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Petr Tomášek1∗ , Karel Horák1 , Aditya Aradhye1 ,
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Abstract
We study the two-player zero-sum extension of the
partially observable stochastic shortest-path prob-
lem where one agent has only partial information
about the environment. We formulate this problem
as a partially observable stochastic game (POSG):
given a set of target states and negative rewards for
each transition, the player with imperfect informa-
tion maximizes the expected undiscounted total re-
ward until a target state is reached. The second
player with the perfect information aims for the
opposite. We base our formalism on POSGs with
one-sided observability (OS-POSGs) and give the
following contributions: (1) we introduce a novel
heuristic search value iteration algorithm that iter-
atively solves depth-limited variants of the game,
(2) we derive the bound on the depth guarantee-
ing an arbitrary precision, (3) we propose a novel
upper-bound estimation that allows early termina-
tions, and (4) we experimentally evaluate the algo-
rithm on a pursuit-evasion game.

1 Introduction
Stochastic shortest path (SSP) problem [Bertsekas and Tsit-
siklis, 1991; Bertsekas, 1995] belongs to classical problems
in which an agent aims to find an optimal plan to reach a tar-
get state in a stochastic environment (a problem with indefi-
nite horizon). The problem can be modeled as a Markov De-
cision Process (MDP) where the objective is an undiscounted
sum of rewards1 – e.g., for each transition, the agent receives
a penalty, and thus the agents want to reach the target state
where no additional penalty is received. This model naturally
arises in many fields including robotics [Lim et al., 2013;
Saisubramanian et al., 2019], wireless networks [Chen et al.,
2007] or model checking [Norman et al., 2005].

Throughout the years, many variants of the original prob-
lem have emerged. We focus on two of them with significant
practical implications: (i) partially observable SSP [Patek,
1999; Egorov et al., 2016; Horák et al., 2018; Delamer et

∗Contact Author
1Throughout the paper we assume that agents maximize their

rewards (i.e., a cost/penalty means a negative reward for an agent).

al., 2019] and (ii) planning in the presence of an adversary
and SSP games [Patek and Bertsekas, 1999; Neu et al., 2012;
Rosenberg and Mansour, 2020; Chen et al., 2020]. The par-
tially observable SSP (also referred to as Goal-POMDP) gen-
eralizes the model to better reflect real-world scenarios where
perfect information is not always available (e.g., robotic sen-
sors are imprecise, and the true position of the robot in an
environment may be unknown). For the latter variant, formu-
lating the problem as a game against an opponent allows the
agent to find robust plans in an adversarial environment.

Until now, however, the combination of these two variants
– an SSP game with partial observability – has not been suf-
ficiently covered by the existing works. We address this gap
and, to the best of our knowledge, solve Partially Observable
Stochastic Shortest-Path Games (POSSPGs) for the first time.
We focus on the two-player zero-sum setting. From the game-
theoretic perspective, a POSSPG is a variant of Partially Ob-
servable Stochastic Games (POSGs) that are intractable in gen-
eral. One of the main reasons for the intractability of POSGs
is reasoning about uncertainty – one player must consider a
belief over the possible states of the environment, but also
opponent’s beliefs, and also beliefs over beliefs, and a belief
hierarchy in general.

To avoid such nesting, we restrict to a simplified setting
where one player has perfect information about the course of
the game. In POSSPG, this is quite natural since we can as-
sume that the adversary has the perfect information and the
agent seeks for a robust plan against a well-informed op-
ponent. Moreover, the existing works on POSGs with such
an information asymmetry (termed one-sided POSGs [Horák
et al., 2017]; OS-POSGs) offer algorithms for solving such
games [Horák et al., 2017; Horák et al., 2020]. Unfortu-
nately, the heuristic search value iteration (HSVI) algorithm
introduced for one-sided POSGs uses the discounted-sum ob-
jective, and the proof of the convergence of the algorithm
relies on the discount factor being strictly smaller than 1.
Therefore, the existing algorithm cannot be used for POSSPGs
where agents maximize the undiscounted sum of rewards.

We address these challenges and introduce a new algorithm
for solving POSSPGs based on HSVI. Although the high-level
idea of our algorithm is simple, its realization that yields
theoretical guarantees in the game-theoretic context is non-
trivial. In our algorithm, we solve a sequence of depth-limited
variants of the original game (termed k-cutoff games) while
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gradually increasing the depth limit. The main challenge
stems from determining whether the currently found solu-
tion is sufficiently close to the optimum or whether the al-
gorithm should continue with an increased depth limit. To
this end, we (i) derive a theoretical bound on the depth-limit
guaranteeing desired precision ε and (ii) extend HSVI with
an auxiliary upper-bound estimation of the value of the orig-
inal unbounded game. This auxiliary upper bound then al-
lows earlier terminations if it is sufficiently close to the lower
bound from the k-cutoff games. We evaluate the performance
of our algorithm on a pursuit-evasion game on a graph and
demonstrate that it is not feasible to use the original HSVI for
OS-POSGs with very large discount factors as an alternative to
our new HSVI algorithm for POSSPGs.

