
On the Parameterized Complexity of Polytree Learning

Niels Grüttemeier∗ , Christian Komusiewicz and Nils Morawietz†

Philipps-Universität Marburg, Marburg, Germany
{niegru, komusiewicz, morawietz}@informatik.uni-marburg.de

Abstract
A Bayesian network is a directed acyclic graph that
represents statistical dependencies between vari-
ables of a joint probability distribution. A funda-
mental task in data science is to learn a Bayesian
network from observed data. POLYTREE LEARN-
ING is the problem of learning an optimal Bayesian
network that fulfills the additional property that
its underlying undirected graph is a forest. In
this work, we revisit the complexity of POLYTREE
LEARNING. We show that POLYTREE LEARNING
can be solved in single-exponential FPT time for
the number of variables. Moreover, we consider the
influence of d, the number of variables that might
receive a nonempty parent set in the final DAG
on the complexity of POLYTREE LEARNING. We
show that POLYTREE LEARNING is presumably
not fixed-parameter tractable for d, unlike Bayesian
network learning which is fixed-parameter tractable
for d. Finally, we show that if d and the maximum
parent set size are bounded, then we can obtain ef-
ficient algorithms.

1 Introduction
Bayesian networks are the most important tool for modelling
statistical dependencies in joint probability distributions. A
Bayesian network consists of a DAG (N,A) over the vari-
able setN and a set of condiditional probability tables. Given
a Bayesian network and the observed values on some of its
variables, one may infer the probability distributions of the
remaining variables under the observations. One of the draw-
backs of using Bayesian networks is that this inference task
is NP-hard. Moreover, the task of constructing a Bayesian
network with an optimal network structure is NP-hard as
well, even on very restricted instances [Chickering, 1995].
In this problem, we are given a local parent score func-
tion fv : 2N\{v} → N0 for each variable v and the task is
to learn a DAG (N,A) such that the sum of the parent scores
over all variables is maximal.
∗Contact Author
†Supported by the Deutsche Forschungsgemeinschaft (DFG),

project OPERAH, KO 3669/5-1.

In light of the hardness of handling general Bayesian net-
works, the learning and inference problems for Bayesian net-
works fulfilling some specific structural constraints have been
studied extensively [Pearl, 1989; Korhonen and Parviainen,
2013; Korhonen and Parviainen, 2015; Grüttemeier and Ko-
musiewicz, 2020; Ramaswamy and Szeider, 2021].

One of the earliest special cases that has received atten-
tion are tree networks, also called branchings. A tree is a
Bayesian network where every vertex has at most one par-
ent. In other words, every connected component is a di-
rected in-tree. Learning and inference can be performed
in polynomial time on trees [Chow and Liu, 1968; Pearl,
1989]. Trees are, however, very limited in their modeling
power since every variable may depend only on at most one
other variable. To overcome this problem, a generalization
of branchings called polytrees has been proposed. A poly-
tree is a DAG whose underlying undirected graph is a for-
est. An advantage of polytrees is that the inference task
can be performed in polynomial time on them [Pearl, 1989;
Guo and Hsu, 2002]. POLYTREE LEARNING, the problem
of learning an optimal polytree structure from parent scores,
however, remains NP-hard [Dasgupta, 1999]. We study exact
algorithms for POLYTREE LEARNING.

Related Work. POLYTREE LEARNING is NP-hard even
if every parent set with strictly positive score has size at
most 2 [Dasgupta, 1999]. Motivated by the contrast be-
tween the NP-hardness of POLYTREE LEARNING and the
fact that learning a tree has a polynomial-time algorithm,
the problem of optimally learning polytrees that are close
to trees has been considered. More precisely, it has been
shown that the best polytree among those that can be trans-
formed into a tree by at most k edge deletions can be found
in nO(k)|I|O(1) time [Gaspers et al., 2015; Safaei et al., 2013]
where n is the number of variables and |I| is the overall input
size. Thus, the running time of these algorithms is polyno-
mial for every fixed k. As noted by Gaspers et al. [2015], a
brute-force algorithm for POLYTREE LEARNING would need
to consider nn−2 · 2n−1 directed trees. Polytrees have been
used, for example, in image-segmentation for microscopy
data [Fehri et al., 2019].

Our Results. We obtain an algorithm that solves POLY-
TREE LEARNING in 3n · |I|O(1) time. This running time
is a substantial improvement over the brute-force algorithm

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4221

mentioned above, thus positively answering a question of
Gaspers et al. [2015] on the existence of such algorithms.
We then study whether POLYTREE LEARNING is amenable
to polynomial-time data reduction that shrinks the instance I
if |I| is much bigger than n. We show that such a data reduc-
tion algorithm is unlikely. More precisely, we show that (un-
der standard complexity-theoretic assumptions) there is no
polynomial-time algorithm that replaces any n-variable in-
stance I by an equivalent one of size nO(1). In other words,
it seems necessary to keep an exponential number of parent
sets to compute the optimal polytree.

