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Abstract
We study the problem of constructing the relational
marginal polytope (RMP) of a given set of first-order
formulas. Past work has shown that the RMP con-
struction problem can be reduced to weighted first-
order model counting (WFOMC). However, existing
reductions in the literature are intractable in practice,
since they typically require an infeasibly large num-
ber of calls to a WFOMC oracle. In this paper, we
propose an algorithm to construct RMPs using fewer
oracle calls. As an application, we also show how to
apply this new algorithm to improve an existing ap-
proximation scheme for WFOMC. We demonstrate
the efficiency of the proposed approaches experi-
mentally, and find that our method provides speed-
ups over the baseline for RMP construction of a full
order of magnitude.

1 Introduction
We study the construction of relational marginal polytopes
[Kuzelka et al., 2018], which are objects that naturally arise
in the study of Markov logic networks [Richardson and
Domingos, 2006] and other statistical relational learning mod-
els. Informally, given first-order logic formulas α1, α2, . . . ,
αk, which may contain free variables, and a set of con-
stants tc1, c2, . . . , cnu, called a domain, the respective re-
lational marginal polytope is the convex hull of the set of
points obtained by taking a possible world ω on the given
domain, counting the groundings of the formulas α1, α2,
. . . , αk that are true in ω, and repeating this for all possi-
ble ω’s. For instance, for the formulas α1 “ smpxq and
α2 “ smpxq ^ friendspx, yq ^ smpyq, the points defining
the polytope would be given by the numbers of smokers in
the population (the formula α1) and the number of pairs of
people who are friends and, at the same time, both smoke
(the formula α2). Relational marginal polytopes can also be
seen as “lifted” counterparts of standard marginal polytopes
studied in the probabilistic graphical models literature (see,

˚Corresponding author

e.g., [Roughgarden and Kearns, 2013; Sontag and Jaakkola,
2008]). Relational marginal polytopes have already found
applications, among others, in polynomial-time algorithms for
maximum-likelihood learning [Kuzelka and Kungurtsev, 2019;
Kuzelka et al., 2020].

Kuzelka and Wang [2020] recently showed that, roughly
speaking, if computing the partition function of a Markov
logic network given by formulas α1, . . . , αk can be done
in time polynomial in the domain size, then the relational
marginal polytope for the same formulas can be constructed
in polynomial time. On the one hand, this is an important
result, because it allows one to exploit existing lifted inference
algorithms for weighted first-order model counting (WFOMC)
(such as that of [Van den Broeck et al., 2011]) for the con-
struction of relational marginal polytopes. On the other hand,
despite being polynomial in the domain size, the algorithm
proposed in [Kuzelka and Wang, 2020] is not practical. In this
paper we propose an approach that uses significantly fewer
calls to a WFOMC oracle than the aforementioned algorithm.
This new algorithm also outperforms a subsequent algorithm
based on discrete Fourier transforms proposed in [Kuzelka,
2020]. Moreover, as a secondary contribution, we show how
an efficient algorithm for relational marginal polytope con-
struction such as the one proposed here can be applied to
speed up ApproxWFOMC [van Bremen and Kuzelka, 2020],
a recent approach for approximate weighted first-order model
counting.

2 Preliminaries
This section briefly reviews the syntax and semantics of
Markov logic networks and weighted first-order model count-
ing.

2.1 Markov Logic Networks
We consider a function-free first-order logic defined by a set of
constants ∆, called a domain, a set of variables V and a set Rk

of k-ary predicates for each k P N. An atom takes the form
rpa1, . . . , akq with a1, . . . , ak P ∆Y V and r P Rk. A literal
is an atom or its negation. A logical variable in a formula is
said to be free if it is not bound by any quantifier. A formula
with no free variables is called a sentence. A formula in which

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4266



none of its literals contains any variables is called ground. The
set of grounding substitutions Θpα,∆q “ tθ1, . . . , θmu of a
formula α w.r.t. a domain ∆ is the set of substitutions on
all free variables occurring in α using constants from ∆. A
possible world ω is represented as a set of ground atoms that
are true in ω. The satisfaction relation |ù is defined in the
usual way: ω |ù α means that the formula α is true in ω, as
per the standard semantics of first-order logic.

