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Abstract
The Traveling Tournament Problem is a well-
known benchmark problem in tournament
timetabling, which asks us to design a schedule of
home/away games of n teams (n is even) under
some feasibility requirements such that the total
traveling distance of all the n teams is minimized.
In this paper, we study TTP-2, the traveling tour-
nament problem where at most two consecutive
home games or away games are allowed, and
give an effective algorithm for n/2 being odd.
Experiments on the well-known benchmark sets
show that we can beat previously known solu-
tions for all instances with n/2 being odd by an
average improvement of 2.66%. Furthermore, we
improve the theoretical approximation ratio from
3/2 + O(1/n) to 1 + O(1/n) for n/2 being odd,
answering a challenging open problem in this area.

1 Introduction
The Traveling Tournament Problem (TTP), an interesting
sports scheduling problem inspired by Major League Base-
ball, was first systematically introduced in [Easton et al.,
2001], and then followed in a large amount of refer-
ences [Kendall et al., 2010; Rasmussen and Trick, 2008;
Thielen and Westphal, 2012; Xiao and Kou, 2016]. This
problem is to find a double round-robin tournament satisfying
some constraints that minimizes the total distances traveled
by all participant teams. In a double round-robin tournament
of n teams, each team will play 2 games with each of the other
n− 1 teams, one at its home venue and one at its opponent’s
home venue. Furthermore, all the games should be scheduled
in 2(n−1) consecutive days. Such all terms will play on each
day and there are exactly n/2 games on each day. According
to the definition, we know that n is always even. For TTP, we
have the following two basic constraints or assumptions on
the double round-robin tournament.

• no-repeat: A team cannot play against the same oppo-
nent in two consecutive games.

• direct-traveling: A team travels directly from its game
venue in the ith day to its game venue in the (i + 1)th
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day, where we assume that all teams are at home in the
0th day and the (2n−1)th day, i.e., all teams are initially
at home and will come back to home after all the games.

A frequently studied version of TTP, denoted by TTP-k, is
to add the following constraint on the maximum number of
consecutive home games and away games.

• bounded-by-k: No team have a home stand or a road trip
lasting more than k games.

The smaller the value of k, the more often teams have to
return to their home venues. The input of TTP or TTP-k con-
tains an n × n distance matrix D to indicate the distance be-
tween each pair of the n teams. We will use Di,j to denote
the distance from the home of team i to the home of team j.
We also assume that D satisfies the symmetry and triangle in-
equality properties, i.e.,Di,j = Dj,i and Di,j ≤ Di,h + Dh,j

for all i, j, h. We let Di,i = 0 for each i.

1.1 Related Work
TTP and TTP-k are difficult optimization problems. The NP-
hardness of TTP and TTP-3 was proved in [Bhattacharyya,
2016; Thielen and Westphal, 2011]. Since the search space
of TTP and TTP-k are usually very large, many instances
with more than 10 teams in the online benchmark [Trick,
2021] have not been completely solved even by using high-
performance machines. In the literature there is a large
number of contributions on approximation algorithms [Ya-
maguchi et al., 2011; Imahori et al., 2014; Miyashiro
et al., 2012; Westphal and Noparlik, 2014; Hoshino and
Kawarabayashi, 2013; Thielen and Westphal, 2012; Xiao and
Kou, 2016] and heuristic algorithms [Easton et al., 2003;
Lim et al., 2006; Anagnostopoulos et al., 2006; Di Gaspero
and Schaerf, 2007; Goerigk et al., 2014].

In this paper, we will focus on TTP-2. In a sports sched-
ule, it is generally believed that home stands and road trips
should alternate as regularly as possible for each team [Camp-
bell and Chen, 1976; Thielen and Westphal, 2012]. How-
ever, there is no feasible schedule for k = 1 [de Werra,
1988], and then TTP-2 becomes especially interesting. The
first record of TTP-2 seems from the schedule of a basket-
ball conference of ten teams in [Campbell and Chen, 1976].
It is easy to verify that any feasible schedule for TTP-2 is
a 2-approximation solution [Thielen and Westphal, 2012].
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So any feasible solution will not have a very bad perfor-
mance. However, we do not know any simple construction
of feasible solutions. Even the scheduling algorithms for n/2
being even and odd may be different. Thielen and West-
phal [2012] proposed two scheduling methods and proved an
approximation ratio of 3/2 + O(1/n) for n/2 being odd and
an approximation ratio of 1 + O(1/n) for n/2 being even.
The current best approximation ratio for n/2 being even is
(1 + 4/n) by Xiao and Kou [2016]. Whether TTP-2 with
n/2 being odd allows an approximation ratio 1 + O(1/n)
became a challenging problem [Thielen and Westphal, 2012;
Xiao and Kou, 2016].