2 One-sided Partially Observable Stochastic
Games (OS-POSG)

We start by reviewing the closely related model of one-sided
partially observable stochastic games (OS-POSGs) [Horák et
al., 2017; Horák et al., 2020]: these are two-player zero-
sum infinite-horizon games played on a graph, where one of
the players (player 1, P1) is imperfectly informed about the
course of the game, while his adversary (player 2, P2) is per-
fectly informed. Unlike our proposed model, however, the
objective of the players is to optimize the discounted sum of
rewards obtained in the course of the game.

Formally, an OS-POSG G is a tuple G =
〈S,A1, A2, O, T,R, binit〉. The game starts in one of
the states s(0) ∈ S, where S is the finite set of states.
The state s(0) is sampled from the probability distribution
over states binit ∈ ∆(S) called the initial belief. Then,
in each stage t of the game (t ≥ 1), the players choose
their actions a(t)1 ∈ A1 and a(t)2 ∈ A2 simultaneously and
independently on each other. Based on their choice, the
game transitions to a new state s(t) and an observation
o(t) ∈ O is generated for P1. The set O contains all possible
observations for P1 that provide P1 with the partial informa-
tion about the new state. Formally, the transition function
T ensures that s(t) and o(t) are generated with probability
T (o(t), s(t) | s(t−1), a(t)1 , a

(t)
2 ). For this transition, P1 receives

the stage reward R(s(t−1), a
(t)
1 , a

(t)
2 ). P2 can use the entire

past history of the game s(0)(a
(t′)
1 , a

(t′)
2 , o(t

′)s(t
′))t−1t′=1 to

make his decision about his upcoming action a
(t)
2 . P1,

on the other hand, can only consider his own past ac-
tions and observations (a

(t′)
1 , o(t

′))t−1t′=1 when making his
decision. Total expected utility for P1 is defined as the
expected infinite discounted sum of stage rewards, that is
E[
∑∞
t=1 γ

t−1R(s(t−1), a
(t)
1 , a

(t)
2 )]. The discount factor γ is

assumed to be positive and strictly less than 1. The goal of
P1 is to maximize his total expected utility, while P2 aims at
minimizing total expected utility of P1.

2.1 Solving OS-POSGs
One of the options to solve OS-POSGs is to (approximately)
find the optimal value function V ∗ : ∆(S) → R of the game

G. This function maps beliefs b ∈ ∆(S) of P1 to the dis-
counted payoff V ∗(b) he can achieve in G given that b is
the current distribution over possible states of the game and
it can be characterized by a Bellman-style fixed point equa-
tion [Horák et al., 2017]:

V ∗(b) = [HV ∗](b) = max
π1

min
π2

[
Eb,π1,π2

[R(s, a1, a2)] +

+ γ
∑
a1,o

Pb,π1,π2 [a1, o] · V ∗(τ(b, a1, π2, o))
]

(1)

where π1 : ∆(A1) and π2 : S → ∆(A2) are stage strategies
player 1 and 2 use to choose their actions a1 and a2 in the cur-
rent stage of the game and τ(b, a1, π2, o) = Pb,π2

[s′ | a1, o] is
the Bayesian belief update.

Similarly to the single-player case (POMDP), V ∗ can be ap-
proximated using more scalable algorithms. For OS-POSGs,
there exists a modification of the heuristic search value it-
eration algorithm (HSVI) [Horák et al., 2017] that extends
HSVI [Smith and Simmons, 2004; Smith and Simmons, 2005]
to the two-player zero-sum games. This algorithm (Algo-
rithm 1) uses a self-play between P1 and P2 to identify rele-
vant beliefs in the game and aims at achieving a close approx-
imation of V ∗ primarily in these relevant beliefs. Piecewise
linear and convex lower V and upper V bounds on V ∗ are
maintained and gradually refined over time. Since V ∗ is δ-
Lipschitz continuous for δ = (maxR(·) −minR(·))/2(1 −
γ), δ-Lipschitz bounds V and V are considered.

The goal of the algorithm is to ensure that a desired preci-
sion V (binit)−V (binit) ≤ ε is eventually reached (line 1). To
this end, the algorithm performs a sequence of trials (repre-
sented by the Explore procedure) that aim at achieving that
beliefs b(k) reached at k-th level of recursion are approxi-
mated within ρ(k) precision. Sequence ρ is defined as

ρ(1) = ε ρ(k + 1) = [ρ(k)− 2δD]/γ . (2)

where δ is the Lipschitz constant of V ∗ andD > 0 is a param-
eter such that ρ is monotonically increasing and unbounded.

In each stage of a trial, players choose their stage strate-
gies π(k)

1 and π
(k)
2 (lines 5–6). The maximizing player 1

chooses his strategy based on solving the game correspond-
ing to [HV ](b), while the minimizing player 2 chooses his
strategy based on solving [HV ](b) (i.e., each player obtain
his own strategy based upon reasoning about optimistic vari-
ant of the stage game from his perspective).2

Each trial constructs a sequence of beliefs (line 7) such
that (1) b(k+1) is reachable from b(k) when employing stage
strategies π(k)

1 and π(k)
2 , (2) b(k+1) has the highest excess gap

excessk+1(τ(b(k), a1, π
(k)
2 , o)) = (3)