A Markov logic network (MLN) [Richardson and Domin-
gos, 2006] is a set of weighted first-order logic formulas
pα,wq, where w P R and α is a first-order formula. An
MLN Φ induces a probability distribution over possible worlds
ω P Ω : pΦpωq “

1
Z exp

´

ř

pα,wqPΦ w ¨Npα, ωq
¯

, where
Npα, ωq :“

ř

θPΘpα,∆q 1pω |ù αθq is the number of ground-
ings of α satisfied in ω, and Z, called the partition function,
is a normalization constant to ensure that pΦ is a probability
distribution. We also allow infinite weights. A formula α with
infinite weight8 is understood as a hard constraint imposing
that all worlds ω in which Npα, ωq is not maximal have zero
probability. A literal with infinite weight is called an evidence
literal. We denote by varspαq the number of free variables in
the formula α.

2.2 Inference Using WFOMC
The marginal inference task in MLNs can be reduced to
weighted first-order model counting (WFOMC).
Definition 1 (WFOMC, [Van den Broeck et al., 2011]). Let
wprq and w̄prq be functions mapping predicates to complex
numbers, Γ a sentence, and ∆ a set of constants. Then

WFOMCpΓ, w, w̄,∆q

:“
ÿ

ωPΩ∆:ω|ùΓ

ź

aPP pωq

wpPredpaqq ¨
ź

aPNpωq

w̄pPredpaqq,

where Ω∆ is the set of all possible worlds on the domain
∆ (using the predicates in Γ), P pωq and Npωq denote the
positive literals that are true and false in ω, respectively, and
Predpaq denotes the predicate of a (e.g., Pred(friends(Alice,
Bob)) = friends).

We may proceed as in [Van den Broeck et al., 2011] to com-
pute the partition function Z of a given MLN using WFOMC.
Given an MLN Φ, for every weighted formula pαi, wiq P Φ,
where the free variables in αi are exactly x “ tx1, . . . , xku
and w ‰ 8, we create a new formula @x : ξipxq Ø αipxq
where ξi is a new predicate. When αi has w “ 8, we instead
create a new formula @x : αipxq. We denote the conjunction
of the resulting set of sentences by Γ and set the weight func-
tion to be wpξiq “ exppwiq and w̄pξiq “ 1, and for all other
predicates we set both w and w̄ to be 1. It is easy to check that
WFOMCpΓ, w, w̄,∆q “ Z.

Importantly, there are classes of first-order logic theories for
which weighted first-order model counting can be performed
in time polynomial in the domain size |∆|. In particular, as
shown in [Van den Broeck et al., 2014], this is the case when
the theory in question consists only of first-order sentences
each containing at most two logical variables. In statistical
relational learning, the term used for classes of problems that
allow such a polynomial-time algorithm is domain liftability.
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Figure 1: Examples of RMP of “friends-smokers” formulas Ψ1 (left)
and Ψ2 (right) for domain size 7 (best viewed in color).

3 Relational Marginal Polytopes
Here we define relational marginal polytopes (RMP), which
are the main focus of this paper. Intuitively, an RMP represents
the possible expected values for the vectors of grounding
counts of a given set of formulas.1

Definition 2 (Relational Marginal Polytope, [Kuzelka et al.,
2018]). Let ∆ be a set of constants and Ψ “ pα1, . . . , αmq
be a set of formulas. The relational marginal polytope of
Ψ on ∆ is defined as RMPpΨ,∆q :“ tpx1, . . . , xmq P Rm |

Ddist. onΩ∆ s.t. ErNpα1, ωqs “ x1^¨ ¨ ¨^ErNpαm, ωqs “
xmu, where Ω∆ is the set of all possible worlds on the domain
∆ using the predicates in Ψ.

3.1 RMPs as Convex Polytopes
The definition of RMPpΨ,∆q is equivalent to the convex hull
of the set of integral points tpNpα1, ωq, . . . , Npαm, ωqq |
ω P Ω∆u. For simplicity, we denote NpΨ, ωq “

pNpα1, ωq, . . . , Npαm, ωqq.

Example 1. Consider “friends-smokers” formulas α1 :“
smpxq, α2 :“ frpx, yq ^ smpxq ñ smpyq and α3 :“
friendspx, yq and denote Ψ1 “ tα1, α2u and Ψ2 “

tα1, α2, α3u. Let ∆ be a domain of size 7. The two rela-
tional marginal polytopes RMPpΨ1,∆q and RMPpΨ2,∆q are
shown in Figure 1.

A convex polytope P can be specified by a set
of non-redundant bounding half-spaces txa1,xy ď

b1, . . . , xaM ,xy ď bMu, called the H-representation [Fukuda,

1Kuzelka et al. [2018] define a rescaled version of the polytope
presented here.
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2004]. Here we review some important terminologies of poly-
topes used in this paper.