1.2 Our Results
In this paper, we design an effective algorithm for TTP-2 with
n/2 being odd. In theory, we prove an approximation ratio of
(1 + 8

n + 4
n−2 ), significantly improving the previous result of

(3/2 + 6
n−4 ). This is the first (1 + O(1/n))-approximation

algorithm known so far and it answers the open problem in
[Thielen and Westphal, 2012] positively. In practice, our al-
gorithm is easy to implement and runs very fast. Experiments
show that our algorithm can solve all the 16 tested instances
in the benchmark [Trick, 2021] with n ≥ 10 and n ≡ 2
(mod 4) very quickly by providing better solutions with an
average improvement of 2.66%.

2 Notations
We always use n to denote the number of teams in the prob-
lem. In this paper, we assume that n ≡ 2 (mod 4) and
n ≥ 10. We let m = n/2. Then m is also an integer. We
use G to denote the complete graph on the n vertices repre-
senting the n teams, and the weight of the edge between two
vertices ti and tj is Di,j the distance from the home of ti to
the home of tj . We also use Di to denote the weight sum
of all edges incident on ti in G, i.e., Di =

∑n
j=1 Di,j . The

sum of all edge weights of G is denoted by DG. We let M
denote a minimum perfect matching in G. The weight sum
of all edges in M is denoted by DM . We may consider the
endpoint pair of each edge in M as a super-team. We use
H to denote the complete graph on the m vertices represent-
ing the m super-teams. The weight of the edge between two
super-teams ui and uj , denoted by D(ui, uj), is the sum of
the weight of the four edges in G between one team in ui and
one team in uj , i.e., D(ui, uj) =

∑
ti′∈ui&tj′∈uj

Di′,j′ . We
also let D(ui, ui) = 0 for any i. We give an illustration of the
graphs G and H in Figure 1.

In TTP and TTP-k problems, each team ti will visit each
other team once in the tournament. For each team, a routing
visiting each other team exactly once (starting at its home and
coming back home last) is called an itinerary of the team. A
road trip in an itinerary of team ti is a simple cycle starting
and ending at ti. So an itinerary consists of several road trips.
For TTP-2, an itinerary is feasible if each road trip of it is a
cycle of length at most 3 (containing at most two other teams).

For two teams ti and tj , we may use a directed edge from
ti to tj to denote a game between ti and tj taking place at the
home of tj .

𝑡𝑡1 𝑡𝑡2

𝑡𝑡3

𝑡𝑡5 𝑡𝑡6

𝑡𝑡4

𝑡𝑡7
𝑡𝑡8

𝑢𝑢1

𝑢𝑢3

𝑢𝑢2𝑢𝑢4

Figure 1: An illustration of graphs G and H , where the four dark
lines form a minimum perfect matching M in G

3 Simple Lower and Upper Bounds
3.1 A Lower Bound
First we consider a lower bound on the total traveling dis-
tance of a single team. The bound is called the indepen-
dent lower bound and was firstly introduced by Campbell and
Chen [1976]. Here ‘independent’ means we only consider the
traveling of the single team and do not consider the feasibility
of other teams. In the itinerary of one team, if there are two
away trips of a single game, then we may be able to combine
the two away trips into one away trip of a pair of games with-
out increasing the traveling distance by the triangle inequality.
Note that n is even and the optimal itinerary of a team must
contain exactly one away trip of a single game (other away
trips contain two games). The optimal itinerary graph of a
team ti may look like the graph in Figure 2.

𝑡𝑡𝑖𝑖
⋯

𝑡𝑡1

𝑡𝑡2

𝑡𝑡3
𝑡𝑡4

Figure 2: the itinerary graph of team ti

Team ti must travel to or from each other team at least
once, which are denoted by light lines in Figure 2. The weight
sum of all light lines is

∑
j 6=i Di,j = Di. The remaining dark

lines in Figure 2 form a perfect matching of the graph G.
Recall that we use M to denote a minimum perfect matching
of G. Then the weight sum of all dark lines is at most DM .
The independent lower bound for team ti is

LBi = Di + DM . (1)

The independent lower bound for TTP-2 is

LB =
n∑

i=1

LBi =
n∑

i=1

(Di + DM ) = 2DG + nDM . (2)

For any team, it is possible to get its independent lower
bound. The itinerary of a team is called perfect if the dis-
tance of it achieves the independent lower bound. However,
not all teams may reach perfect itineraries synchronously in a
feasible schedule [Thielen and Westphal, 2012]. So the inde-
pendent lower bound for TTP-2 is not achievable.
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3.2 An Upper Bound
Next, we consider a simple upper bound on the traveling dis-
tance of any feasible solution. By the triangle inequality, we
can easily see that
Lemma 1. The traveling distance of any itinerary of a team
ti is at most 2Di.