= V (τ(b(k), a1, π
(k)
2 , o))− V (τ(b(k), a1, π

(k)
2 , o))− ρ(k)

among the reachable beliefs weighted by the probability
P
b(k),π

(k)
1 ,π

(k)
2

[a1, o] of reaching that belief. Upon reach-

ing a belief b(k) where sufficient accuracy is achieved (i.e.,
2[Horák et al., 2020] shows that for piecewise linear and convex

bounds V and V these strategies can be obtained by means of linear
programming.
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Algorithm 1: HSVI for discounted OS-POSGs
1 while V (binit)− V (binit) > ε do
2 Explore(binit, 1)

3 procedure Explore(b(t), t)
4 if excesst(b(t)) ≤ 0 then return
5 π

(t)
1 ← optimal strategy of P1 in [HV ](b(t))

6 π
(t)
2 ← optimal strategy of P2 in [HV ](b(t))

7 b(t+1) ← argmaxa1,o Pb(t),π(t)
1 ,π

(t)
2

[a1, o] ·

excesst+1(τ(b
(t), a1, π

(t)
2 , o))

8 Explore(b(t+1), t+ 1)

9 Perform point-based update of V and V in b(t)

excessk(b(k)) ≤ 0), the trial terminates and a sequence of
point-based updates in beliefs b(1), . . . , b(k) is performed on
line 9 to refine the bounds V and V (the updates ensure that
V (b) := [HV ](b) and V (b) := [HV ](b) for selected be-
liefs b).

Convergence properties When discussing our proposed
modifications of the HSVI algorithm, we will refer to key
properties of HSVI algorithm for OS-POSG that suffice to en-
sure the convergence:
(1) Each trial terminates in b(k) with excessk(b(k)) ≤ 0 for

some k. The payoff in the game is bounded and so is
the gap between V and V . As ρ is unbounded, ρ(k) will
eventually exceed V (b(k)) − V (b(k)). Observe that this
also means that all beliefs reachable from b(k−1) have
negative excess gap on line 4.

(2) Point-based update in b(k−1) ensures that all beliefs
within hypersphere with radiusD centered in b(k−1) have
negative excess gap. [Horák et al., 2017, Lemma 4]

(3) Eventually, no beliefs with excessk(b(k)) > 0 remain
(unless the algorithm converges earlier). By (1) and
(2), each trial identifies (at least) one belief b(k−1) with
positive excess gap and makes all beliefs within D-
neighborhood of b(k−1) have negative excess gap. By a
standard packing argument, the hyperspheres with radius
D describing beliefs with negative excess gap eventually
cover entire belief space, hence no beliefs with positive
excess gap remain. [Horák et al., 2017, Theorem 3]

Observe that the absence of beliefs with negative excess
gap means that excess1(binit) < 0 and hence V (binit) −
V (binit) ≤ ρ(1) = ε.

3 Partially Observable Stochastic
Shortest-Path Games (POSSPGs)

Partially observable stochastic shortest-path games
(POSSPGs) extend the partially observable version of
Stochastic Shortest-Path problem to a game with the pres-
ence of a well-informed adversary. The goal of the player 1
is to reach one of the states in the set SG of goal states
with minimal cost, while the adversary tries to prevent
reaching SG or at least render the cost for reaching SG
as high as possible. We formalize POSSPGs based on

the formalism of one-sided POSGs (Section 2) as a tuple
G = 〈S,A1, A2, O, T,R, binit, SG〉. Unlike OS-POSGs
where the objective was the maximization of discounted sum
of rewards, the objective of POSSPGs is the maximization of
total sum of rewards (for the reasons of notational consis-
tency with prior work on OS-POSGs, we use negative rewards
instead of positive costs):

U∞b (σ1, σ2) = Eb,σ1,σ2

[ ∞∑
t=1

R(s(t−1), a
(t)
1 , a

(t)
2 )

]
(4)

where b is the current belief of the game, and (σ1, σ2) are the
strategies used by the players. We aim for the worst-case and
assume that player 2 is perfectly informed (hence his strategy
σ2 : S(A1A2OS)∗ → ∆(A2) conditions on the entire his-
tory of the game), while player 1 who wants to reach SG has
limited observability of the game (σ1 : (A1O)∗ → ∆(A1)).
Similarly to OS-POSGs, we use V ∗(b) to denote the value
of POSSPG with initial belief b (i.e., the payoff the play-
ers are guaranteed to achieve under optimal strategies). We
also use the notation valσ1(b) to denote the payoff strategy
σ1 of player 1 achieves in a game with initial belief b (i.e.
valσ1(b) = minσ2

U∞b (σ1, σ2)).
Since the undiscounted total-sum payoff can be infinite in

general, we impose the following assumption in POSSPGs:
• The goal of player 1 is to reach s ∈ SG. The game

ends3 upon reaching a state in SG, and player 1 incurs
no further costs (i.e., R(s, ·) = 0 for all s ∈ SG). All
other costs are strictly positive (i.e., R(s, ·) ≤ R < 0 for
all s 6∈ SG). This ensures that any strategy σ1 with finite
value valσ1 reaches SG almost surely.

