition and they do
not conflict. To satisfy C4’, T must additionally include all
enablers of o1; however, there are none. Hence, T is a GWSS
for s0, yielding the state space which consists of the linear
chain 〈0, 0, 0, 0〉, 〈0, 1, 1, 0〉, 〈1, 1, 1, 0〉, 〈1, 2, 1, 1〉.

In contrast, every CSS T in s0 must contain all applica-
ble operators: When starting with T = {o1}, this is the
case because o1 and o2 have conflicting effects and are hence
both included, so T must also include o3 as a necessary en-
abling set for o2. Analogous arguments hold when starting
with T = {o2}, and when starting with T = {o3}, T needs
to include o1 due to syntactic weak interference. We con-
clude by observing that using CSS yields the additional states
〈1, 0, 0, 0〉 and 〈1, 2, 0, 1〉 compared to GWSS.

Overall, we observe that properties R1 and R2 orthogo-
nally determine the pruning power of GWSS and CSS. We
think that they deserve further investigation in the future, al-
lowing potentially for more powerful pruning techniques. We
will come back to this point in the conclusions.

6 Evaluation
To complete the picture, we investigate the pruning power of
GWSS, CSS, and GSSS within an A∗ search also in practice.
We use the state-of-the-art saturated cost partitioning (SCP)
heuristic [Seipp et al., 2020] computed over pattern databases
[Edelkamp, 2001], generated systematically up to pattern size
2 and via hill climbing [Haslum et al., 2007], and over Carte-
sian abstractions [Seipp and Helmert, 2018].3

We added implementations of CSS and GWSS to the exist-
ing implementation of GSSS in the planner Fast Downward
20.06 [Helmert, 2006]. As we have seen, GWSS and CSS
are incomparable in their pruning power, because CSS can-
not be applied with state-based interference, but GWSS need
to include additional operators compared to CSS. A partic-
ular objective of the experiments is to investigate the prun-
ing power with respect to this property. Hence we use the
mutex-based interference for GWSS and GSSS as a state-
based approximation. To maximally distinguish GWSS from
GSSS, we always choose to include all enablers rather than
all disablers to satisfy condition C4’ of Def. 9. As the com-
parison needs a common implementation basis, we use the
operator-centric algorithm [Alkhazraji et al., 2012; Wehrle
and Helmert, 2014] rather than the more efficient, state-of-
the-art atom-centric algorithm as the latter is not compatible
with mutex-based interference [Röger et al., 2020]. 4

Our evaluation uses the STRIPS planning benchmarks of
all optimal tracks of all International Planning Competitions

3The comparison of pruning power with the blind and LM-cut
[Helmert and Domshlak, 2009] heuristics yield qualitatively similar
results; see the technical report [Sievers and Wehrle, 2021b].

4We also evaluated GSSS and GWSS without mutex-based inter-
ference in the atom-centric algorithm and found qualitatively similar
results; see the technical report [Sievers and Wehrle, 2021b].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4172

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

GSSS (higher for 49 tasks)

G
W

S
S
(h
ig
h
er

fo
r
1
3
9
ta
sk
s)

elevators

logistics

mprime

mystery

openstacks
rovers

other domains

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

GSSS (higher for 14 tasks)

C
S
S
(h
ig
h
er

fo
r
1
1
0
ta
sk
s)

data-network
psr
rovers

satellite

storage

other domains

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

CSS (higher for 109 tasks)

G
W

S
S
(h
ig
h
er

fo
r
1
2
9
ta
sk
s)

data-network

elevators

logistics

mprime

mystery

openstacks
psr

satellite

storage

other domains

Figure 2: Pruning ratio of GSSS vs. GWSS (left), GSSS vs. CSS (middle), CSS vs. GWSS (right), all with the operator-centric algorithm and
mutex-based interference except with CSS. Highlighted domains: difference of pruning ratio above 0.1 for at least one task.

from 1998 to 2018 which yields a set consisting of 1827 tasks
from 65 domains. We conduct experiments on Intel Xeon
Silver 4114 CPUs using Downward Lab [Seipp et al., 2017]
and impose a memory limit of 3.5 GiB and 30 minutes on
every planner run. The code, benchmarks and experimental
data are published online [Sievers and Wehrle, 2021a].