We then consider a parameter that is potentially much
smaller than n and determine whether POLYTREE LEARN-
ING can be solved efficiently when this parameter is small.
The parameter d, which we call the number of dependent vari-
ables, is the number of variables v for which at least one en-
try of fv is strictly positive. The parameter essentially counts
how many variables might receive a nonempty parent set in an
optimal solution. We show that POLYTREE LEARNING can
be solved in polynomial time when d is constant but that an
algorithm with running time g(d) · |I|O(1) is unlikely for any
computable function g. Consequently, in order to obtain pos-
itive results for the parameter d, one needs to consider further
restrictions on the structure of the input instance. We make a
first step in this direction and consider the case where all par-
ent sets with a strictly positive score have size at most p. Us-
ing this parameterization, we show that every input instance
can be solved in 2ωdp ·|I|O(1) time where ω is the matrix mul-
tiplication constant. With the current-best known value for ω
this gives a running time of 5.18dp · |I|O(1). We then consider
again data reduction approaches. This time we obtain a posi-
tive result: Any instance of POLYTREE LEARNING where p is
constant can be reduced in polynomial time to an equivalent
one of size dO(1). Informally, this means that if the instance
has only few dependent variables, the parent sets with strictly
positive score are small, and there are many nondependent
variables, then we can identify some nondependent variables
that are irrelevant for an optimal polytree representing the in-
put data. We note that this result is tight in the following
sense: Under standard complexity-theoretic assumptions it is
impossible to replace each input instance in polynomial time
by an equivalent one with (d + p)O(1) variables. Thus, the
assumption that p is a constant is necessary.

2 Preliminaries
Notation. An undirected graph is a tuple (V,E), where V
is a set of vertices and E ⊆ {{u, v} | u, v ∈ V } is a set of
edges. Given a vertex v ∈ V , we define NG(v) := {u ∈ V |
{u, v} ∈ E} as the neighborhood of v. A directed graph is a
tuple (N,A), whereN is a set of vertices andA ⊆ N×N is a
set of arcs. If (u, v) ∈ A we call u a parent of v and v a child
of u. Given a vertex v, we let PA

v := {u | (u, v) ∈ A} denote
the parent set of v. The skeleton of a directed graph (N,A)
is the undirected graph (N,E) where {u, v} ∈ E if and only
if (u, v) ∈ A or (v, u) ∈ A. A directed acyclic graph is
a polytree if its skeleton is a forest, that is, the skeleton is
acyclic [Dasgupta, 1999]. As a shorthand, we write P × v :=
P × {v} for a vertex v and a set P ⊆ N .

Problem Definition. Given a vertex set N , a family F :=
{fv : 2N\{v} → N0 | v ∈ N} is a family of local scores
for N . Intuitively, fv(P) is the score that a vertex v obtains
if P is its parent set. Given a directed graph D := (N,A) we
define score(A) :=

∑
v∈N fv(P

A
v). We study the following

computational problem.

POLYTREE LEARNING
Input: A set of vertices N , local scores F = {fv | v ∈
N}, and an integer t ∈ N0.
Question: Is there an arc-set A ⊆ N × N such
that (N,A) is a polytree and score(A) ≥ t?
Given an instance I := (N,F , t) of POLYTREE LEARN-

ING, an arc-set A is a solution of I if (N,A) is a polytree
and score(A) ≥ t. Without loss of generality we may as-
sume that fv(∅) = 0 for every v ∈ N [Grüttemeier and Ko-
musiewicz, 2020].

Solution Structure and Input Representation. We as-
sume that the local scores F are given in non-zero represen-
tation. That is, fv(P) is part of the input if it is different
from 0. For N = {v1, . . . , vn}, the local scores F are repre-
sented by a two-dimensional array [Q1, Q2, . . . , Qn], where
each Qi is an array containing all triples (fvi

(P), |P |, P)
where fvi(P) > 0. The size |F| is defined as the number
of bits needed to store this two-dimensional array. Given an
instance I := (N,F , t), we define |I| := n+ |F|+ log(t).

For a vertex v, we call PF (v) := {P ⊆ N \{v} | fv(P) >
0} ∪ {∅} the set of potential parents of v. Given a yes-
instance I := (N,F , t) of POLYTREE LEARNING, there ex-
ists a solution A such that PA

v ∈ PF (v) for every v ∈ N : If
there is a vertex with PA

v 6∈ PF (v) we can simply replace its
parent set by ∅. The running times presentend in this paper
will also be measured in the maximum number of potential
parent sets δF := maxv∈N |PF (v)| [Ordyniak and Szeider,
2013].

A tool for designing algorithms for POLYTREE LEARNING
is the directed superstructure [Ordyniak and Szeider, 2013]
which is the directed graph SF := (N,AF) with AF :=
{(u, v) | ∃P ∈ PF (v) : u ∈ P}. In other words, there is an
arc (u, v) ∈ AF if and only if u is a potential parent of v.