• Uniform strategy σunif of player 1 has finite value
valσunif > −∞. In other words, player 2 cannot
prevent rational player 1 from reaching SG and the
value of the game is finite since −∞ < valσunif (b) ≤
maxσ1

valσ1(b) = V ∗(b) ≤ 0.
Although POSSPGs are similar to OS-POSGs, using discount

factor γ = 1 and applying Algorithm 1 designed for dis-
counted problems to solve POSSPGs is impossible. This is
primarily based on the fact that the convergence results for
Algorithm 1 rely on the γ-contractivity of the backup oper-
ator H (Equation 1). [Horák et al., 2018] provides further
evidence supporting our claim by showing counterexamples
illustrating that the standard HSVI algorithm for discounted
problems cannot be applied to Goal-POMDPs. Since POSSPG
is an extension of the Goal-POMDP model, these results natu-
rally apply.

To this end, we propose a novel algorithm that circumvents
these issues by solving a finite-horizon variant of POSSPGs,
and we show that this allows us to obtain a close approxima-
tion of the solution of an infinite-horizon POSSPG.

3.1 k-cutoff Game
Similarly to [Horák et al., 2018], we can aim at solving a fi-
nite variant of the problem. We term this finite-horizon vari-
ant a k-cutoff game, and we show that this game can be used
as an approximation of an infinite-horizon POSSPG.

3We model this by setting T (oreach, s | s, ·) = 1 for every s ∈
SG where oreach ∈ O informs player 1 about reaching the goal.
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A k-cutoff game (denoted Gk) models a decision-making
problem where player 1 can play arbitrarily in the first k
stages of POSSPG G and is forced to follow uniform strategy
σunif in the rest of the game. This corresponds to a finite-
horizon POSG associated with G with objective

Ukb (σ1, σ2) = Eb,σ1,σ2

[ k∑
t=1

R(s(t−1), a
(t)
1 , a

(t)
2 ) + (5)

+ valσunif (b(k+1))
]

where b(k+1) stands for the belief of player 1 after k-th stage
of the game. Observe that in the case the game terminated
within first k stages, player 1 has been notified of the termi-
nation by oreach observation and Supp(b(k+1)) ⊆ SG, hence
value of uniform strategy valσunif (b(k)) = 0. Similarly to
the infinite-horizon case, we define V ∗k (b) as the value of
k-cutoff game starting in belief b, and we use valσ1

k (b) =
minσ2

Ukb (σ1, σ2) to refer to the value of strategy σ1.
We now formally prove that k-cutoff game Gk can be used

to approximate the solution of infinite-horizon POSSPG G.
Namely, we show that (1) value of Gk forms a lower bound
on the value of G, and (2) we can choose k to make the ap-
proximation of value of G arbitrarily tight.
Proposition 1. Let k ≥ 1 and b ∈ ∆(S) be arbitrary. Then
valσunif (b) ≤ V ∗k (b) ≤ V ∗(b).

Proof. Let σk∗1 be an optimal strategy for player 1 in Gk and
let σi1 be the strategy of player 1 in G which imitates σk∗1 for
first k stages and plays uniformly afterwards. Note that the
game Gk is played for the k stages only. After the cutoff,
the game ends, and the player 1 pays the one-time penalty
associated with playing the uniform strategy from the current
belief (see the valσunif (b(k+1)) term in Equation (5)). So, σk∗1
defines the behaviour of player 1 only for k stages. On the
other hand, as G is an infinite horizon game, σi1 defines the
behavior of player 1 in the infinite setting. In this strategy, the
decision to play uniformly after the k stages is a deliberate
choice of the player (unlike in the case of σk∗1 in Gk where
the uniform play is part of the game rules).

As σk∗1 is an optimal strategy for player 1 in Gk, we have

V ∗k (b) = val
σk∗
1

k (b). As σi1 in G imitates σk∗1 for first k
stages and plays uniformly afterwards, we argue that these
two strategies yield the same value in their respective games.

Hence valσ
i
1(b) = val

σk∗
1

k (b). We have V ∗(b) = valσ
∗
1 (b) ≥

valσ
i
1(b) = val

σk∗
1

k (b) = V ∗k (b) where σ∗1 is an optimal strat-
egy for player 1 in G. Thus, V ∗(b) ≥ V ∗k (b). Let strategy
σ1 of player 1 in Gk plays uniformly for first k stages. Then
V ∗k (b) = valσ

k∗
1 (b) ≥ valσ1(b) = valσunif (b).

Theorem 1. Let k ≥ 1. Then V ∗(binit)−V ∗k (binit) ≤ −(1−
pk) minb valσunif (b) for pk = [kR− valσunif (binit)]/kR.

Proof. Let us define a game Gk+ as a game with payoff
Uk+b (σ1, σ2) = Eb,σ1,σ2

[
∑k
t=1R(s(t−1), a

(t)
1 , a

(t)
2 )] (i.e., to-

tal sum of rewards in first k stages) and let V ∗k+ denote value
function of Gk+. Since R(·) ≤ 0, we have U∞b (σ1, σ2) ≤

Uk+b (σ1, σ2) and V ∗k (b) ≤ V ∗(b) ≤ V ∗k+(b) (the first in-
equality follows from Proposition 1). We prove the statement
by deriving bound on V ∗k+(binit)− V ∗k (binit).