To assess the pruning power, we define the pruning ratio of
a (completed) search using a pruning function as follows. We
sum up, over all expanded states s, the number of all succes-
sors of s as nall and the number of generated successors of s
(i.e., successors not pruned by the pruning function) as ngen.
We define the pruning ratio as 1− ngen

nall
, yielding values from 0

to 1, where 0 means that no states are pruned and 1 means that
all states are pruned. Figure 2 shows scatter plots comparing
the pruning ratio of all three methods, highlighting domains
where the difference of the pruning ratio is above 0.1.

The results confirm the orthogonal pruning power of the
methods. At the left, we compare GSSS, the previous stan-
dard in classical planning, against GWSS, the generalization
introduced in this work. We observe that GWSS leads to more
pruning than GSSS in 139 tasks while the converse is only
true in 49 tasks. As GSSS and GWSS use the same mutex-
based approximation of state-based interference and only
differ in including enablers (GWSS) compared to disablers
(GSSS) of applicable operators, we conclude that the former
is overall more favorable in terms of pruning power. Using
more sophisticated strategies for deciding when to include all
disablers or all enablers could possibly increase the pruning
power further. The middle plot compares GSSS against CSS.
We observe that CSS, like GWSS, lead to more pruning com-
pared to GSSS, although the differences are smaller. We learn
that using state-based interference (like the mutex-based by
GSSS), but including additional disablers compared to CSS,
does mostly not pay off in pruning compared to the pure syn-
tactic interference approximation used by CSS. Finally, at the
right, we directly compare CSS against GWSS. We again see
that GWSS are orthogonal to CSS (slightly favoring GWSS),
thus also confirming our previous theoretical investigation.

We conclude that GWSS are favorable in terms of pruning
compared to GSSS, and that the orthogonal pruning power

of GWSS and CSS is also reflected in practice. We finally
remark that the differences in pruning do not translate to large
changes in coverage (i.e., number of solved tasks), which is
at most 3. The technical report includes full coverage results.

7 Conclusions
We have investigated weak stubborn sets for planning in the
light of the operator shifting property. We have learned that
sets called weak stubborn sets in earlier work in planning are
not weak stubborn sets in the original sense. Based on this
finding, we have formally introduced generalized weak stub-
born sets for planning, and related them to existing stubborn
set approaches.

A promising direction for future research is to further re-
lax the operator shifting property, still yielding safe pruning
functions. As we have seen, the more general operator shift-
ing property of CSS compared to stubborn sets is a result of
“simply” excluding certain disabling operators. If stubborn
sets are applied with syntactic interference, which is often
done in practice anyway (e.g., because it allows for a more
efficient implementation, see Röger et al., 2020), then the
question arises if the operator shifting property can be fur-
ther relaxed such that larger “operator blocks” are obtained,
resulting in smaller sets and higher pruning power. For ex-
ample, for an operator o ∈ T , can we identify cases where an
operator o′ can be left out of T even though o′ is disabled by
o? Can such information be synthesized algorithmically and
in a generic way? Answers to such questions will potentially
show ways to a further level of safe pruning functions.

Acknowledgments
We thank the anonymous reviewers for their comments,
which helped improve the paper. Silvan Sievers has received
funding for this work from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 817639).
Moreover, Silvan Sievers was partially supported by TAI-
LOR, a project funded by the EU Horizon 2020 research and
innovation programme under grant agreement no. 952215.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4173

References
[Al-Khazraji, 2017] Yusra Al-Khazraji. Analysis of Par-

tial Order Reduction Techniques for Automated Planning.
PhD thesis, University of Freiburg, 2017.

[Alkhazraji et al., 2012] Yusra Alkhazraji, Martin Wehrle,
Robert Mattmüller, and Malte Helmert. A stubborn set al-
gorithm for optimal planning. In Proc. ECAI 2012, pages
891–892, 2012.

[Bonet and Geffner, 2001] Blai Bonet and Héctor Geffner.
Planning as heuristic search. AIJ, 129(1):5–33, 2001.

[Edelkamp, 2001] Stefan Edelkamp. Planning with pattern
databases. In Proc. ECP 2001, pages 84–90, 2001.