Lemma 1 says that the worst itinerary consisting of only
road trips of one game. Lemma 1 and (1) imply that
Lemma 2. The traveling distance of any feasible itinerary
of a team ti is at most the traveling distance of the optimal
itinerary plus Di.

Note that Di ≤ LBi. We get that
Theorem 1. Any feasible schedule for TTP-2 is a 2-
approximation solution.

Indeed, Theorem 1 was first proved in [Thielen and West-
phal, 2012]. We repeat this result in detail because we need
to use Lemma 2 in our analysis.

4 Construction of The Tournament
To get a good theory bound and good performance, we will
try to design a feasible schedule such that the itinerary of each
team is similar to the perfect itinerary as much as possible.

It is not easy to find a simple feasible schedule for TTP-
2. Compared with known feasible schedules, our schedule is
not very complicated. However, our schedule will be slightly
different for n ≡ 2 (mod 8) and n ≡ 6 (mod 8). We will
describe the algorithm for the case of n ≡ 2 (mod 8). For
the case of n ≡ 6 (mod 8), only some edges will have dif-
ferent directions. These edges will be denoted by dash lines
and we will explain them.

We regard each pair of teams in the minimum per-
fect matching M of G as a super-team, and first arrange
games between super-teams. There are n teams and then
there are m super-teams. We denote the super-teams as
{u1, u2, . . . , um−1, um}. We relabel the n teams such that
ui = {t2i−1, t2i} for each i. For the sake of presentation, we
will also denote ul = um−1 (resp., ur = um), and denote
the two teams in ul as {tl1, tl2} (resp., the two teams in ur as
{tr1, tr2}).

We first arrange super-games between super-teams ui and
then we will extend super-games to normal games between
normal teams ti.

Each super-team will attend m − 1 super-games in m − 1
time slots. Each super-game in the first m− 2 time slots will
be extended to four normal games between normal teams, and
each super-game in the last time slot will be extended to six
normal games between normal teams. So each normal team
ti will attend 4×(m−2)+6 = 4m−2 = 2n−2 games. This
is the number of games each team ti should attend in TTP-2.

We first design the super-games between super-teams in
the first m − 2 time slots, and then consider super-games in
the last time slot. In each of the first m − 2 time slots, we
have m−1

2 super-games (note that m is odd), where one super-
game involves three super-teams and all other super-games
involve two super-teams. In the first slot, the m−1

2 super-
games are arranged as shown in Figure 3. The most left super-
game involving super-team ul is called the left super-game,

and the most right super-game involving ur is called the right
super-game. The right super-game is the only super-game
involving three super-teams. The other m−1

2 −2 super-games
are called middle super-games. There are also directed edges
in the super-games, which will be used to extend super-games
to normal games.

… …𝑢𝑢𝑙𝑙

𝑢𝑢𝑚𝑚−3 𝑢𝑢𝑚𝑚−4

𝑢𝑢𝑚𝑚−2

𝑢𝑢1 𝑢𝑢2

𝑢𝑢𝑟𝑟

𝑢𝑢𝑚𝑚−3
2

𝑢𝑢𝑚𝑚−1
2

Figure 3: Schedule at the first slot

Note that the white nodes (super-teams u1, . . . , um−2) in
Figure 3 form a cycle u1u2 . . . um−2. In the second slot,
super-games are scheduled as shown in Figure 4. we change
the positions of white super-teams in the cycle by moving one
position in the clockwise direction, and also change the direc-
tion of each edge. The positions of ul and ur will always be
fixed.

