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Abstract

Adversarial training is one of the most effective
approaches for deep learning models to defend
against adversarial examples. Unlike other de-
fense strategies, adversarial training aims to en-
hance the robustness of models intrinsically. Dur-
ing the past few years, adversarial training has been
studied and discussed from various aspects, which
deserves a comprehensive review. For the first time
in this survey, we systematically review the re-
cent progress on adversarial training for adversar-
ial robustness with a novel taxonomy. Then we
discuss the generalization problems in adversarial
training from three perspectives and highlight the
challenges which are not fully tackled. Finally, we
present potential future directions.

1 Introduction

The adversarial vulnerability of deep neural networks has at-
tracted significant attention in recent years. With slight but
carefully-crafted perturbations, the perturbed natural images,
namely adversarial examples [Szegedy et al., 2014], can mis-
lead state-of-the-art (SOTA) classifiers to make erroneous
predictions. Besides classification, adversarial examples ap-
pear in various tasks like semantic segmentation, object de-
tection, and super-resolution (see the summary in [Yuan et
al., 2019]). The existence of adversarial examples raises
concerns from the public and motivates the proposals of de-
fenses [Goodfellow et al., 2015; Huang er al., 2015; Madry
et al., 2018]. Naturally, the defenses also stimulate the devel-
opment of stronger attacks, seeming like an arms race.
Among various existing defense strategies, Adversarial
Training (AT) [Goodfellow et al., 2015; Madry et al.,
2018] proves to be the most effective against adversarial at-
tacks [Pang et al., 2021; Maini et al., 2020; Schott et al.,
2019], receiving considerable attention from the research
community. The idea of adversarial training is straightfor-
ward: it augments training data with adversarial examples in
each training loop. Thus adversarially trained models behave
more normally when facing adversarial examples than stan-
dardly trained models. Mathematically, adversarial training is
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formulated as a min-max problem, searching for the best so-
lution to the worst-case optimum. The main challenge of ad-
versarial training is to solve the inner maximization problem,
which researchers are actively working on. The last few years
have witnessed tremendous efforts made by the research com-
munity. The recent advances have resulted in a variety of new
techniques in the literature, which no doubt deserves a com-
prehensive review.

To our best knowledge, surveys focusing on adversarial
training do not exist so far. Existing surveys are aimed at
providing a complete review of adversarial machine learn-
ing and summarize all the existing adversarial attacks and de-
fense methods [Yuan et al., 2019; Silva and Najafirad, 2020;
Sadeghi et al., 2020; Tabassi er al., 2019; Smith, 2019], which
inevitably omit important details of subfields. In contrast, our
goal in this paper is to give a detailed overview of adversar-
ial training in image classification, which has attracted ex-
tensive attention of researchers. We believe that this survey
can provide up-to-date findings and developments happening
on adversarial training. Notably, we carefully review and an-
alyze adversarial training with a novel taxonomy, uniquely
discuss the poor generalization ability from different perspec-
tives, and present future research directions.

2 Preliminaries

Adversarial Attacks. Adversarial attacks refer to finding
adversarial examples for well-trained models. In this paper,
we consider only the situation where the training/test data are
initially from the same distribution. Taking classification as
an example, we use f(x;0) : RFXw*¢ 5 £1. .k} to denote
an image classifier that maps an input image x to a discrete
label set C' with k classes, in which 6 indicates the parameters
of f, and h, w, c represent image height, width and channel,
respectively. Given the perturbation budget e, the adversary
tries to find a perturbation § € R"*™“*¢ to maximize the loss
function, e.g., cross-entropy loss L., so that f(z + 0) #
f(z). Therefore, 0 is estimated as

6 == argmax L. (0, + 6, y), (1)
[0]p<e

where y is the label of x, and p can be 0, 1, 2 and co. In most
cases, € is small so that the perturbations are imperceptible to
human eyes. Note that we only consider the [,,-based attacks
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for classification in this paper. The adversarial counterpart z’
of x is expressed as

=z + 6%, 2

There are some common attacks following this formulation,
such as Fast Gradient Sign Method (FGSM) [Goodfellow et
al., 2015], iterative FGSM [Kurakin et al., 2016], and Pro-
jected Gradient Descent (PGD) attack [Madry et al., 2018].