Definition 3 (Bounding half-space). A half-space xa,xy ď b
is called valid for P if xa,xy ď b holds for all x P P . A
half-space xa,xy ď b is a bounding half-space of the convex
polytope P , if it is valid for P and the intersection of its
hyperplane xa,xy “ b with P is non-empty.

Definition 4 (Supporting hyperplane). A supporting hyper-
plane of a polytope is the hyperplane of any of its bounding
half-spaces.

Definition 5 (Vertex). A vertex of a polytope P is a 0-
dimensional intersection of P with any of its supporting hy-
perplanes.

3.2 A Lifted Reduction to WFOMC
Though constructing relational marginal polytopes in practice
can be quite difficult, Kuzelka and Wang [2020] provide a
lifted2 reduction from this problem to WFOMC. They first
enumerate the normal vectors of all possible bounding half-
spaces of RMPpΨ,∆q. Since NpΨ, ωq can only take values in
Ś

αPΨt1, 2, . . . , varspαqu, the number of normal vectors to
be checked is at most |∆|m

ř

αPΨ varspαq. For each candidate
normal vector a, they use a version3 of Lemma 1 below to
find the integer b for the bounding half-space xa,xy ď b by
computing the partition function of an MLN.

Lemma 1 (Based on Theorem 3 in [Kuzelka and Wang, 2020]).
Given a normal vector a P Rm and a set of formulas Ψ “

tα1, . . . , αmu over a domain ∆, letZ be the partition function
of the MLN tpαi, 2ai ln |Ω∆|q | 1 ď i ď mu. Then the half-
space xa,xy ď r

lnZ{ ln |Ω∆|´1
2 s is a bounding half-space of

RMPpΨ,∆q.

When all bounding half-spaces of RMPpΨ,∆q are available,
constructing its H-representation is not a difficult problem.
The problem is equivalent to removing redundant inequalities
from a system of linear inequalities. A simple solution, which
is employed by Kuzelka and Wang [2020], is to iteratively
check whether a bounding half-space is redundant using linear
programming (LP) (c.f. Lemma 2 therein). Since the number
of enumerated bounding half-spaces is polynomial w.r.t. the
domain size, they claim that if the MLNs used in Lemma 1 are
domain-liftable, computing RMPpΨ,∆q can be done in time
polynomial in |∆|.

However, as we discussed above, the method that they pro-
posed requires |∆|m

ř

αPΨ varspαq WFOMC oracle calls, which
is usually infeasible in practice. Although the complexity was
later improved to p|∆| ` 1q

ř

αPΨ varspαq ` 1 calls using a
technique based on computing the discrete Fourier transform
(DFT) of the count distribution of an MLN [Kuzelka, 2020],
invoking such a large number of WFOMC oracle calls still
quickly becomes intractable as the domain size increases.

2The term “lifted” here means that the reduction can be performed
in time polynomial in the domain size.

3Since Kuzelka and Wang use slightly different definitions and
notation, we slightly adapted their Theorem 3 to the setting used in
this paper.

4 A Faster Algorithm
In this section, we propose Fast-RMP, a faster algorithm for
the RMP construction problem.

4.1 Intuition
Instead of traversing all candidate bounding half-spaces of
RMPpΨ,∆q, we consider only a portion forming a convex poly-
tope candidate P , and iteratively check whether the vertices of
P are vertices of RMPpΨ,∆q. It is clear that RMPpΨ,∆q Ď P ,
and if we reach a point where all vertices of P are vertices of
RMPpΨ,∆q, we know that P must be the desired polytope.

For each vertex v of P , we know it must be the intersection
of a set of m linearly independent bounding hyperplanes of
RMPpΨ,∆q. Let txa1,xy ď b1, . . . , xam,xy ď bmu be the
corresponding bounding half-spaces. To check if v is a true
vertex of RMPpΨ,∆q, we construct a new normal vector a1 “
řm
i“1 ai and call the WFOMC oracle to obtain a new bounding

half-space xa1,vy ď b1 of RMPpΨ,∆q. By Lemma 2, if b1 “
řm
i“1 bi, the candidate v is a true vertex of RMPpΨ,∆q.

Lemma 2. Let P be a convex polytope in k-dimensional
space, and let H :“ txa1,xy ď b1, . . . , xak,xy ď bku be k
non-redundant half-spaces that are valid for P . Denote H the
corresponding hyperplanes of H. Then the intersection of the
hyperplanes in H is a vertex of P , if and only if the half-space
H :“ x

řk
i“1 ai,xy ď

řk
i“1 bi is a bounding half-space of P .