Take (σ−1 , σ
−
2 ) and (σ+

1 , σ
+
2 ) as the Nash equilibrium

strategies in Gk and Gk+, respectively. Since both games
Gk and Gk+ correspond to the game G being played over k
stages, the strategies can be used interchangeably and we get

Ukbinit(σ
+
1 , σ

−
2 ) ≤ Ukbinit(σ

−
1 , σ

−
2 ) = V ∗k (binit) ≤ (6)

≤ V ∗k+(binit) = Uk+binit(σ
+
1 , σ

+
2 ) ≤ Uk+binit(σ

+
1 , σ

−
2 ) .

We now claim that the strategy profile (σ+
1 , σ

−
2 ) reaches

the goal state with probability at least p = [kR−valσunif ]/kR
in the first k stages. To prove this claim, we use the following
facts:

1. We have that the payoff valσunif (binit) ≤ Uk+binit
. This is

based on two inequalities: V ∗k (binit) ≤ Uk+binit (see Equa-
tion (6)) and valσunif (binit) ≤ V ∗k (binit) (see Proposi-
tion 1).

2. Player 1 accumulates negative reward R = maxR(·) <
0 in every stage of the game (recall that all rewards are
negative). Hence, in the case a goal state is not reached
within k stages considered in Gk+, he accumulates a
negative payoff kR.

3. Assuming that (σ+
1 , σ

−
2 ) reaches a goal state within k

stages with probability p, the total accumulated negative
payoff of (σ+

1 , σ
−
2 ) is Uk+binit(σ

+
1 , σ

−
2 ) ≤ (1− p)kR.

From (2) we know that valσunif ≤ (1 − p)kR. Solving this
inequality for p gives us p ≥ [kR− valσunif ]/kR.

By definition Uk+binit(σ
+
1 , σ

−
2 ) − Ukbinit(σ

+
1 , σ

−
2 ) =

Ebinit,σ+
1 ,σ
−
2

[−valσunif (b(k+1))]. The game reaches SG with

probability p (in which case valσunif (b(k+1)) = 0),
hence we have Ebinit,σ+

1 ,σ
−
2

[−valσunif (b(k+1))] ≤
−(1 − p) minb valσunif (b). As V ∗(binit) − V ∗k (binit) ≤
Uk+binit(σ

+
1 , σ

−
2 )− Ukbinit(σ

+
1 , σ

−
2 ) we get the proof.

Observe that pk in Theorem 1 is monotonically increasing
in k with limit limk→∞ pk = 1. Hence we can find k such
that −(1− pk) minb valσunif (b) ≤ ε.
Corollary 1. Let ε > 0. Then for k ≥ K =
−[minb valσunif (b) · valσunif (binit)]/εR, we have V ∗(binit)−
V ∗k (binit) ≤ ε.

Proof. By Theorem 1, for k ≥ 1, we have V ∗(binit) −
V ∗k (binit) ≤ −[minb valσunif (b) · valσunif (binit)]/kR. Hence,
for k ≥ K, we get V ∗(binit)− V ∗k (binit) ≤ ε.

3.2 Finite-Horizon OS-POSGs
The k-cutoff game introduced in Section 3.1 corresponds to
a finite-horizon OS-POSG with total-sum objective. While
the prior results for OS-POSGs consider only infinite-horizon
problems with discounted-sum objective, a straightforward
reduction can be used to show that most of the results
can be carried on towards setting with finite-horizon H

and total sum of rewards E[
∑H
t=1R(s(t−1), a

(t)
1 , a

(t)
2 )] as

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4185



the objective. Consider a OS-POSG game structure G =
〈S,A1, A2, O, T,R, binit〉 with finite-horizon H and total
sum objective. Let us define an equivalent infinite-horizon
discounted-sum game Gγ = 〈Sγ , A1, A2, O, T

γ , Rγ , binit〉
by expanding the state space of G:

• Sγ = {sh | s ∈ S, 0 ≤ h ≤ H} (i.e., sh corresponds to
a state s in G when h stages remain to be played),

• T γ(o, s′h−1 | sh, a1, a2) = T (o, s′ | s, a1, a2) for h ≥ 1
(i.e., after each transition there is one less stage to be
played in the remainder of the game),

• T γ(õ, s0 | s0, a1, a2) = 1 for an arbitrary fixed observa-
tion õ ∈ O (i.e., when 0 stages remain transitions in the
game stop),

• Rγ(sh, a1, a2) = R(s, a1, a2)/γH−h for h ≥ 1 and
Rγ(s0, a1, a2) = 0.

Observe that the definition of rewards Rγ ensures
that no reward is allocated after H stages of the
game pass (since a state s0 is reached). Moreover
the discounting terms in the discounted-sum objective
E[
∑H
t=1 γ

t−1Rγ(s(t−1), a
(t)
1 , a

(t)
2 )] cancel out and hence the

objective of Gγ coincide with the total-sum objective of G.
Applying the HSVI algorithm to the OS-POSG Gγ is, how-

ever, impractical as the value of state sh does not correspond
to the total-sum payoff P1 achieves in the remaining h stages.
Due to the multiplication of the rewards by 1/γH−h, the
value of sh is also multiplied by 1/γH−h. We show that we
can avoid this issue and solve Gγ for γ = 1 (referred to as
Gγ=1) by altering the sequence ρ used in the HSVI algorithm
(see Equation (2))—we term this algorithm FH-HSVI.