Adversarial Robustness. In general, adversarial robust-
ness is the model’s performance on test data with adversar-
ial attacks, i.e., adversarial test accuracy of classification.
We expect to know the model’s performance in the worst-
case scenario, so the adversary should be strong enough and
launch attacks in white-box settings, i.e., the adversary has
full knowledge of the model, such as architectures, parame-
ters, training data, etc. In practice, PGD attack [Madry er al.,
2018] is commonly employed for evaluation because of its
strong attack ability in white-box settings.

3 Adversarial Training for Adversarial
Robustness

Currently, adversarial training is widely accepted as the most
effective method in practice to improve the adversarial robust-
ness of deep learning models [Athalye and Carlini, 2018].
However, it is still a long way to go for adversarial train-
ing to handle adversarial attacks perfectly. Prevailing ad-
versarial training methods [Madry ef al., 2018] can produce
a robust model with worst-case accuracy of around 90% on
MNIST. For slightly more challenging datasets, e.g., CIFAR-
10, adversarial training only achieves around 45% and 40%
on SVHN [Buckman et al., 2018], which is far from satisfac-
tory. Additionally, adversarial training leads to the degraded
generalization ability of deep learning models. In this section,
we review the development of adversarial training, summa-
rize the recent advances with a novel taxonomy, and discuss
the generalization problem of adversarial training.

3.1 The Origin of Adversarial Training

The initial idea of adversarial training is firstly brought to
light by [Dalvi et al., 2004; Lowd and Meek, 2005] in a
game-theoretic setup. Szegedy et al. (2014), for the first time,
adopted this idea to obtain robust neural networks, where neu-
ral networks are trained on a mixture of adversarial examples
and clean examples. Goodfellow er al. (2015) went further
and proposed FGSM to produce adversarial examples during
training. Yet, their trained models remain vulnerable to itera-
tive attacks [Tramer et al., 2018] as these approaches utilized
a linear function to approximate the loss function, leading to
sharp curvature near data points on the decision surface of the
corresponding deep models. The existence of sharp curvature
is also known as gradient masking [Papernot ef al., 2017].
Unlike the prior works in which models are trained on
a mixture of clean data and adversarial data, a line of re-
search trains models with adversarial data only. For the first
time, Huang et al. (2015) defined a min-max problem that the
training procedure is forced to minimize classification error
against an adversary who perturbs the input and maximizes
the classification error. They also pointed out that the key
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to solving this min-max problem is finding strong adversar-
ial examples. Shaham et al. (2018) considered this min-max
problem from a robust optimization perspective and proposed
the framework of adversarial training. The formulation is il-
lustrated below:

max Le.(0,z+9,y)|, (3)

rneln E(.ny)"‘D S€B(w,e)

where (z,y) ~ D represents training data sampled from
distribution D and B(x,¢) is the allowed perturbation set,
expressed as B(z,e) = {x+deRvWxe||d], <e}.
Madry et al. (2018) gave a reasonable interpretation of this
formulation: the inner maximization problem is finding the
worst-case samples for the given model, and the outer min-
imization problem is to train a model robust to adversarial
examples.

With such connection, Madry et al. (2018) employed a
multi-step gradient based attack known as PGD attack for
solving the inner problem as follows:

= Proj,; p(z.e) (2" + asign (VLo (6,2",y)))

“4)
where ¢ is the current step and « is the step size. Further,
they investigated the inner maximization problem from the
landscape of adversarial examples and gave both theoreti-
cal and empirical proofs of local maxima’s tractability with
PGD. Through extensive experiments, their approach (PGD-
AT) significantly increased the adversarial robustness of deep
learning models against a wide range of attacks, which is a
milestone of adversarial training methods. As most derivative
works followed their designs and settings, PGD-AT became a
critical benchmark and is regarded as the standard way to do
adversarial training in practice.