Proof. Since H is non-redundant, it is clear that H is linearly
independent and its intersection is a singleton containing a
point. Let v be this point and h be the hyperplane of H .
According to the definition of a vertex, it is sufficient to prove
that hXP “ tvu. Since H is a bounding half-space of P , we
have hXP ‰ H. Assume there exists a point v1 P hXP and
v1 ‰ v. By the condition v1 P h, we have

x

k
ÿ

i“1

ai,v
1y “

k
ÿ

i“1

bi. (1)

As v1 P P and every half-space in H is valid for P , we also
have

xai,v
1y ď bi, i “ 1, . . . , k. (2)

Since all hyperplanes in H are linearly independent, their
intersection v is the unique solution of the system of linear
equations xai,xy “ bi, i “ 1, . . . , k. For the point v1, there
must exist j P t1, . . . , ku such that xaj ,v1y ‰ bj , which
combined with (2) leads to a contradiction on (1). Thus the
point v is the unique point in hX P . The reverse direction is
straightforward according to the definition of bounding half-
spaces.

4.2 Fast-RMP
The proposed approach, named Fast-RMP, is described in Al-
gorithm 1. We denote by boundingHalfSpace the function
that takes a set of formulas Ψ, a set of possible worlds Ω and
a normal vector a as inputs, and calculates the intercept of the
bounding half-space of RMPpΨ,∆q with the norm a according
to Lemma 1. convexHull calls an oracle that produces a
convex hull from a set of points. notVisitedpP, visitedq
returns vertices of P that are not contained in the set visited.
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Algorithm 1 Fast-RMP
Input: A list of formulas Ψ “ tα1, . . . , αmu and a set of

possible worlds Ω
Output: Relational marginal polytope RMPpΨ,∆q

1: for iÐ t1, . . . ,mu do
2: // ei is the ith basis vector
3: bi Ð boundingHalfSpacepΨ,Ω, eiq

4: I Ð tx “ px1, . . . , xmq | x P Zm, 0 ď x1 ď

b1, . . . , 0 ď xm ď bmu
5: P Ð convexHullpIq
6: visitedÐ pq

7: while notVisitedpP, visitedq is not empty do
8: vÐ notVisitedpP, visitedqr0s
9: txa1,xy ď b1, . . . , xam,xy ď bmu Ð

HRepresentationpP ,vq
10: visited.addpvq
11: a1 Ð

řm
i“1 am

12: b1 Ð boundingHalfSpacepΨ,Ω,a1q
13: if b1 “

řm
i“1 bi then

14: // Found a vertex of RMPpΨ,∆q
15: continue
16: I Ð tx | x P I, xa1,xy ď b1u
17: P Ð convexHullpIq
18: return P

We use HRepresentationpP ,vq to obtain a set of m non-
redundant (linearly independent) bounding half-spaces of P
related to the vertex v.

We initialize the convex polytope P as the bounding box
specified by bounding half-spaces of RMPpΨ,∆q with normal
vectors parallel to axes. We also keep a set of integral points I
contained in P . At each step, to inspect the vertex of P , we
first construct the normal vector according to Lemma 2, and
then find the bounding half-space with this normal vector using
boundingHalfSpace based on Lemma 1. If the bounding
half-space satisfies the condition in Lemma 2, we confirm
that the vertex candidate is a true vertex of RMPpΨ,∆q. If the
vertex candidate fails to pass the check, we purge it along with
points in I not in the new half-space H , and then compute a
new convex polytope from the remaining points in I using an
oracle for convex hulls. It is easy to check that all bounding
half-spaces of the new polytope are valid for RMPpΨ,∆q. The
set of points I serves as a filter to make sure all vertices of the
processed convex polytope are integral, since only an integral
point can be a vertex of RMPpΨ,∆q. When all vertices of P are
verified, the current convex polytope is exactly RMPpΨ,∆q.

In the worst case, we would need to check all integral points
in the original bounding box. Since in this case we need only
one WFOMC call per integral point in the initial bounding box,
the number of WFOMC calls in Algorithm 1 is never more
than the p|∆| ` 1q

ř

αPΨ |varspαq| ` 1 calls needed in [Kuzelka,
2020].

Remark 1. We choose QuickHull [Barber et al., 1996] as the
oracle for convexHull, which is polynomial-time w.r.t. the
number of integral points |I|. It follows that the guarantee
that if MLNs given by Ψ are domain-liftable, constructing its
RMP is also domain-liftable still holds for Alg. 1.