… …𝑢𝑢𝑙𝑙 𝑢𝑢𝑟𝑟

𝑢𝑢𝑚𝑚−4 𝑢𝑢𝑚𝑚−5

𝑢𝑢𝑚𝑚−5
2

𝑢𝑢𝑚𝑚−3
2

𝑢𝑢𝑚𝑚−3

𝑢𝑢𝑚𝑚−2 𝑢𝑢1

Figure 4: Schedule at the Second slot

The schedules for the first m − 2 slots are derived analo-
gously. Next, we explain how to extend the super-games in
these slots to normal games.
Case 1: Middle super-games. We first consider middle
super-games, each of which will be extended to four nor-
mal games in four days. Assume that in a middle super-
game, team ui plays against the team uj on time slot q,
1 ≤ i, j, q ≤ m − 2. Recall that ui represents normal teams
{t2i−1, t2i} and uj represents normal teams {t2j−1, t2j}. The
super-game will be extended to eight normal games in four
corresponding days from 4q − 3 to 4q, as shown in Figure 5.
A directed edge from team ti′ to team ti′′ means ti′ plays
against ti′′ at the home of ti′′ . Note that if there is a directed
edge from uj to ui, then the direction of all the edges in Fig-
ure 5 should be reversed.

Time slot:…………………………………………………………4𝑞𝑞 − 3 4𝑞𝑞 − 2 4𝑞𝑞 − 1 4𝑞𝑞

𝑢𝑢𝑖𝑖

𝑢𝑢𝑗𝑗 𝑡𝑡2𝑗𝑗𝑡𝑡2𝑗𝑗−1 𝑡𝑡2𝑗𝑗𝑡𝑡2𝑗𝑗−1 𝑡𝑡2𝑗𝑗𝑡𝑡2𝑗𝑗−1 𝑡𝑡2𝑗𝑗𝑡𝑡2𝑗𝑗−1

𝑡𝑡2𝑖𝑖𝑡𝑡2𝑖𝑖−1 𝑡𝑡2𝑖𝑖𝑡𝑡2𝑖𝑖−1 𝑡𝑡2𝑖𝑖𝑡𝑡2𝑖𝑖−1 𝑡𝑡2𝑖𝑖𝑡𝑡2𝑖𝑖−1

Figure 5: Middle super-games

Case 2: Left super-games. Assume that in a left super-
game, team ul plays against team ui on time slot q, 1 ≤
i, q ≤ m − 2. Recall that ul represents normal teams
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{t2m−3, t2m−2} and ui represents normal teams {t2i−1, t2i}.
The super-game will be extended to eight normal games in
four corresponding days from 4q − 3 to 4q, as shown in Fig-
ure 6 for odd time slot q. For even time slot q, the direction
of edges in the figure will be reversed.

Time slot: 4𝑞𝑞 − 3 4𝑞𝑞 − 2 4𝑞𝑞 − 1 4𝑞𝑞

𝑢𝑢𝑙𝑙 𝑢𝑢𝑖𝑖

𝑡𝑡2𝑖𝑖−1𝑡𝑡𝑙𝑙𝑙 𝑡𝑡2𝑖𝑖−1𝑡𝑡𝑙𝑙𝑙 𝑡𝑡2𝑖𝑖−1𝑡𝑡𝑙𝑙𝑙 𝑡𝑡2𝑖𝑖−1𝑡𝑡𝑙𝑙𝑙

𝑡𝑡2𝑖𝑖𝑡𝑡𝑙𝑙𝑙𝑡𝑡2𝑖𝑖𝑡𝑡𝑙𝑙𝑙𝑡𝑡2𝑖𝑖𝑡𝑡𝑙𝑙𝑙𝑡𝑡2𝑖𝑖𝑡𝑡𝑙𝑙𝑙

…………………………………………………………

Figure 6: Left super-games

Case 3: Right super-games. Assume that in a right super-
game, three teams ui, ui−1 and ur play on time slot q, 1 ≤
i, q ≤ m− 2 and u0 = um−2. Recall that ur represents nor-
mal teams {t2m−1, t2m}. The super-game will be extended to
twelve normal games in four corresponding days from 4q− 3
to 4q, as shown in Figure 7. Note that the edges between
three teams are dash edges (see Figures 3 and 4). So for the
case of n ≡ 6 (mod 8), the direction of these three edges
should be reversed. So Figure 7 describes the case of odd
time slot q with n ≡ 2 (mod 8) and the case of even time
slot q with n ≡ 6 (mod 8). For the case of odd time slot q
with n ≡ 2 (mod 8) and the case of even time slot q with
n ≡ 6 (mod 8), the direction of all edges in the figure will
be reversed.