3.2 Taxonomy of Adversarial Training

In this subsection, we review the recent advances of adver-
sarial training in last few years, categorized by different un-
derstandings on adversarial training. A summary of selected
adversarial training methods is provided in Table 1.

Adpversarial Regularization
The idea of adversarial regularization first appears in [Good-
fellow et al., 2015]. Besides cross-entropy loss, they added a
regularization term in the objective function, which is based
on FGSM and expressed as £ (0, z + esign (V,L£(0,z,y)).
Kurakin et al. (2017) extended this FGSM-based regulariza-
tion term by controlling the ratio of adversarial examples in
batches so that it can scale up to ImageNet. The effective-
ness of their method is validated on single-step attacks as they
assume the linearity of neural networks is attributed to the
existence of adversarial examples [Goodfellow er al., 2015].
However, Qin et al. (2019) calculated the absolute differ-
ence between the adversarial loss and its first-order Taylor
expansion, concluding that more robust models usually have
smaller values of local linearity. Correspondingly, they re-
placed the FGSM-based regularization with a Local Linearity
Regularization for adversarial robustness.

Distinct from previous methods, [Zhang et al., 2019b] de-
composed the robust error R, as the sum of natural error
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Taxonomy Publication Model Architecture Attack e Dataset Accuracy
N [Qin et al., 2019] ResNet-152 PGDs 4/255 ImageNet 47.00%
%‘b&@;&\o‘\ [Zhang e al., 2019b] Wide ResNet CWj 0.031/1 CIFAR-10 84.03%
b&‘\%‘&’ [Wang et al., 2020] ResNet-18 PGD2g 8/255 CIFAR-10 55.45%
Y’@@& [Kannan et al., 2018] InceptionV3 PGD 16/255 ImageNet 27.90%
< [Mao et al., 2019] Wide ResNet PGD2g 8/255 CIFAR-10 50.03%
\\,@ [Zhang et al., 2020] Wide ResNet PGD2g 16/255 CIFAR-10 49.86%

& [Cai er al., 2018] DenseNet-161 PGD~; 8/255 CIFAR-10 69.27%

o [Wang et al., 2019] 8-Layer ConvNet PGDyg 8/255 CIFAR-10 42.40%
Q¥ [Pang er al., 2019] Wide ResNet PGDq 0.005 CIFAR-100 32.10%

%«a@ [Kariyappa and Qureshi, 2019] ResNet-20 PGD3g 0.09/1 CIFAR-10 46.30%
< [Yang et al., 2020al ResNet-20 PGD3g 0.01/1 CIFAR-10 52.40%
@0 [Balaji er al., 2019] ResNet-152 PGD1000 8/255 ImageNet 59.28%
&Q@ [Ding er al., 2020] Wide ResNet PGD100 8/255 CIFAR-10 47.18%
v [Cheng et al., 2020] Wide ResNet PGD2g 8/255 CIFAR-10 73.38%

. > [Alayrac er al., 2019] Wide ResNet FGSM 8/255 CIFAR-10 62.18%

@@*’ é\%@ [Carmon et al., 2019] Wide ResNet PGD; 8/255 CIFAR-10 63.10%
C"\}Q@ [Zhai et al., 2019] Customized ResNet PGD~, 8/255 CIFAR-10 42.48%
\5& [Hendrycks et al., 2019] Wide ResNet PGDy 0.3/1 ImageNet 50.40%
[Shafahi et al., 2019] Wide ResNet PGD100 8/255 CIFAR-10 46.19%

[Wong et al., 2020] ResNet-50 PGDyo 2/255 ImageNet 43.43%
[Andriushchenko and Flammarion, 2020]  ResNet-50 PGDs3g 2/255 ImageNet 41.40%