5 An Application of Fast-RMP
In this section, we present an application of Fast-RMP to
improve an existing approximation algorithm for WFOMC
[van Bremen and Kuzelka, 2020]. To simplify the exposition,
we describe the method only for WFOMC problems obtained
from MLNs. Still, the proposed method can also be applied to
general WFOMC problems (with a generalized Fast-RMP).
Given an MLN Φ, denote by Ψ8 the set of formulas with
infinite weight in Φ. Let Φ6 be the tuples with finite weight in
Φ and Ω∆,Ψ be the set of all possible worlds on the domain
∆ that satisfy all formulas in some set Ψ. Using the reduction
in Section 2.2, we can overload the definition of WFOMC to
allow MLNs as input, yielding the partition function of Φ on a
domain ∆:

WFOMCpΦ,∆q :“
ÿ

ωPΩ∆,Ψ8

ź

pα,wqPΦ6

ź

θPΘpα,∆q:ω|ùαθ

exppwq.

5.1 ApproxWFOMC
In general, computing WFOMCpΦ,∆q exactly is a #P1-hard
problem if Φ contains a formula with more than two logical
variables [Beame et al., 2015]. Therefore, to deal effectively
with non-liftable formulas, van Bremen and Kuzelka [2020]
proposed an approximation algorithm for WFOMC. Given an
MLN Φ and a domain ∆, they define the first-order model
counting function as

MCΦ,∆pZq “ |tω P Ω∆,Ψ8 | NpΨ6, ωq P Zu|
where Z is a set of integer vectors and Ψ6 is the list of formulas
in Φ6. The WFOMC WFOMCpΦ,∆q then can be decomposed
into:

WFOMCpΦ,∆q “
ÿ

kPK
MCΦ,∆ptkuq ¨

m
ź

i“1

exppkiwiq (3)

where k “ pk1, . . . , kmq, K “
Śm

i“1t0, 1 . . . , |∆|
varspαiqu.

The first-order model counts are estimated using a hashing-
based approximation algorithm [Chakraborty et al., 2016;
Soos and Meel, 2019], which allows for PAC-guarantees on
the WFOMC returned; we refer the reader to [van Bremen and
Kuzelka, 2020] for more details.

In their algorithm ApproxWFOMC, they approximate (3)
using a divide and conquer strategy that splits the space spec-
ified by K into disjoint small rectangular boxes. For each
box and a set of integer points in it C “ tkp1q, . . . ,kptqu,
they compute MCΦ,∆pCq and the minimum and maximum of
the product of weights lo “ mintj“1

śm
i“1 exppk

pjq
i wiq and

hi “ maxtj“1

śm
i“1 exppk

pjq
i wiq respectively. The value of

the weighted first-order model count constrained by this box
can be bounded by MCΦ,∆pCq ¨ lo and MCΦ,∆pCq ¨ hi.

5.2 Improvement on ApproxWFOMC
We present an improved ApproxWFOMC, named Fast-
ApproxWFOMC, in Algorithm 2. The main idea is that
if RMPpΨ,∆q is already known, for the decomposition given
in (3),

1. we can consider only the summation on k’s contained in
RMPpΨ,∆q rather than in all of K; and,
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Algorithm 2 Fast-ApproxWFOMC
Input: an MLN Φ of size m with a surrogate RMP P , a

domain ∆ and tolerance τ
Output: pb1, b2q s.t. b1 ď WFOMCpΦ,∆q ď b2, and b2

b1
ă

1` τ
1: queueÐ new priority queue
2: for i P t1, . . . ,mu do
3: // Improvement 1
4: constraintsris Ð pminxi x P P,maxxi x P Pq
5: C Ð integerPointspconstraintsq
6: mcÐ MCΦ,∆pCq
7: // Improvement 2
8: lb, ubÐ getBoundspP, constraints,Φq
9: LB,UB Ð mc ¨ lb,mc ¨ ub

10: Store pconstraints, LB,UBq in queue
11: while UB

LB ě 1` τ and queue is not empty do
12: Pop pconstraints, lb, ubq from queue
13: if constraints cannot be split further then
14: continue
15: iÐ the index of optimal formula by heuristic
16: l, uÐ constraintsris
17: leftConstr Ð constraints
18: rightConstr Ð constrains
19: leftConstrris Ð pl, t l`u2 uq