Parameterized Complexity. A problem is in the class XP
for a parameter k if it can be solved in |I|g(k) time for some
computable function g. In other words, a problem is in XP
if it can be solved within polynomial time for every fixed k.
A problem is fixed-parameter tractable (FPT) for a parame-
ter k if it can be solved in g(k) · |I|O(1) time for some com-
putable g. If a problem is W[1]-hard for a parameter k, then
it is assumed to not be fixed-parameter tractable for k. A
problem kernel is an algorithm that, given an instance I with
parameter k computes in polynomial time an equivalent in-
stance I ′ with parameter k′ such that |I ′| + k′ ≤ h(k) for
some computable function h. If h is a polynomial, then the
problem admits a polynomial kernel. Strong conditional run-
ning time bounds can also be obtained by assuming the Ex-
ponential Time Hypothesis (ETH), a standard conjecture in
complexity theory [Impagliazzo et al., 2001]. For a detailed
introduction into parameterized complexity we refer to the
standard textbook [Cygan et al., 2015].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4222

P p1 p2 p3 p4 p5

v

S

Figure 1: Illustration of an entry T [v, P, S, i] where i = 3.

3 Parameterization by the Number of Vertices
In this section we study the complexity of POLYTREE
LEARNING when parameterized by n, the number of vertices.
Note that there are up to n ·2n−1 entries in F and thus, the to-
tal input size of an instance of POLYTREE LEARNING might
be exponential in n.

Theorem 1. POLYTREE LEARNING can be solved in 3n ·
|I|O(1) time.

Proof. Let I := (N,F , t) be an instance of POLYTREE
LEARNING. We describe a dynamic programming algorithm
to solve I . We suppose an arbitrary fixed total ordering on the
vertices of N . For every P ⊆ N , and every i ∈ [1, |P |], we
denote with pi the ith smallest element of P according to the
total ordering.

The dynamic programming table T has entries of
type T [v, P, S, i] with v ∈ N , P ∈ PF (v), S ⊆ N \ (P ∪
{v}), and i ∈ [0, |P |].

Each entry stores the maximal score of an arc set A of a
polytree on {v} ∪ P ∪ S where v has no children, v learns
exactly the parent set P underA, and for each j ∈ [i+1, |P |],
only the arc (pj , v) is incident with pj under A. See Figure 1
for an illustration.

We initialize the table T by setting T [v, P, ∅, i] := fv(P)
for all v ∈ N , P ∈ PF (v), and i ∈ [0, |P |]. The recurrence to
compute an entry for v ∈ N , P ∈ PF (v), S ⊆ N \(P ∪{v}),
and i ∈ [1, |P |] is

T [v, P, S, i] := max
S′⊆S

T [v, P, S \ S′, i− 1]+

max
v′∈S′∪{pi}

max
P ′∈PF (v′)
P ′⊆S′∪{pi}

T [v′, P ′, (S′ ∪ {pi}) \ (P ′ ∪ {v′}), |P ′|].

Note that the two vertex sets P ∪ (S \ S′) ∪ {v} and P ′ ∪
(S′ ∪ {pi}) \ (P ′ ∪ {v′}) ∪ {v′} = S′ ∪ {pi} share only the
vertex pi. Hence, combining the polytree on these two vertex
sets results in a polytree.

If i is equal to zero, then the recurrence is

T [v, P, S, 0] :=

fv(P) + max
v′∈S

max
P ′∈PF (v′)

P ′⊆S

T [v′, P ′, S′ \ (P ′ ∪ {v′}), |P ′|].

Thus, to determine if I is a yes-instance of POLYTREE
LEARNING, it remains to check if T [v, P,N \ (P ∪
{v}), |P |] ≥ t for some v ∈ N and some P ∈ PF (v). The
corresponding polytree can be found via traceback. The cor-
rectness proof is straightforward and thus omitted.

The table T has 2n·n2·δF entries. Each of these entries can
be computed in 2|S| ·n2 · δF . Consequently, all entries can be

computed in
∑n

i=0

(
n
i

)
2i · |I|O(1) = 3n · |I|O(1) time in total.

To evaluate if there is some v ∈ N and some P ∈ PF (v)
such that T [v, P,N \ (P ∪ {v}), |P |] ≥ t can afterwards
be done in O(n · δF) time. Hence, the total running time
is 3n · |I|O(1).

The proof is closely related to a similar kernel lower bound
for BAYESIAN NETWORK STRUCTURE LEARNING parame-
terized by n [Grüttemeier and Komusiewicz, 2020].

Theorem 2. POLYTREE LEARNING does not admit a poly-
nomial kernel when parameterized by n, unless NP ⊆
coNP/poly.

4 Dependent Vertices
We now introduce a new parameter d called number of de-
pendent vertices. Given an instance (N,F , t) of POLYTREE
LEARNING, a vertex v ∈ N is called dependent if there is a
nonempty potential parent-set P ∈ PF (v). Thus, a vertex is
dependent if it might learn a nonempty parent set in a solu-
tion. A vertex that is not dependent is called nondependent
vertex. Observe that d is potentially smaller than n. We start
with a simple XP-result.

Theorem 3. POLYTREE LEARNING can be solved in (δF)
d ·

nO(1) time.

Proof. Choose for each dependent vertex vi one of its po-
tential parent sets Pi ∈ PF (vi) and check afterwards
if (N,∪di=1Pi×vi) is a polytree of score at least t. This is the
case for some combination of potential parent sets if and only
if the instance is a yes-instance. Since each check can be done
in polynomial time and there are (δF)

d many combinations of
potential parent sets, we obtain the stated running time.