& [Kim et al., 2021] PreActResNet-18 FGSM 8/255 CIFAR-10 50.50%

;&O [S. and Babu, 2020] Wide ResNet PGDyg 8/255 MNIST 88.51%

© [Song et al., 2019] Customized ConvNet PGDyg 4/255 CIFAR-10 58.10%
[Vivek and Babu, 2020] Wide ResNet PGD 9 0.3/1 MNIST 90.03%

[Huang er al., 2020] Wide ResNet PGDy 8/255 CIFAR-10 45.80%

[Zhang et al., 2019a] Wide ResNet PGDy 8/255 CIFAR-10 47.98%

[Dong et al., 2020] Wide ResNet PGDy 8/255 CIFAR-100 29.40%

[Wang and Zhang, 2019] Wide ResNet CWoqo 4/255 CIFAR-10 60.30%

& [Zhang and Wang, 2019] Wide ResNet PGD» 8/255 CIFAR-100 47.20%

o [Pang er al., 2020] Wide ResNet PGDs00 8/255 CIFAR-10 60.75%
[Lee ef al., 2020] PreActResNet-18 PGD2g 8/255  Tiny ImageNet 20.31%

Benchmark  [Madry et al., 2018] ResNet-50 PGD»q 8/255 CIFAR-10 45.80%

Table 1: A summary of experimental results for various adversarial training methods. All the attacks are under /o, norm.

Rnat and boundary error R4p. Boundary error occurs when
the distance between data and the decision boundary is suf-
ficiently small (less than €), which is also the reason for ad-
versarial examples’ existence. So they proposed TRADES to
minimize the Rqp, by solving the following problem:

minE{Lc(f(z),y) + max L (f(2),f (@) /A}, )
f z' €B(x,€)

where A is a coefficient, determining the strength of regu-
larization. Such decomposition is proved to be effective,
and TRADES outperforms PGD-AT on CIFAR-10 with er-
ror rates reduced by 10%. One problem of TRADES is
that the regularization term is designed to push natural ex-
amples and their adversarial counterparts together, no mat-
ter natural data are classified correctly or not. [Wang et al.,
2020] investigated the influence of misclassified examples
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and proposed Misclassification Aware adveRsarial Training
(MART), which emphasizes on misclassified examples with
weights 1 — P, (z,0), where P, (x,0) is the probability of
ground truth label y.

Due to the amplification of deep models, impercepti-
ble noises could lead to substantial changes in feature
space [Goodfellow er al., 2015]. Some works analyze adver-
sarial training from the perspective of representation. Kannan
et al. (2018) proposed Adversarial Logit Pairing (ALP), en-
couraging logits for pairs of examples to be similar. But ALP
initially is not useful due to the wrong formulation of adver-
sarial training objectives [Engstrom ef al., 2018]. Further to
enhance the alignment of representations of natural data and
their adversarial counterparts, Mao et al. (2019) adopted the
prevalent triplet loss for regularization, which uses adversar-
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ial examples as anchors.

Adpversarial regularization is an essential variant of adver-
sarial training [Shaham et al., 2018]. Compared to the orig-
inal formulation of adversarial training, adversarial regular-
ization is more flexible and requires a deep understanding of
adversarial robustness. Also, the decomposition of robust er-
ror indeed paves the way for unlabeled data to enhance adver-
sarial robustness.

Curriculum-based Adversarial Training

According to the formulation of adversarial training, the in-
ner problem is always trying to find the worst-case samples.
One natural question is: are those worst-case samples always
suitable for adversarial training? Zhang et al. (2020) found
that adversarial examples generated by strong attacks signifi-
cantly cross over the decision boundary and are close to nat-
ural data. As PGD-AT only utilizes adversarial examples for
training, this leads to overfitting of adversarial examples [Cai
etal., 2018].