20: rightConstrris Ð pt 1`u
2 u` 1, uq

21: LB Ð LB ´ lb
22: UB Ð UB ´ ub
23: for refinedConstr in tleftConstr, rightConstru

do
24: // Improvement 1
25: if refinedConstr X P isH then
26: continue
27: // Improvement 2
28: lo, hiÐ getBoundspP, refinedConstr,Φq
29: C Ð integerPointsprefinedConstrq
30: mcÐ MCΦ,∆pCq
31: LB Ð LB ` lo ¨mc
32: UB Ð UB ` hi ¨mc
33: Push prefinedConstr, lo ¨mc, hi ¨mcq to queue
34: return pLB,UBq
35:
36: function getBounds(P, constraints,Φ)
37: Get H-representation txa1,xy ď b1, . . . , xaM ,xy ď

bMu of P
38: wÐ pw1, . . . , wmq
39: Solve the following LPs and obtain the optimal objec-

tives ol and ou respectively

minxw,xy or min´xw, xy

s.t. xai,xy ď bi, i “ 1, . . . ,M

xj ě constraintsrjsr0s, j “ 1, . . . ,m

xj ď constraintsrjsr1s, j “ 1, . . . ,m

40: return pexppolq, expp´ouqq

2. in each split box generated by ApproxWFOMC, we can
further constrain k to lie in RMPpΨ,∆q to obtain better

lower and upper bounds of the product of weights.

In improvement 2, to avoid intractable integer programming,
we constrain k to lie in the intersection of RMPpΨ,∆q with the
continuous area specified by the box.

Example 2. Consider the convex polytope of the MLN
Φ “ tpα1 : 1q, pα2 : 2qu for domain size 3, where
α1 and α2 are given in Example 1. Figure 2 shows a
possible split produced by ApproxWFOMC. In this split,
the original lower and upper bounds for each box are
pe10, e19q, pe12, e21q, pe0, e9q, pe2, e11q respectively, while in
our algorithm, boxes 3 and 4 would be ignored since they do
not intersect with the polytope, and the bounds for boxes 1
and 2 are improved to pe15, e19q, pe16, e21q.

0 1 2 3

N(Æ1,!)
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2

4

6

8

N
(Æ

2,
!
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1 2

43

Figure 2: A possible split made by ApproxWFOMC to approximate
the partition function of the example MLN. The blue area represents
the RMP of this MLN and the four gray rectangles are the split boxes.
The boundary of each box is inclusive.

Note our enhancements do not require an exact RMPpΨ,∆q.
If only the RMP of a subset of formulas with indices
ti1, . . . , itu is available, e.g., the RMP problem for the whole
formulas is not domain-liftable, we can construct a surrogate
convex polytope RMP1pΨ,∆q :“ RMPptαi1 , . . . , αitu,∆qXJ ,
where J “ tx | 0 ď xi ď |∆|varspαiq, i “ 1, . . . ,mu is
the continuous area of K. Since RMP1pΨ,∆q Ď J , the algo-
rithm with RMP1pΨ,∆q can still benefit from the improvements
proposed above.

5.3 Algorithm Details
In Algorithm 2, we use constraints to represent a rect-
angular box with its ith component specifying the bound-
ary of the box along the ith dimension. The function
integerPointspconstraintsq returns a set of the integer
points within the box specified by constraints: tk P

Zm | constraintsrisr0s ď ki ď constraintsrisr1s, i “
1, . . . ,mu.

Using the divide and conquer strategy, we progressively
split K into several disjoint boxes and compute the lower and
upper bounds of WFOMC constrained by these boxes. The
whole WFOMC then can be estimated by adding up the lower
and upper bounds over all these boxes as shown in (3). We
store these boxes as well as their bounds in a queue that is
sorted according to a heuristic function on these bounds. At
each step of the while loop, we process one of the boxes,
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evenly partitioning it into two boxes along a heuristic-optimal
dimension (lines 14-19) resulting in a new split of K, and
refine the lower and upper bounds of the WFOMC on the new
split (lines 20-30). We refer to Algorithm 1 in [van Bremen
and Kuzelka, 2020] for more details.

Our improvements on the original ApproxWFOMC are
highlighted by comments. In particular, the function
getBoundspP, constraints,Φq realizes improvement 2, re-
turning refined lower and upper bounds of the WFOMC within
the intersection of P with the continuous area of constraints.

6 Experiments
We conduct several experiments on different benchmark prob-
lems to show the efficiency of our proposed algorithms Fast-
RMP and Fast-ApproxWFOMC.