For simplicity of discussion, let us partition the optimal
value function V ∗ ofGγ=1 based on the number of remaining
stages in the game

V ∗h (b) = V ∗(b|h) (7)
for b ∈ ∆(S), b|h ∈ ∆(Sγ) : b|h(sh) = b(s) .

This allows us to rewrite Equation (1) as

V ∗h (b) = [HV ∗h−1](b) = max
π1

min
π2

[
Eb,π1,π2

[R(s, a1, a2)] +

+
∑
a1,o

Pb,π1,π2 [a1, o] · V ∗h−1(τ(b, a1, π2, o))
]

(8)

and obtain a Bellman equation for Gγ=1 in a traditional form
for finite-horizon problems.

Observe that it clearly holds that V ∗0 (b) = 0 for every b ∈
∆(S) as no rewards are allocated after H stages when the
game reaches a state s0. We can therefore set the initial lower
and upper bounds V 0 and V 0 on V ∗0 in the HSVI algorithm to
0 as well. This means that the Explore procedure eventually
reaches a belief b|0 where the gap V 0(b)−V 0(b) = 0 (unless
it is terminated before reaching H-th stage). Unlike in the
discounted setting, the sequence of desired gaps ρ hence need
not be strictly increasing. Instead, we let ρ(t) = ε − (t −
1)ε/H (i.e., ρ(H + 1) = 0 after H-th stage is considered by
Explore which is sufficient for the termination of the trial as
the gap V 0(b)− V 0(b) = 0).

Importantly, since the payoff of any strategy in H ′-horizon
game can be bounded by [H ′minR(·), H ′maxR(·)], a
value function V ∗H′ is δH′ -Lipschitz continuous for δH′ =

H ′[maxR(·) − minR(·)]/2 (cf. [Horák et al., 2017,
Lemma 4]). Similarly to the discounted case, this allows us
to consider only δH′ -Lipschitz continuous lower and upper
bounds V H′ and V H′ on V ∗H′ . As a consequence we can ver-
ify that the convergence properties discussed in Section 2.1
hold for FH-HSVI:
(1) Each trial terminates for t ≤ H+1. AfterH-th recursion

step, the game is in one of the states with zero remaining
time and V 0(b)− V 0(b) = 0 ≤ ρ(H + 1).

(2) Point based update in b(t−1) ensures that all beliefs within
hypersphere with radius ε/2HδH centered in b(t−1) have
negative excess gap (Proposition 2).

(3) By the same packing argument, we can see that the hy-
perspheres induced by the beliefs with negative excess
gap eventually cover the entire belief space (unless we
achieve convergence before that).

Proposition 2. Let b(t−1) ∈ ∆(S) and π
(t)
1 , π

(t)
2 be

Nash equilibrium strategies of P1 and P2 in [HV ](b(t−1))
and [HV ](b(t−1)), respectively. Assume that all beliefs
τ(b(t−1), a1, π

(t)
2 , o) reachable when following (π

(t)
1 , π

(t)
2 )

have negative excess gap excesst(τ(b(t−1), a1, π
(t)
2 , o)) ≤ 0.

Then after performing the point-based update in b(t−1) we
have excesst−1(b′) ≤ 0 for every b′ such that ‖b(t−1)−b′‖ ≤
ε/2HδH .

Proof. Let uV,b(π1, π2) denote the utility in stage game
[HV ](b) when the players use stage strategies (π1, π2). Let
(π1, π

(t)
2 ) and (π

(t)
1 , π2) be Nash equilibrium strategies in

stage games [HV H−t](b
(t−1)) and [HV H−t](b

(t−1)), re-
spectively. By similar argument to the proof of [Horák et al.,
2017, Lemma 4], we have

[HV H−t](b
(t−1))− [HV H−t](b

(t−1)) =

= uV H−t,b(t−1)(π
(t)
1 , π2)− uV H−t,b

(t−1)(π1, π
(t)
2 )

≤ uV H−t,b(t−1)(π
(t)
1 , π

(t)
2 )− uV H−t,b

(t−1)(π
(t)
1 , π

(t)
2 )

=
∑
a1,o

P
b(t−1),π

(t)
1 ,π

(t)
2

[a1, o]
[
V H−t(τ(b(t−1), a1, π

(t)
2 , o))−

V H−t(τ(b(t−1), a1, π
(t)
2 , o))

]
≤ ρ(t) = ρ(t− 1)− ε/H .

The point-based update in b(t−1) hence ensures that
V H−t+1(bt−1) − V H−t+1(bt−1) ≤ ρ(t − 1) − ε/H . Since
V H−t+1 and V H−t+1 are δH -Lipschitz continuous (observe
that δH ≥ δH′ for every 0 ≤ H ′ ≤ H), we have that
V H−t+1(bt−1) − V H−t+1(bt−1) ≤ ρ(t − 1) for every be-
lief b′ such that ‖b′ − b(t−1)‖ ≤ ε/2HδH .