We next show that there is little hope for a significant run-
ning time improvement on this simple brute-force algorithm.
More precisely, we show that there is no g(d) · |I|O(1)-time
algorithm for some computable function g (unless FPT =
W[1]) and a stronger ETH-based running time bound.

Theorem 4. POLYTREE LEARNING is W[1]-hard when pa-
rameterized by the number of dependent vertices d; if the
ETH holds, then it has no (δF)

o(d) · |I|O(1)-time algorithm.
Both results even hold for instances where the directed super-
structure SF is a DAG.

Proof. We reduce from INDEPENDENT SET where one is
given an undirected graph G = (V,E) and an integer k and
the question is whether there is a subset S ⊆ V of size at
least k such that no two vertices in S are connected by an
edge. INDEPENDENT SET is W[1]-hard when parameterized
by k [Cygan et al., 2015].

Given an instance I = (G = (V,E), k) of INDEPEN-
DENT SET, we describe how to construct an equivalent in-
stance I ′ = (N,F , t) of POLYTREE LEARNING in polyno-
mial time such that at most k vertices have a nonempty po-
tential parent set. Note that we can assume that every ver-
tex of G has degree at least one. We start with an empty
set N and add k + 1 vertices v1, . . . , vk, and v∗. Moreover,

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4223

we add a vertex we for each edge e ∈ E. For every ver-
tex v ∈ V , we set Pv := {w{v,u} | u ∈ NG(v)} ∪ {v∗}
and we set fvi

(Pv) := 1 for each i ∈ [1, k]. All other local
scores are set to 0. Finally, we set t := k. This completes the
construction of I ′. We omit the correctness proof.

In the constructed instance, d = k and δF = n+1. Unless
the ETH fails, INDEPENDENT SET cannot be solved in no(k)
time [Chen et al., 2006] and, hence, POLYTREE LEARNING
cannot be solved in (δF)

o(d) · |I|O(1) time.

Theorem 4 points out a difference between POLY-
TREE LEARNING and BAYESIAN NETWORK STRUCTURE
LEARNING (BNSL), where we aim to learn a DAG.
In BNSL, a nondependent vertex v can be easily re-
moved from the input instance (N,F , t) by setting N ′ :=
N \ {v} and modifying the local scores to f ′u(P) :=
max(fu(P), fu(P ∪ {v})).

5 Dependent Vertices and Small Parent Sets
Due to Theorem 4, fixed-parameter tractability for POLY-
TREE LEARNING parameterized by d is presumably not pos-
sible. However, in instances constructed in the proof of The-
orem 4 the maximum parent set size p is not bounded by
some computable function in d. In practice there are many in-
stances where p is relatively small or upper-bounded by some
small constant [van Beek and Hoffmann, 2015]. First, we
provide an FPT algorithm for the parameter d + p. Second,
we provide a polynomial kernel for the parameter d if the
maximum parent set size p is constant. Both results are based
on computing max q-representative sets in a matroid [Fomin
et al., 2014; Lokshtanov et al., 2018].

To apply the technique of representative sets we assume
that there is a solution with exactly d · p arcs and every
nonempty potential parent set contains exactly p vertices.
This can be obtained with the following simple modification
of an input instance (N,F , t): For every dependent vertex v
we add vertices v1, v2, . . . , vp to N and set fvi

(P) := 0 for
all their local scores. Then, for every potential parent set P ∈
PF (v) with |P | < p we set fv(P ∪ {v1, . . . , vp−|P |}) :=
fv(P) and, afterwards, we set fv(P) := 0. Then, the given
instance is a yes-instance if and only if the modified in-
stance has a solution with exactly d · p arcs. Furthermore,
note that fv(∅) = 0 for every dependent vertex and every
nonempty potential parent set has size exactly p after apply-
ing the modification. Before we present the results of this
section we state the definition of a matroid.
Definition 1. A pair M = (E, I), where E is a set and I is
a family of subsets of E is a matroid if

1. ∅ ∈ I,

2. if A ∈ I and B ⊆ A, then B ∈ I, and

3. if A,B ∈ I and |A| < |B|, then there exists some b ∈
B \A such that A ∪ {b} ∈ I.

Given a matroid M = (E, I), the sets in I are called in-
dependent sets. A representation of M over a field F is a
mapping ϕ : E → V where V is some vector space over F
such thatA ∈ I if and only if the vectors ϕ(a) with a ∈ A are
linearly independent in V . A matroid with a representation is

called linear matroid. Given a set B ⊆ E, a set A ⊆ E fits B
if A ∩B = ∅ and A ∪B ∈ I.
Definition 2. LetM = (E, I) be a matroid, letA be a family
of subsets of E, and let w : A → N0 be a weight function.
A subfamily Â ⊆ A max q-represents A (with respect to w)
if for every set B ⊆ E with |B| = q the following holds: If
there is a set A ∈ A that fits B, there exists some Â ∈ Â
that fits B, and w(Â) ≥ w(A). If Â max q-represents A we
write Â ⊆q A.