Time slot:……………………………………………………………
𝑢𝑢𝑖𝑖−1

𝑢𝑢𝑖𝑖

𝑢𝑢𝑟𝑟

4𝑞𝑞 − 3 4𝑞𝑞 − 2 4𝑞𝑞 − 1 4𝑞𝑞

𝑡𝑡2𝑖𝑖𝑡𝑡2𝑖𝑖−1 𝑡𝑡2𝑖𝑖𝑡𝑡2𝑖𝑖−1 𝑡𝑡2𝑖𝑖𝑡𝑡2𝑖𝑖−1

𝑡𝑡2𝑖𝑖−2𝑡𝑡2𝑖𝑖−3𝑡𝑡2𝑖𝑖−2𝑡𝑡2𝑖𝑖−3𝑡𝑡2𝑖𝑖−2𝑡𝑡2𝑖𝑖−3𝑡𝑡2𝑖𝑖−2𝑡𝑡2𝑖𝑖−3

𝑡𝑡2𝑖𝑖𝑡𝑡2𝑖𝑖−1
𝑡𝑡𝑟𝑟𝑟

𝑡𝑡𝑟𝑟𝑟

𝑡𝑡𝑟𝑟𝑟

𝑡𝑡𝑟𝑟𝑟

𝑡𝑡𝑟𝑟𝑟

𝑡𝑡𝑟𝑟𝑟

𝑡𝑡𝑟𝑟𝑟

𝑡𝑡𝑟𝑟𝑟

Figure 7: Right super-games

The first m−2 slots will be extended to 4(m−2) = 2n−8
days according to the above rules. Each team will have six re-
maining games, which will be scheduled in the last time slot.
Two remaining games are self-games, which is to play against
the team in the same super-team. For teams in ul and ur, the
other four remaining games are between the teams in ul and
ur. For teams in the other super-teams ui, two remaining
games should be played against a team in super-team ui−1
and two remaining games should be played against a team
in super-team ui+1, such as the two missing games between
t2i−3 and t2i in Figure 7. Figure 8 shows the six remaining
games for teams in ui (i ∈ {1, 2, . . . ,m − 2}), and Figure 9
shows the six remaining games for teams in ul and ur.

𝑡𝑡2𝑖𝑖−1

𝑡𝑡2𝑖𝑖

𝑡𝑡2𝑖𝑖−3

𝑡𝑡2𝑖𝑖−2

𝑡𝑡2𝑖𝑖+1

𝑡𝑡2𝑖𝑖+2

Figure 8: The six remaining games for teams in ui (i 6= l, r)

The last slot. Now we are ready to design the six days of
games for the last slot. We use self to denote one day of self-
games: for each super-team ui, team t2i−1 plays against team

𝑡𝑡𝑟𝑟𝑟

𝑡𝑡𝑟𝑟𝑟

𝑡𝑡𝑙𝑙𝑙

𝑡𝑡𝑙𝑙𝑙

Figure 9: The six remaining games for teams in ul and ur

t2i at the home of t2i. We will also use self to denote the day
of games with the reversed direction in self , i.e., the part-
ner is the same but the game site change to the other team’s
home. We also design two days of games A1 and A2 as shown
in Figures 10 and 11. Then we can see that the other four
days of games left are given by A1, A2, A1, A2. Note that in
A1, A2, A1, and A2 we will have three dash edges, which will
be reversed for the case of n ≡ 6 (mod 8).