Non-zero termination utilities The definition of k-cutoff
game assumes that a one-time payoff valσunif (b(k)) is allo-
cated after k stages of the game are played depending on the
belief b(k) at that time. This means that k-cutoff game is tech-
nically not a finite-horizon OS-POSGwhere no rewards are as-
signed after H = k stages. However, we argue that the same
algorithm can be applied upon setting V ∗0 (b) = V 0(b) =
V 0(b) = valσunif (b) since
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• In the worst case, the Explore procedure reaches a be-
lief b|0 where V 0(b)− V 0(b) = 0,

• The payoff of any strategy in H ′-horizon game is
bounded by [minb V

∗
0 (b) +H ′minR(·),maxb V

∗
0 (b) +

H ′maxR(·)], and hence V ∗H′ is Lipschitz continuous.

3.3 Solving POSSPGs
Due to Corollary 1, we can use a k-cutoff games for k ≥ K
to approximate the value of POSSPG within ε accuracy. The
theoretical value ofK, however, could be impractically large.
For practical use, we suggest keeping track of an auxiliary
upper bound V

+
on the value of the POSSPG V ∗ throughout

the course of the algorithm. This allows us to terminate as
soon as V

+
(binit)−V k(binit) ≤ ε (which can be much earlier

before we reach K).
The auxiliary upper bound V

+
(binit) is described as fol-

lows. Let Gk+ be a variant of k-cutoff game in which the
player 1 is perfectly informed and if the goal state is not
reached in first k stages, then the reward for player 1 is 0
instead of the continuation reward valσunif (b(k)). Let V ∗k+ de-

note value function of Gk+. The function V
+

is initialized
as V ∗0+. While the procedure solvecutoff(k) is called, ev-

ery time the point-based updates are performed on V
k

and
V k at belief b, then point-based update is also performed on
V

+
at belief b. As V ∗0+(binit) = 0 and V ∗(binit) < 0, the ini-

tial value of V
+

(binit) is indeed an upper bound on V ∗(binit).
The point based updates ensure that V

+
(binit) remains an up-

per bound on V ∗(binit).
Our algorithm (Algorithm 2) starts by setting k = 1 and

initializing V k, V
k
, and V

+
. For each value of k, we perform

the following operations.
1. Solve k-cutoff game Gk using FH-HSVI from Sec-

tion 3.2. This gives a lower bound V k(binit) on
V ∗k (binit) and consequently a lower bound on V ∗(binit).4

The gap V
k
(binit)− V k(binit) converges faster than the

gap V
+

(binit)− V k(binit) used for the algorithm termi-
nation. Therefore when solving Gk, we aim for a gap
that the is tighter than the target gap ε.5 This ensures
that the termination gap V

+
(binit)−V k(binit) can reach

the desired value and the algorithm can terminate.
2. For every point-based update on V

k
and V k at belief b

(line 17 of Algorithm 2), perform a point-based update
on V

+
at belief b. (line 18 of Algorithm 2)

3. If the gap V
+

(binit) − V k(binit) < ε or if k > K, then
algorithm is terminated. Otherwise increment k by 1.

Final improvements We now suggest some modifications
that we use in our implementation, which decrease the run-
time of the algorithm. Instead of initializing k-cutoff game
upper bound V

k
(line 5) and auxiliary upper bound V

+

4Note that the course of the future exploration (line 16) solely
relies on strategies computed for k-cutoff game (lines 13 and 14).

5The amount of tightness is controlled by the parameter
η, 0 < η ≤ 1 (line 9 of Algorithm 2).

Algorithm 2: HSVI algorithm for POSSPGs
1 k ← 1

2 V k ← valσunif

3 V
+ ← V ∗

0+

4 while V +
(binit)− V k(binit) > ε and k ≤ K do

5 V
k ← V ∗

0+

6 solvecutoff(k)
7 k ← k + 1

8 procedure solvecutoff(k)
9 while V k(binit)− V k(binit) > η ∗ ε and

V
+
(binit)− V k(binit) > ε do

10 Explore(binit, 1)

11 procedure Explore(b(t), t)
12 if excesst(b(t)) ≤ 0 then return
13 π

(t)
1 ← optimal strategy of P1 in [HV

k−t
](b(t))

14 π
(t)
2 ← optimal strategy of P2 in [HV k−t](b(t))

15 b(t+1) ← argmaxa1,o Pb(t),π(t)
1 ,π

(t)
2

[a1, o] ·

excesst+1(τ(b
(t), a1, π

(t)
2 , o))

16 Explore(b(t+1), t+ 1)

17 Perform point-based update of V k−t+1 and V
k−t+1

in
b(t)

18 Perform point-based update of V
+

in b(t)

(line 3) as V ∗0+ = 0 for k > 1, we initialize them using points
representing V

+
in (k − 1)-cutoff game. This initialization

is indeed an upper bound on V ∗ since adding an additional
round for which the game is not played as perfect information
version of POSSPG can only result in the same or worse utility
of player 1 in k-cutoff game compared to (k−1)-cutoff game.
To avoid increased memory complexity of the algorithm, we
keep only points that are not dominated when moving from
k-cutoff game to (k + 1)-cutoff game.

As V ∗k is a lower bound of V ∗k+1, the lower bound V k of
V ∗k (generated in line 6) is also a lower bound of V ∗k+1. So
while performing solvecutoff(k+1) (line 6), we use V k to
initialize V k+1, instead of initializing as the value of uniform
strategy. As V k is greater than the value of uniform strategy,
this initialization decreases the runtime of the algorithm.