We refer to a set family A where every A ∈ A has size ex-
actly x ∈ N0 as an x-family. Our results rely on the fact that
max q-representative sets of an x-family can be computed ef-
ficiently as stated in a theorem by Lokshtanov et al. [2018]
that is based on an algorithm by Fomin et al. [2014]. In
the following, ω < 2.373 is the matrix multiplication con-
stant [Williams, 2012].
Theorem 5 ([Lokshtanov et al., 2018]). Let M = (E, I) be
a linear matroid which representation can be encoded with
a k × |E| matrix over the field F2 for some k ∈ N. Let A
be an x-family containing ` sets, and let w : A → N0 be a
weight function. Then,

a) there exists some Â ⊆q A of size
(
x+q
x

)
that can be

computed withO
((

x+q
x

)2 · `x3k2 + `
(
x+q
q

)ω
kx
)
+(k+

|E|)O(1) operations in F2, and

b) there exists some Â ⊆q A of size
(
x+q
x

)
· k · x

that can be computed with O
((

x+q
x

)
· `x3k2 +

`
(
x+q
q

)ω−1
(kx)ω−1

)
+ (k+ |E|)O(1) operations in F2.

We next define the matroid we use in this work. Recall
that, given an instance (N,F , t) of POLYTREE LEARNING,
the directed superstructure SF is defined as SF := (N,AF)
where AF is the set of arcs that are potentially present in a
solution, and we set m := |AF |. In this work we consider
the super matroid MF which we define as the graphic ma-
troid [Tutte, 1965] of the super structure. Formally, MF :=
(AF , I) where A ⊆ AF is independent if and only (N,A) is
a polytree. The super matroid is closely related to the acyclic-
ity matroid that has been used for a constrained version
of POLYTREE LEARNING [Gaspers et al., 2015]. The proof
of the following proposition is along the lines of the proof
that the graphic matroid is a linear matroid.
Proposition 1. Let (N,F , t) be an instance of POLYTREE
LEARNING. Then, the super matroid MF is a linear matroid
and its representation can be encoded by an n × m matrix
over the field F2.
An FPT Algorithm. We now use the super matroid MF
to show that POLYTREE LEARNING can be solved in 2ωdp ·
|I|O(1) time where ω is the matrix multiplication constant.
The idea of the algorithm is simple: Let H := {v1, . . . , vd}
be the set of dependent vertices, and for i ∈ {0, 1, . . . , d}
let Hi := {v1, . . . , vi} be the set containing the first i de-
pendent vertices. The idea is that, for every Hi, we com-
pute a familyAi of possible polytrees where only the vertices
from {v1, . . . , vi} learn a nonempty potential parent set. We

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4224

Algorithm 1 FPT-algorithm for parameter d+ p

1: Input: (N,F , t) and dependent vertices v1, . . . , vd
2: Â0 := {∅}
3: for i = 1 . . . d do
4: Ãi =

⋃
P∈PF (vi)\{∅} Âi−1 ⊕vi P

5: Âi := ComputeRepresentation(Ãi, (d− i) · p)
6: return Â ∈ Âd such that (N, Â) is a polytree

and score(Â) is maximal

use the algorithm behind Theorem 5 as a subroutine to delete
arc-sets from Ai that are not necessary to find a solution. We
next define the operation ⊕. Intuitively, A ⊕v P means that
we extend each possible solution in the family A by the arc-
set that defines P as the parent set of a vertex v.
Definition 3. Let v ∈ N , and let A be an x-family of subsets
of AF such that PA

v = ∅ for every A ∈ A. For a vertex
set P ⊆ N we define

A⊕v P := {A ∪ (P × v) | A ∈ A and A ∪ (P × v) ∈ I}.
Observe that for every A ∈ A, the set P × v is disjoint

from A since PA
v = ∅. Consequently, A ⊕v P is an (x +

|P |)-family. The next lemma ensures that some operations
(including ⊕) are compatible with representative sets.
Lemma 1. Let w : 2AF → N0 be a weight function
with w(A) := score(A). Let A be an x-family of subsets
of AF .

a) If Ã ⊆q A and Â ⊆q Ã, then Â ⊆q A.

b) If Â ⊆q A and B is an x-family of subsets of AF
with B̂ ⊆q B, then Â ∪ B̂ ⊆q A ∪ B.

c) Let v ∈ N and let P ⊆ N such that PA
v = ∅

for every A ∈ A. Then, if Â ⊆q+|P | A it follows
that Â ⊕v P ⊆q A⊕v P .

We now describe the FPT algorithm. Let I := (N,F , t)
be an instance of POLYTREE LEARNING. Let H :=
{v1, v2, . . . , vd} denote the set of dependent vertices of I , and
for i ∈ {0, 1, . . . , d} let Hi := {v1, . . . , vi} contain the first i
dependent vertices. Observe that H0 = ∅ and Hd = H . We
define Ai as the family of possible directed graphs (even the
graphs that are no polytrees) where only the vertices in Hi

learn a nonempty potential parent set. Formally, this is

Ai :=

{
A ⊆ AF

∣∣∣∣ PA
v ∈ PF (v) \ {∅} for all v ∈ Hi

PA
v = ∅ for all v ∈ N \Hi

}
.