𝑡𝑡3 𝑡𝑡4 𝑡𝑡5 𝑡𝑡6

𝑡𝑡𝑚𝑚 𝑡𝑡𝑚𝑚+1𝑡𝑡2𝑚𝑚−7𝑡𝑡2𝑚𝑚−6𝑡𝑡2𝑚𝑚−5𝑡𝑡2𝑚𝑚−4

𝑡𝑡1

𝑡𝑡2

𝑡𝑡𝑙𝑙𝑙 𝑡𝑡𝑙𝑙𝑙

𝑡𝑡𝑟𝑟𝑟 𝑡𝑡𝑟𝑟𝑟

… …

𝑡𝑡𝑚𝑚−2 𝑡𝑡𝑚𝑚−1

Figure 10: The day A1

𝑡𝑡3 𝑡𝑡4 𝑡𝑡5 𝑡𝑡6 𝑡𝑡𝑚𝑚−2 𝑡𝑡𝑚𝑚−1

𝑡𝑡𝑚𝑚 𝑡𝑡𝑚𝑚+1𝑡𝑡2𝑚𝑚−7𝑡𝑡2𝑚𝑚−6

𝑡𝑡1

𝑡𝑡2

𝑡𝑡𝑙𝑙𝑙 𝑡𝑡𝑙𝑙𝑙

𝑡𝑡𝑟𝑟𝑟 𝑡𝑡𝑟𝑟𝑟

… …

𝑡𝑡2𝑚𝑚−5𝑡𝑡2𝑚𝑚−4

Figure 11: The day A2

Next, we need to order the six days {self, self , A1, A2,
A1, A2} to joint the previous 2n−8 days without violating the
bounded-by-k and no-repeat constraints. It will be different
for the two cases of n ≡ 2 (mod 8) and n ≡ 6 (mod 8).
For n ≡ 2 (mod 8), the six days are arranged in the order:
A1, self, A2, self , A2, A1; For n ≡ 6 (mod 8), the six days
are arranged in the order: A2, self , A1, self, A1, A2.

We have described the main part of the scheduling algo-
rithm. Next, we will prove its feasibility.
Theorem 2. For TTP-2 with n teams such that n ≥ 10 and
n ≡ 2 (mod 4), the above construction can generate a fea-
sible schedule.

Proof. First, we show that each team plays all the required
2n− 2 games in the 2n− 2 days. According to the schedule,
we can see that each team will attend one game in each of the
2n − 2 days. Furthermore, it is not hard to observe that no
two teams play against each other at the same place. So each
team will play the required 2n− 2 games.

Second, it is easy to see that each team will not violate the
no-repeat property. In any time slot, no two games between
the same teams are arranged in two consecutive days. For
two different time slots, each team will play against different
teams. Especially, self and self are not arranged as two
consecutive days in the last time slot.
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Last, we prove that each team does not violate the
bounded-by-k property. We will use ‘H’ and ‘A’ to denote
a home game and an away game, respectively. We will also
let H = A and A = H .

We first look at the games in the first 2n − 8 days. For
the two teams in ul, the 4 games in an odd time slot will be
HAAH (see Figure 6), and the 4 games in an even time slot
will be AHHA. So two consecutive time slots can be jointed
well. For the two teams in ur, the 4 games will be HAAH or
HAAH in an odd time slot and reversed in an even time slot.
Two consecutive time slots can still be jointed well. Next,
we consider a team ti in uj (j ∈ {1, 2, . . . ,m − 2}). In
the time slots for middle super-games, the 4 games will be
AAHH if the direction of the edge (super-game) is toward
uj and AAHH otherwise. In the time slots for left super-
games, the 4 games will be AHHA or AHHA. In the time
slots for right super-games, the 4 games will be AAHH or
AAHH . According to our schedule, two consecutive time
slots can joint well, no matter they are two slots for middle
super-games, or one slot for middle super-game and one slot
for left super-game, or one slot for middle super-game and
one slot for right super-game.

We have the last 6 days in the last time slot not analyzed
yet. For the sake of presentation, we just list out the last
10 games in the last two time slots for each team. We will
have five different cases: teams in ul, ur, u1, u0 for odd
o ∈ {3, . . . ,m − 2}, and ue for even e ∈ {2, . . . ,m − 2}.
The reason why u1 is different from other uo with an odd
subscript o is that in the penultimate time slot, u1 plays with
ul, and then it has a different form of games. For the case of
n ≡ 2 (mod 8), the last 10 games are shown in Figure 12,
and for the case of n ≡ 6 (mod 8), the last 10 games are
shown in Figure 13. We can see that there are no three con-
secutive home games or away games. So the bounded-by-k
property holds.
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Figure 13: The last 10 games for the case of n ≡ 6 (mod 8)

Since our schedule satisfies the above three conditions, we
know that our schedule is a feasible schedule for TTP-2. Note
that our schedule requires at least 10 teams. So we have n ≥
10.

5 Analyzing Approximation Quality
Next, we analyze the theoretical approximation bound of our
schedule. We compare the itinerary of each team in our
schedule with the perfect itinerary and use ∆i to denote the
difference between them for each team i. Then we only need
to evaluate a bound for

∑n
i=1 ∆i.