6.1 Implementation and Setup
We use Forclift4 as the WFOMC oracle, QuickHull5 as
the backend for the convex hull problem, and an interior
point method [Boyd and Vandenberghe, 2004] to solve LPs.
We follow van Bremen and Kuzelka [2020] and utilize Ap-
proxMC4 [Soos and Meel, 2019] as an approximate MC oracle.
The hyperparameters in our WFOMC approximation experi-
ments are set to ε “ 0.8, δ “ 0.2 and τ “ 0.5, just as in the
original paper.

For Fast-RMP, we further adopt a pre-compilation tech-
nique [Van Haaren et al., 2016] that only compiles Ψ into a
first-order d-DNNF circuit in the first oracle call, and evaluates
the circuit on the given set of weights to compute the partition
function in later WFOMC calls. This further speeds up the
RMP computation.

All experiments are performed on a computer with an eight-
core Intel i7 3.60GHz processor and 32 GB of RAM.

6.2 RMP Construction
We use the DFT-based algorithm proposed by Kuzelka [2020]
as a baseline method, since it is, to the best of our knowledge,
the state-of-art for the RMP construction problem. We test
Fast-RMP on four problems:

• Friends and smokers: two variants corresponding to Ψ1

and Ψ2 from Example 1.

• Friends, smokers and drinkers: Ψ3 “

tstrpxq ñ smpxq, smpxq ^ frpx, yq ñ

smpyq, strpxq ñ drpxq, drpxq ^ frpx, yq ñ drpyqu

• Infection: Ψ4 “ tdiseasepxq ñ coughpxq,
diseasepxq ^ contactpx, yq ñ diseasepyq,
diseasepxq ñ  contactpx, yqu in which the third
formula simulates a quarantine on infected people.

In Figure 4a, we show the performance gain of Fast-RMP
over the baseline, by quantifying the ratio between our algo-
rithm and the baseline for both runtime and the number of
WFOMC oracle calls. The baseline already times out (10
hours) for Ψ3 with a domain of size 10, so the domain size
we test for Ψ3 is up to 10. Fast-RMP is more than a hundred

4https://github.com/UCLA-StarAI/Forclift
5http://www.qhull.org/
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Figure 3: Number of vertices and facets of convex polytopes of Ψ1,
Ψ2, Ψ3 and Ψ4 on different domain sizes.

times faster. On all tested problems, the ratio of WFOMC
calls steadily decrease with domain size. Overall, Fast-RMP
is approximately 10–100 times faster than the baseline.

We also analyze the statistics of convex polytopes of the
four examples on different domain sizes as shown in Figure 3.
The performance of our method obviously depends on the
number of vertices of the convex polytope, but it seems that
the complexity of convex polytopes does not hurt the efficiency
of our approach. For example, the polytope of Ψ3 is much
more complicated than others, while the improvement of Fast-
RMP on it is more significant.

6.3 WFOMC Approximation
To evaluate our new approximate WFOMC algorithm Fast-
ApproxWFOMC, we conduct inference experiments in two
different WFOMC settings: (i) with MLNs that are not domain-
liftable and (ii) with MLNs that are domain-liftable, but have
been augmented with binary evidence literals. We then com-
pare our algorithm with the original one ApproxWFOMC
and, for the experiments with domain-liftable MLNs, also with
Forclift [Van den Broeck et al., 2011]. Forclift computes the
exact WFOMC, but works only on domain-liftable problems.
ApproxWFOMC and Fast-ApproxWFOMC provide PAC-
guarantees on the approximation [van Bremen and Kuzelka,
2020]. We do not compare with algorithms that do not give any
guarantees (such as Gibbs sampling); even though they can
scale to large domains, estimates obtained using such methods
can be arbitrarily bad. Such a comparison would therefore not
make sense here.

Inference in Non-liftable MLNs
We perform experiments with the following two MLNs:

• Transitive smokers and drinkers: Φ1 “ tpstrpxq ñ
smpxq, 1.22q, psmpxq ^ frpx, yq ñ smpyq, 2.08q,
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pfrpx, yq ^ frpy, zq ñ frpx, zq, 0.69q, pstrpxq ñ
drpxq, 2q, pdrpxq ^ frpx, yq ñ drpyq, 1.5qu, with the
same weights as in [van Bremen and Kuzelka, 2020].