The algorithm is based on the following recurrence.
Lemma 2. If i = 0, then Ai = {∅}. If i > 0, Ai can be
computed by Ai =

⋃
P∈PF (vi)\{∅}Ai−1 ⊕vi P .

Intuitively, Lemma 2 states that Ai can be computed by
considering Ai−1 and combining every A ∈ Ai−1 with ev-
ery arc-set that defines a nonempty potential parent set of vi.
The correctness proof is straightforward and thus omitted. We
next present the FPT algorithm.
Theorem 6. POLYTREE LEARNING can be solved in 2ωdp ·
|I|O(1) time.

Proof. Let I := (N,F , t) be an instance of POLYTREE
LEARNING with dependent vertices H = {v1, . . . , vd}, let
the familiesAi for i ∈ {0, 1, . . . , d} be defined as above, and
let w : 2AF → N0 be defined by w(A) := score(A). All
representing families considered in this proof are max repre-
senting families with respect tow. We prove that Algorithm 1
computes an arc-set A such that (N,A) is a polytree with
maximal score.

The subroutine ComputeRepresentation(Ãi, (d −
i) ·p) in Algorithm 1 is an application of the algorithm behind
Theorem 5 b). It computes a max ((d − i) · p)-representing
family for Ãi. As a technical remark we mention that the
algorithm as described by Lokshtanov et al. [2018] evalu-
ates the weight w(A) for |Ãi| many arc-sets A. We assume
that each such evaluation w(A) is replaced by the compu-
tation of score(A) =

∑
v∈H fv(P

A
v) which can be done

in |I|O(1) time.
Correctness. We first prove the following invariant.

Claim 1. The family Âi max ((d − i) · p)-represents Ai

and |Âi| ≤ max(1,
(
dp
ip

)
· n · i · p).

Proof . The loop-invariant holds before entering the loop
since Â0 := {∅} in Line 2 and A0 = {∅}. Suppose that
the loop-invariant hold for the (i−1)th execution of the loop.
We show that the loop-invariant holds after the ith execution.

First, consider Line 4. Since we assume that every
nonempty potential parent set contains exactly p vertices,
Lemma 1 and Lemma 2 imply that Ãi max ((d − i) ·
p)-represents Ai. Note that at this point Ãi contains up
to max(1,

(
dp

(i−1)p
)
· n · (i− 1) · p) · δF sets.

Next, consider Line 5. Since we assume that every
nonempty potential parent set contains exactly p vertices, the
family Ãi is an (i · p)-family. Then, the algorithm behind
Theorem 5 computes a ((d − i) · p)-representing family Âi.
Then, by Theorem 5 b) and Lemma 1 a), Âi max ((d− i) ·p)-
represents Ai and |Âi| ≤

(
dp
ip

)
· n · i · p after the execution of

Line 5. ♦

We next show that Âd contains an arc-set that defines a
polytree with maximum score and thus, a solution is returned
in Line 6. Since we assume that there is an optimal solutionA
that consists of exactly d ·p arcs, this solution is an element of
the familyAd. Then, since Âd ⊆0 Ad, there exists some Â ∈
Âd with Â ∪ ∅ ∈ I and w(Â) ≥ w(A). Since Â ∪ ∅ ∈ I ,
the graph (N, Â) is a polytree, and since w(Â) ≥ w(A) the
score of Â is maximal.

Running time. We next analyze the running time of the
algorithm. For this analysis, we use the inequality

(
a
b

)
≤ 2a

for every b ≤ a. Let i be fixed.
We first analyze the running time of one execution of

Line 4. Since Âi−1 has size at most
(

dp
(i−1)p

)
· n · i · p due

to Claim 1, Line 4 can be executed in 2dp · |I|O(1) time.
We next analyze the running time of one execution of

Line 5. Recall that Ãi is an (i · p)-family of size at

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4225

most
(

dp
(i−1)p

)
· n · i · p · δF . Furthermore, recall that there

are |Ãi|many evaluations of the weight function. Combining
the running time from Theorem 5 b) with the time for evalu-
ating w, the subroutine takes time

O
((

dp

ip

)(
dp

(i− 1)p

)
δF (i · p)4n3

+

(
dp

(i− 1)p

)
δF

(
dp

ip

)ω−1

(n · i · p)ω
)

+ (n+m)O(1)

+

(
dp

(i− 1)p

)
· n · i · p · δF · |I|O(1)︸ ︷︷ ︸
evaluating w

.

Therefore, one execution of Line 5 can be done
in 2ωdp|I|O(1) time. Since there are d repetitions of
Lines 4–5, and Line 6 can be executed in |I|O(1) time, the
algorithm runs within the claimed running time.

Problem Kernelization. We now study problem kerneliza-
tion for POLYTREE LEARNING parameterized by d when the
maximum parent set size p is constant. We provide a prob-
lem kernel consisting of at most (dp)p+1 + d vertices where
each vertex has at most (dp)p potential parent sets which can
be computed in (dp)ωp · |I|O(1) time. Observe that both, the
running time and the kernel size, are polynomial for every
constant p. Note also that, since d + p ∈ O(n), Theorem 2
implies that there is presumably no kernel of size (d+ p)O(1)

that can be computed in (d+ p)O(1) time.
The basic idea of the kernelization is that we use max q-

representations to identify nondependent vertices that are not
necessary to find a solution.