We first introduce the framework of our proof idea. For
team ti with 1 ≤ i ≤ n − 4 in a white super-team uj in
Figure 3, only its trips to the nine teams in ul ∪ ur ∪ uj−1 ∪
uj ∪ uj+1 \ {ti} may be different from that in the perfect
itinerary. By Lemma 2, we know that the distance of this part
in our schedule will be at most that in the perfect itinerary
plus the nine distances from ti to the nine teams. On average,
each team ti will use an extra distance of about 9/n of the
independent low bound LBi. For teams ti (i ∈ {1, 2, . . . , n−
4}), the total extra distance will be bounded by about 9/n of
LB. For the other four teams ti (i ∈ {n−3, n−2, n−1, n}) in
the two super-teams ul and ur, their itineraries may be totally
different from the perfect itineraries. However, by Lemma 2,
we know that the extra distance for ti is most LBi. We will
set the four teams with the minimum value LBi. Then the
extra distance given by the four teams is at most 4/n of LB.
Thus, we get an approximation ratio of about (1 + 13/n).
Next, we give a more detailed analysis and show a refined
ratio of (1 + 12/n) indeed.

First, we consider the four teams {tn−3, tn−2, tn−1, tn} in
the two super-teams ul and ur. By Lemma 2, we directly get
that

∆i ≤ LBi for each i ∈ {n− 3, n− 2, n− 1, n}. (3)

Second, we consider the n − 4 teams ti in super-teams uj

(j ∈ {1, 2, . . . ,m − 2}). We look at two super-teams ui1
and ui2 , where 1 ≤ i1, i2 ≤ m − 2 and |i1 − i2| ≥ 2. The
games between the two super-teams will be the form of mid-
dle super-games in Case 1. A team in ui1 (resp., ui2 ) will
visit the two teams in ui2 (resp., ui1 ) in one road trip, which
is also a road trip in the perfect itinerary. Comparing with the
perfect itinerary for a team ti ∈ uj (i ∈ {1, 2, . . . , n − 4},
and j = di/2e), only the trips to visit the nine teams in
ul ∪ ur ∪ uj−1 ∪ uj ∪ uj+1 \ {ti} may be different. See
the comparison for t3 as an example in Figure 14.

𝑡𝑡1 𝑡𝑡2 𝑡𝑡𝑟𝑟𝑟 𝑡𝑡𝑟𝑟𝑟 𝑡𝑡𝑙𝑙𝑙 𝑡𝑡𝑙𝑙𝑙 𝑡𝑡𝑙𝑙𝑙 𝑡𝑡𝑙𝑙𝑙

𝑡𝑡𝑛𝑛−7𝑡𝑡𝑛𝑛−6𝑡𝑡𝑛𝑛−5𝑡𝑡𝑛𝑛−4𝑡𝑡7 𝑡𝑡8 𝑡𝑡9 𝑡𝑡10

𝑡𝑡3

𝑡𝑡𝑛𝑛−7𝑡𝑡𝑛𝑛−6𝑡𝑡𝑛𝑛−5𝑡𝑡7 𝑡𝑡8 𝑡𝑡9 𝑡𝑡10 𝑡𝑡𝑛𝑛−4

𝑡𝑡5 𝑡𝑡6𝑡𝑡4 𝑡𝑡𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟

𝑡𝑡3

𝑡𝑡1 𝑡𝑡2 𝑡𝑡4 𝑡𝑡5 𝑡𝑡6

⋯ ⋯

(a) The perfect itineray of 𝑡𝑡3 (b) our itineary of 𝑡𝑡3

Figure 14: The perfect itinerary and our itinerary of t3: the lower
parts are the same and the upper parts of the trips to the nine teams
are different

By Lemma 2, we know that

Claim. For each ti ∈ uj (i ∈ {1, 2, . . . , n − 4}, and j =
di/2e), ∆i is bounded by the sum of the distances from ti to
the nine teams in ul ∪ ur ∪ uj−1 ∪ uj ∪ uj+1 \ {ti}.
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Recall that for two super-games ui and uj , we use
D(ui, uj) to denote the sum of the four distances between
teams tp ∈ ui and tq ∈ uj . By the above claim, we get that

n−4∑
i=1

∆i ≤
n∑

i=n−3
LBi + 2

m−2∑
i=1

D(ui−1, ui), (4)

where u0 is interpreted as um−2.
Next, we reorder the teams to get good bounds for B1 =∑n
i=n−3 LBi and B2 =

∑m−2
i=1 D(ui−1, ui). Since LB =∑m

i=1(LB2i−1 + LB2i), we can choose ul and ur such that

B1 =
n∑

i=n−3
LBi ≤

2

m
LB =

4

n
LB. (5)