• Transitive infection: Φ2 “ tpdiseasepxq ñ

coughpxq,´0.69q, pdiseasepxq ^ contactpx, yq ñ

diseasepyq, 0.69q, pcontactpx, yq ^ contactpy, zq ñ

contactpx, zq, 0.83q, pdiseasepxq ñ  contactpx, yq,
´0.11qu

Note that the third formula in the MLNs is a transitive rule,
meaning neither problem is domain-liftable. To compute their
polytopes, we consider the liftable part of each of these two
MLNs and feed their convex polytopes as surrogate polytopes
to our algorithm as described in Section 5.2.

Figure 4b presents the runtime of our algorithm compared
to the baseline. On the “transitive smokers and drinkers” prob-
lem, Fast-ApproxWFOMC performs on par with the baseline,
but does better on the transitive infection problem.

To better understand why Fast-ApproxWFOMC does not
improve over ApproxWFOMC on the “transitive smokers
and drinkers” MLN, we further visualized the convergence
rate of the bounds in Figure 5. As can be seen, though our
new algorithm requires a similar number of oracle calls as the
baseline to achieve an approximation within the prescribed
accuracy, it converges much faster at early iterations. This
suggests that, in some cases where Fast-ApproxWFOMC is
not faster, overall it may still be more efficient for computing
rough bounds, i.e., when the value of the tolerance τ is large.

Inference in Liftable MLNs with Binary Evidence
A “smokers and drinkers with evidence” MLN is used here:
Φ3 “ tpsmpxq, 1.22q, psmpxq ^ frpx, yq ñ smpyq, 2.08q,
pfrpx, yq, 0.69q, pdrpxq^ frpx, yq ñ drpyq, 1.5q, pl1,`8q,
. . . , pln,`8qu, where l1, . . . , ln are randomly generated lit-
erals using the binary predicate frp¨, ¨q. The domain size is
fixed to 5. Note that approximating the WFOMC of this MLN
makes sense, as the exact WFOMC problem is usually hard
for MLNs with binary evidence literals, even if the MLN is
otherwise domain-liftable [Van Den Broeck and Davis, 2012].
However, computing the RMP used in Fast-ApproxWFOMC
is tractable since it does not involve any evidence.
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Figure 5: Bounds obtained by ApproxWFOMC versus Fast-
ApproxWFOMC for a varying number of ApproxMC4 calls on
the “transitive smokers and drinkers” example, for a representative
domain size 3. The green dashed line represents the true WFOMC.

Figure 4c compares the runtime of Forclift, ApproxW-
FOMC and Fast-ApproxWFOMC for computing the par-
tition function of the MLN above with a varying number of
evidence literals. Forclift performs better than the approxima-
tion algorithms with a small number of evidence literals, while
ApproxWFOMC and Fast-ApproxWFOMC surpass Forclift
after 7 and 11 evidence literals respectively. The runtime of
approximation algorithms decreases gradually as the size of
evidence increases. The evidence literal sufficiently simplifies
the theory fed to the model counting oracle, thus reducing the
time needed for the propositional model counter calls. Im-
portantly, for all evidence sizes, Fast-ApproxWFOMC is
consistently faster than ApproxWFOMC.

7 Conclusions
We considered the problem of constructing relational marginal
polytopes, and proposed an algorithm that is successful in
reducing both the number of WFOMC oracle calls as well as
overall runtime by orders of magnitude as compared to the
current state of the art. We further applied our approach to
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an improved algorithm for approximate weighted first-order
model counting. In the future, we would like to further in-
vestigate applications of RMPs in other statistical-relational
models beyond MLNs.
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A Further Analysis of the Performance of
Fast-ApproxWFOMC

In this section, we try to explain the actual reason why
Fast-ApproxWFOMC does not help much on the “tran-
sitive smokers and drinkers” example. One possible rea-
son is that the “mass” of the weighted first-order model
count of this example is concentrated in some rectangu-
lar boxes in the convex polytope. For instance, a pos-
sible split made by Fast-ApproxWFOMC for the subset
of “transitive smokers and drinkers” MLN: tpstrpxq ñ
smpxq, 1.22q, psmpxq ^ frpx, yq ñ smpyq, 2.08qu for do-
main size 3 is presented in Figure 6a. The distribution of the
value of MCΨ,∆pkq ¨

śm
i“1 exppkiwiq in (3) of this example

is shown in Figure 6b. It is easy to see that the large part of
WFOMC of this example is mainly concentrated at the top
right corner of the polytope, which is approximated by box
2. However, box 2 is contained in the polytope, and thus for
this box Fast-ApproxWFOMC cannot provide better lower
and upper bounds than ApproxWFOMC. The consequence
is that the overall bounds cannot be improved much by Fast-
ApproxWFOMC in this specific case.
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