Theorem 7. There is an algorithm that, given an in-
stance (N,F , t) of POLYTREE LEARNING computes in
time (dp)ωp · |I|O(1) an equivalent instance (N ′,F ′, t) such
that |N ′| ≤ (dp)p+1 + d and δF ′ ≤ (dp)p.

Proof. Let H be the set of dependent vertices.
Computation of the reduced instance. We describe how we

compute (N ′,F ′, t). We define the family Av := {P × v |
P ∈ PF (v)} for every v ∈ H and the weight function w :
Av → N0 by w(P × v) := fv(P). We then apply the algo-
rithm behind Theorem 5 a) and compute a max ((d− 1) · p)-
representing family Âv for every Av .

Given all Âv , a vertex w is called necessary if w ∈ H
or if there exists some v ∈ H such that (w, v) ∈ A for
some A ∈ Âv . We then define N ′ as the set of neces-
sary vertices. Next, F ′ consists of local score functions f ′v :

2N
′\{v} → N0 with f ′v(P) := fv(P) for every P ∈ 2N

′\{v}.
In other words, f ′v is the limitation of fv on parent sets that
contain only necessary vertices.

Next, consider the running-time of the computation
of (N ′,F ′, t). Since eachAv contains at most δF arc sets and
we assume that every potential parent set has size exactly p,

each Âv can be computed in time

O

((
dp

p

)2

· δF · p3 · n2 + δF ·
(
dp

p

)ω

· n · p

)
+ (n+m)O(1).

Observe that we use the symmetry of the binomial coefficient
to analyze this running time. After computing all Âv , we
compute N ′ and F ′ in polynomial time in |I|. The overall
running time is (dp)ωp · |I|O(1).

Correctness. We next show that (N,F , t) is a yes-instance
if and only if (N ′,F ′, t) is a yes-instance.

(⇐) Let (N ′,F ′, t) be a yes-instance. Then, there exists
an arc-set A′ such that (N ′, A′) is a polytree with score at
least t. Since N ′ ⊆ N , f ′v(P) = fv(P) for every v ∈ N ′,
and P ⊆ N ′ \ {v} we conclude that (N,A′) is a polytree
with score at least t.

(⇒) Let (N,F , t) be a yes-instance. We choose a solu-
tion A for (N,F , t) such that PA

v ⊆ N ′ for as many de-
pendent vertices v as possible. We prove that this implies
that PA

v ⊆ N ′ for all dependent vertices. Assume towards
a contradiction that there is some v ∈ H with PA

v 6⊆ N ′.
Observe that (PA

v × v) ∈ Av \ Âv . We then define the
arc set B :=

⋃
w∈H\{v} P

A
w × w. Since we assume that all

nonempty potential parent sets have size exactly p, we con-
clude |B| = (d − 1)p. Then, since Âv max ((d − 1) · p)-
represents Av and (PA

v × v) ∈ Av fits B we conclude that
there is some (P × v) ∈ Âv such that B ∩ (P × v) = ∅,
(N,B ∩ (P × v)) is a polytree, and fv(P) ≥ fv(P

A
v).

Thus, C := B ∪ (P × v) is a solution of (N,F , t) and the
number of vertices v that satisfy PC

v ⊆ N ′ is bigger than the
number of vertices v that satisfy PA

v ⊆ N ′. This contradicts
the choice of A.

Bound on the size of |N ′| and δF ′ . By Theorem 5, each Âi

has size at most
(
(d−1)p+p

p

)
=
(
dp
p

)
. Consequently, δF ′ ≤

(dp)p and N ′ ≤ d ·
(
dp
p

)
· p+ d ≤ (dp)p+1 + d.

6 Conclusion
We believe that there is potential for practically relevant exact
POLYTREE LEARNING algorithms and that this work could
constitute a first step. Next, one should aim for improved
parameterizations. For example, Theorem 3 gives an FPT
algorithm for the parameter δF + d. Can we replace δF
or d by smaller parameters? Instead of δF , one could con-
sider parameters that are small when only few dependent
vertices have many potential parent sets. Instead of d, one
could consider parameters of the directed superstructure, for
example the size of a smallest vertex cover; this parameter
never exceeds d. We think that the algorithm with running
time 3n · |I|O(1) might be practical for n up to 20 based
on experience with dynamic programs with a similar run-
ning time [Komusiewicz et al., 2011]. A next step should be
to combine this algorithm with heuristic data reduction and
pruning rules to further increase the range of tractable values
of n.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4226

References
[Chen et al., 2006] Jianer Chen, Xiuzhen Huang, Iyad A.

Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. J. Comput. Syst. Sci.,
72(8):1346–1367, 2006.

[Chickering, 1995] David Maxwell Chickering. Learning
Bayesian networks is NP-complete. In Proceedings of the
Fifth International Conference on Artificial Intelligence
and Statistics, (AISTATS’95), pages 121–130. Springer,
1995.