Next, we choose an order of ui to make B2 as small as
possible. Recall that H is the complete graph on the m
super-teams ui. We decompose the complete graph H into
(m − 1)/2 edge-disjoint Hamilton cycles by using the well-
known decomposition algorithm in [Alspach et al., 1990] and
let C be one Hamilton cycle among them having the mini-
mum length. Then we reorder ui such that u1u2 . . . um−2 is
a part of the Hamilton cycle C. Therefore, by the triangle
inequality, we get

B2 =
m−2∑
i=1

D(ui−1, ui) ≤
2

m− 1
DH ≤

2

n− 2
LB. (6)

By (3)-(6), we get that

n∑
i=1

∆i ≤ 2
n∑

i=n−3
LBi + 2

m−2∑
i=1

D(ui−1, ui)

= 2B1 + 2B2

≤ (
8

n
+

4

n− 2
)LB.

Theorem 3. There is a polynomial-time (1 + 8
n + 4

n−2 )-
approximation algorithm for TTP-2 with n teams, where
n ≥ 10 and n ≡ 2 (mod 4).

6 Experimentations
To test the experimental performance, we will also use one
more local-search trick. Note that after getting a feasible
schedule by the above algorithm, we can get more feasible
schedules by only changing the positions of the teams. In the
experiments, we use two local-search rules to check better
solutions: swap between two super-teams and swap between
two teams in each super-team. This will lead O(m3) loops,
and then the running-time bound will increase a factor of m3.

We implement our algorithm to solve the benchmark in-
stances in [Trick, 2021]. The website introduces 62 instances,
most of which were reported from real-world sports schedul-
ing scenarios, such as the Super 14 Rugby League, the Na-
tional Football League, and the 2003 Brazilian soccer cham-
pionship. The number of teams in the instances varies from
4 to 40. We can solve all the 23 instances of n teams with
n ≥ 10 and n ≡ 2 (mod 4), in which 7 instances are very

Data Lower Previous Our Improvement
Sets Bounds Results Results Ratio(%)

Galaxy38 244848 274672 262657 4.37
Galaxy34 173312 192317 185347 3.62
Galaxy30 113818 124011 122628 1.12
Galaxy26 68826 77082 75538 2.00
Galaxy22 40528 46451 45360 2.35
Galaxy18 23774 27967 27467 1.79
Galaxy14 12950 15642 15622 0.13
Galaxy10 5280 6579 6506 1.11

NFL30 951608 1081969 1038902 3.98
NFL26 669782 779895 745595 4.40
NFL22 504512 600822 574028 4.46
NFL18 361204 439152 423326 3.60

NL14 238796 296403 289323 2.39
NL10 70866 90254 87842 2.67

Super14 823778 1087749 1019941 6.23
Super10 392774 579862 589512 -1.66

Table 1: Experimental results

special (all teams are in a cycle or all distance between pairs
of teams are 1) and not tested in previous papers. For the re-
maining 16 instances, we compare our results with the best-
known results in Table 1. In the table, the column ‘Lower
Bound’ indicates the independent lower bounds, ‘Previous
Results’ lists previous known results in [Thielen and West-
phal, 2012], ‘Our Results’ shows the results given by our
schedule algorithm after local search, and ‘Improvement Ra-
tio’ is defined as Previous Results − Our Results

Previous Results .
From this table, we can see that our scheduling improves

15 out of 16 instances. The average improvement on the 16
instances is 2.66%. Our algorithm is also fast. On a stan-
dard laptop with a 2.30GHz Intel(R) Core(TM) i5-6200 CPU
and 8 GB RAM, all the 16 instances can be solved together
within 0.1 seconds before applying local search and within 30
seconds including local search.

7 Conclusion
We have designed an algorithm to generate a feasible solu-
tion to TTP-2 with n ≡ 2 (mod 4), which can guarantee
the traveling distance at most (1 + 8

n + 4
n−2 ) times of the

optimal. This is the first (1 + O( 1
n ))-approximation algo-

rithm for TTP-2 with n ≡ 2 (mod 4). The algorithm is also
very practical. Experimental results show that our algorithm
can beat best-known solutions for almost all instances with
n ≥ 10 and n ≡ 2 (mod 4) in the well-known benchmark.
Furthermore, we are able to get further improvements by us-
ing a simple local-search method. In the experiments, we
only consider exchanges between two teams (or super-teams)
each time. We may be able to get more improvements by con-
sidering exchanges among three or more teams. However, the
running time will increase dramatically and the improvement
is very limited.
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