[Gnad et al., 2019] Daniel Gnad, Jörg Hoffmann, and Mar-
tin Wehrle. Strong stubborn set pruning for star-topology
decoupled state space search. JAIR, 65:343–392, 2019.

[Haslum et al., 2007] Patrik Haslum, Adi Botea, Malte
Helmert, Blai Bonet, and Sven Koenig. Domain-
independent construction of pattern database heuristics for
cost-optimal planning. In Proc. AAAI 2007, pages 1007–
1012, 2007.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proc. ICAPS 2009,
pages 162–169, 2009.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. JAIR, 26:191–246, 2006.

[Helmert, 2009] Malte Helmert. Concise finite-domain rep-
resentations for PDDL planning tasks. AIJ, 173:503–535,
2009.

[Keren et al., 2018] Sarah Keren, Avigdor Gal, and Erez
Karpas. Strong stubborn sets for efficient goal recognition
design. In Proc. ICAPS 2018, pages 141–149, 2018.

[Rintanen, 2008] Jussi Rintanen. Regression for classical
and nondeterministic planning. In Proc. ECAI 2008, pages
568–572, 2008.

[Röger et al., 2020] Gabriele Röger, Malte Helmert, Jendrik
Seipp, and Silvan Sievers. An atom-centric perspective on
stubborn sets. In Proc. SoCS 2020, pages 57–65, 2020.

[Schulte, 2018] Tim Schulte. Stubborn sets pruning for pri-
vacy preserving planning. In Proc. SoCS 2018, pages 178–
183, 2018.

[Seipp and Helmert, 2018] Jendrik Seipp and Malte
Helmert. Counterexample-guided Cartesian abstrac-
tion refinement for classical planning. JAIR, 62:535–577,
2018.

[Seipp et al., 2017] Jendrik Seipp, Florian Pommerening,
Silvan Sievers, and Malte Helmert. Downward Lab. https:
//doi.org/10.5281/zenodo.790461, 2017.

[Seipp et al., 2020] Jendrik Seipp, Thomas Keller, and Malte
Helmert. Saturated cost partitioning for optimal classical
planning. JAIR, 67:129–167, 2020.

[Sievers and Wehrle, 2021a] Silvan Sievers and Martin
Wehrle. Code, benchmarks and experiment data for the

IJCAI 2021 paper “On Weak Stubborn Sets in Classical
Planning”. https://doi.org/10.5281/zenodo.4746377,
2021.

[Sievers and Wehrle, 2021b] Silvan Sievers and Martin
Wehrle. On weak stubborn sets in classical planning:
Technical report. Technical Report CS-2021-002, Univer-
sity of Basel, Department of Mathematics and Computer
Science, 2021.

[Valmari, 1989] Antti Valmari. Stubborn sets for reduced
state space generation. In Proc. APN 1989, pages 491–
515, 1989.

[Wehrle and Helmert, 2012] Martin Wehrle and Malte
Helmert. About partial order reduction in planning and
computer aided verification. In Proc. ICAPS 2012, pages
297–305, 2012.

[Wehrle and Helmert, 2014] Martin Wehrle and Malte
Helmert. Efficient stubborn sets: Generalized algorithms
and selection strategies. In Proc. ICAPS 2014, pages
323–331, 2014.

[Wehrle et al., 2013] Martin Wehrle, Malte Helmert, Yusra
Alkhazraji, and Robert Mattmüller. The relative pruning
power of strong stubborn sets and expansion core. In Proc.
ICAPS 2013, pages 251–259, 2013.

[Wilhelm et al., 2018] Anna Wilhelm, Marcel Steinmetz,
and Jörg Hoffmann. On stubborn sets and planning with
resources. In Proc. ICAPS 2018, pages 288–297, 2018.

[Winterer et al., 2017] Dominik Winterer, Yusra Alkhazraji,
Michael Katz, and Martin Wehrle. Stubborn sets for fully
observable nondeterministic planning. In Proc. ICAPS
2017, pages 330–338, 2017.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4174

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.4746377

	Introduction
	Preliminaries
	Safe Pruning with Stubborn Sets

	The Operator Shifting Property
	Generalized Weak Stubborn Sets
	Relationship To Compliant Stubborn Sets
	Evaluation
	Conclusions