[Chow and Liu, 1968] C. K. Chow and C. N. Liu. Approxi-
mating discrete probability distributions with dependence
trees. IEEE Trans. Inf. Theory, 14(3):462–467, 1968.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Dasgupta, 1999] Sanjoy Dasgupta. Learning polytrees. In
Proceedings of the 15th Conference on Uncertainty in Ar-
tificial Intelligence (UAI ’99), pages 134–141. Morgan
Kaufmann, 1999.

[Fehri et al., 2019] Hamid Fehri, Ali Gooya, Yuanjun Lu,
Erik Meijering, Simon A. Johnston, and Alejandro F.
Frangi. Bayesian polytrees with learned deep features for
multi-class cell segmentation. IEEE Trans. Image Pro-
cess., 28(7):3246–3260, 2019.

[Fomin et al., 2014] Fedor V. Fomin, Daniel Lokshtanov,
and Saket Saurabh. Efficient computation of representa-
tive sets with applications in parameterized and exact al-
gorithms. In Proceedings of the 25th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’14), pages
142–151. SIAM, 2014.

[Gaspers et al., 2015] Serge Gaspers, Mikko Koivisto, Math-
ieu Liedloff, Sebastian Ordyniak, and Stefan Szeider. On
finding optimal polytrees. Theor. Comput. Sci., 592:49–58,
2015.

[Grüttemeier and Komusiewicz, 2020] Niels Grüttemeier
and Christian Komusiewicz. Learning Bayesian networks
under sparsity constraints: A parameterized complexity
analysis. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI ’20), pages
4245–4251. ijcai.org, 2020.

[Guo and Hsu, 2002] Haipeng Guo and William Hsu. A sur-
vey of algorithms for real-time Bayesian network infer-
ence. In Working Notes of the Joint AAAI/UAI/KDD Work-
shop on Real-Time Decision Support and Diagnosis Sys-
tems, 2002.

[Impagliazzo et al., 2001] Russell Impagliazzo, Ramamo-
han Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci.,
63(4):512–530, 2001.

[Komusiewicz et al., 2011] Christian Komusiewicz, Rolf
Niedermeier, and Johannes Uhlmann. Deconstructing in-
tractability - A multivariate complexity analysis of interval

constrained coloring. J. Discrete Algorithms, 9(1):137–
151, 2011.

[Korhonen and Parviainen, 2013] Janne H. Korhonen and
Pekka Parviainen. Exact learning of bounded tree-width
Bayesian networks. In Proceedings of the Sixteenth Inter-
national Conference on Artificial Intelligence and Statis-
tics, (AISTATS’13), pages 370–378. JMLR.org, 2013.

[Korhonen and Parviainen, 2015] Janne H. Korhonen and
Pekka Parviainen. Tractable Bayesian network structure
learning with bounded vertex cover number. In Proceed-
ings of the Twenty-Eighth Annual Conference on Neural
Information Processing Systems, (NIPS’15), pages 622–
630. MIT Press, 2015.

[Lokshtanov et al., 2018] Daniel Lokshtanov, Pranabendu
Misra, Fahad Panolan, and Saket Saurabh. Determinis-
tic truncation of linear matroids. ACM Trans. Algorithms,
14(2):14:1–14:20, 2018.

[Ordyniak and Szeider, 2013] Sebastian Ordyniak and Ste-
fan Szeider. Parameterized complexity results for exact
Bayesian network structure learning. J. Artif. Intell. Res.,
46:263–302, 2013.

[Pearl, 1989] Judea Pearl. Probabilistic reasoning in intel-
ligent systems - networks of plausible inference. Morgan
Kaufmann series in representation and reasoning. Morgan
Kaufmann, 1989.

[Ramaswamy and Szeider, 2021] Vaidyanathan Peruvemba
Ramaswamy and Stefan Szeider. Turbocharging
treewidth-bounded Bayesian network structure learning.
In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI ’21), 2021.

[Safaei et al., 2013] Javad Safaei, Ján Manuch, and Ladislav
Stacho. Learning polytrees with constant number of roots
from data. In Proceedings of the 26th Australasian Joint
Conference on Advances in Artificial Intelligence (AI ’13),
volume 8272 of Lecture Notes in Computer Science, pages
447–452. Springer, 2013.

[Tutte, 1965] William Thomas Tutte. Lectures on matroids.
J. Research of the National Bureau of Standards (B), 69:1–
47, 1965.

[van Beek and Hoffmann, 2015] Peter van Beek and Hella-
Franziska Hoffmann. Machine learning of Bayesian net-
works using constraint programming. In Proceedings of
the twenty-first Conference of Principles and Practice of
Constraint Programming (CP’15), volume 9255 of Lec-
ture Notes in Computer Science, pages 429–445. Springer,
2015.

[Williams, 2012] Virginia Vassilevska Williams. Multiply-
ing matrices faster than coppersmith-winograd. In Pro-
ceedings of the 44th Symposium on Theory of Computing
Conference (STOC ’12), pages 887–898. ACM, 2012.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4227

	Introduction
	Preliminaries
	Parameterization by the Number of Vertices
	Dependent Vertices
	Dependent Vertices and Small Parent Sets
	Conclusion