Finally, the target value η ∗ ε of the gap V
k
(binit) −

V k(binit) has effect on the runtime too. In our case, we ob-
served the best results with the parameter η = 0.9.

4 Experiments
In this section, we present an experimental evaluation of the
proposed algorithm (Algorithm 2) on the domain of pursuit-
evasion games and show how it performs compared to tradi-
tional solution approaches with discount factor γ < 1.

4.1 Experiment Settings
In pursuit-evasion games ([Chung et al., 2011; Isler and Kar-
nad, 2008]), a team of K centrally controlled pursuers (we
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Figure 1: Example of the pursuit-evasion game.

consider a team of K = 2) is trying to locate and capture the
evader — who is trying to avoid getting captured. The game
is played on a grid (dimensions 3 × N ), with the pursuers
starting in the top-left corner and the evader in the bottom-
right corner – see Figure 1. In each step, the units move to
one of their adjacent locations (i.e., the actions of the evader
are A2 = {left, right, up, down}, while the actions available
to the team of pursuers are joint actions for all units in the
team, A1 = (A2)K). The game ends when one of the units
from the team of pursuers enters the same cell as the evader
or directly swaps position with the evader. The reward for all
transitions in the game is −1. The pursuer knows the loca-
tion of their units, but the current location of the evader is not
known.

All computational results have been obtained on comput-
ers equipped with Intel Xeon Scalable Gold 6146 processors
while limiting the runtime to 10 hours and RAM to 128 GB.
We used CPLEX 12.9 to solve linear programs.

All solution methods were required to find an ε-optimal so-
lution where εwas set to 1. Since the reward for all transitions
in the game is −1, such setting allows us to find an optimal
solution ±1 move.

4.2 Algorithm Scalability
We compare the proposed algorithm (HSVI for POSSPGs) with
the original HSVI algorithm for discounted OS-POSGs. Recall
that the original algorithm [Horák et al., 2017] is capable of
solving games with discount factor γ < 1, and the obtained
solution can thus be considered only as an approximation.
Since the approximation quality is directly related to the dis-
count factor (the undiscounted setting can be seen as a limit
solution as γ → 1), we use several values of discount factor
γ, namely γ = 0.95, γ = 0.99, and γ = 0.999.

We report the results in Table 1. Observe that our algo-
rithm is significantly faster than the original HSVI algorithm
for solving the discounted approximation of the game with
discount factor γ = 0.999. The computational time required
by our algorithm is 25-37x smaller compared to the prior ap-
proach. If we further sacrifice the accuracy of the discounted
approximation and further reduce the discount factor γ, we
have to expect improvements in computational time when
solving the discounted approximation of the game. The set-
ting with γ = 0.95 is solved substantially faster compared to
our approach with γ = 1. However, we have to expect sig-
nificant degradation in solution quality as the contribution of
future rewards diminishes quickly with γ = 0.95.

Instance Our Original HSVI algorithm
(3×N ) approach γ = 0.95 γ = 0.99 γ = 0.999

3× 3 2 s 1 s 4 s 58.5 s
3× 4 54.5 s 4 s 133.5 s 2 032 s
3× 5 607 s 7.5 s 1 385.5 s 15 259 s

Table 1: Scalability in the size of grid dimension N .

The computational benefits of our approach compared to
using original HSVI algorithm to solve a discounted approxi-
mation with γ = 0.999 are further highlighted when solving
the 3×6 instance. While our approach is able to approximate
the value of the game within 1.47 precision after 10 hours
(measured as the gap between upper and lower bounds com-
puted by the algorithm), the gap for the original approach is
4.956.

5 Conclusion

We introduce a new algorithm for solving two-player zero-
sum partially observable stochastic shortest-path games
(POSSPGs) – a variant of a partially observable stochastic
game with the undiscounted sum of rewards as an objective.
We assume that the adversary has the perfect information, and
thus our algorithm allows the agent to find robust strategies.
We provide theoretical guarantees for the convergence of our
algorithm and compare the performance with the algorithm
for the discounted case. The results show that it is not feasi-
ble to use very large discount factors to approximate the total
reward objective, and thus our novel algorithm applies in all
scenarios where the future rewards should not be discounted.

Our algorithm is the first one to solve the class of partially
observable SSPGs, and thus follow-up research focused on
the scalability improvements would open possibilities of vari-
ous applications in robotics or, for example, network security.
As a second direction for future work, we intend to analyze
reachability/safety objectives where the probability of reach-
ing some of the target states is optimized.
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Vojtěch Kovařı́k, and Christopher Kiekintveld. Solving
zero-sum one-sided partially observable stochastic games.
arXiv preprint arXiv:2010.11243, 2020.

[Isler and Karnad, 2008] Volkan Isler and Nikhil Karnad.
The role of information in the cop-robber game. Theo-
retical Computer Science, 399(3):179–190, 2008.

[Lim et al., 2013] Sejoon Lim, Christian Sommer, Evdokia
Nikolova, and Daniela Rus. Practical route planning un-
der delay uncertainty: Stochastic shortest path queries. In
Robotics: Science and Systems, volume 8, pages 249–256,
2013.

[Neu et al., 2012] Gergely Neu, Andras Gyorgy, and Csaba
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