For alleviating the overfitting, researchers adapt the idea of
curriculum training to adversarial training. Cai ef al. (2018)
proposed Curriculum Adversarial Training (CAT), with an as-
sumption that PGD with more steps generates stronger adver-
sarial examples. Starting from a small number of steps, CAT
gradually increases the iteration steps of PGD until the model
achieves a high accuracy against the current attack. Differ-
ent from CAT, Friendly Adversarial Training (FAT) [Zhang
et al., 2020] adapts early stopping when performing PGD at-
tacks and returns adversarial data near the decision boundary
for training. Both CAT and FAT adjust the attacks’ strength
in a practical way, where a quantitative criterion is missing.
From the convergence point of view, Wang et al. (2019) de-
signed First-Order Stationary Condition (FOSC) to estimate
the convergence quality of the inner maximization problem.
The closer the FOSC to zero, the stronger the attack.

Such curriculum-based methods help improve the general-
ization of clean data while preserving adversarial robustness.
One possible reason for their success is weak attacks in early
training stages are associated with generalization [Wang et
al., 2019]. In addition to relieving overfitting, curriculum-
based methods reduce training time due to the varying iter-
ation numbers of PGD for solving the inner maximization
problem.

Ensemble Adversarial Training
Tramer et al. (2018) firstly introduced ensemble learning
into adversarial training, called Ensemble Adversarial Train-
ing (EAT), where training data is augmented with adversarial
examples generated from different target models instead of
a single model. The advantage of EAT is that it helps alle-
viate the sharp curvatures caused by the single-step attacks
e.g., FGSM. However, the interaction among different target
models is neglected [Tramer er al., 2018]. Specifically, stan-
dardly trained target models may have similar predictions or
representations [Dauphin et al., 2014] and share the adversar-
ial subspace [Tramer et al., 20171, which potentially hurts the
performance of EAT.

For promoting the diversity among target models, several
improvements are proposed, such as the adaptive diversity
promoting regularizer [Pang et al., 2019], forcing different
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models to be diverse in non-maximal predictions; maximiz-
ing the cosine distances between target models’ input gradi-
ents [Kariyappa and Qureshi, 2019] (input gradients refer to
the gradients of the loss function w.z¢. the input); and maxi-
mizing the vulnerability diversity [Yang er al., 2020al, which
is defined as the sum of losses for two models with crafted
images containing non-robust features [Ilyas et al., 2019].
Intrinsically, such ensemble methods are useful for approx-
imating the optimal value of the inner maximization problem
in adversarial training. As proved in [Tramér et al., 2018],
models trained with EAT have better generalization abilities
regardless of the perturbation types. To conclude, adding the
number and diversity of target models in training is a prac-
tical and useful way to approximate the space of adversarial
examples, which is challenging to be described explicitly.

Adpversarial Training with Adaptive ¢

As shown in Equation (3), the parameters of attacks are
predefined and fixed during training, such as e. Some
works [Balaji et al., 2019; Ding e al., 2020] argued individ-
ual data points might have different intrinsic robustness, i.e.,
different distances to the classifier’s decision boundary; how-
ever, adversarial training with fixed e treats all data equally.

Considering the individual characteristic of adversarial ro-
bustness, researchers propose to do adversarial training at the
instance level. Balaji er al. (2019) firstly presented Instance
Adaptive Adversarial Training (IAAT), where € is selected to
be as large as possible, ensuring images within e-ball of z
are from the same class. This strategy helps IAAT relieve the
trade-off between robustness and accuracy, though there is a
slight drop in robustness. Unlike IAAT, another work called
Margin Maximization Adversarial Training (MMA) [Ding et
al., 2020] directly maximizes the margin-distances between
data points and the model’s decision boundary, which is esti-
mated by the adversarial perturbations with the least magni-
tudes. The manner of choosing € in MMA is more reasonable
as e is sufficiently small, and such small € in spatial domain
hardly changes the classes of images substantially, especially
for high-resolution images. The following work, Customized
Adversarial Training (CAT) [Cheng er al., 2020] further ap-
plies adaptive label uncertainty to prevent over-confident pre-
dictions based on adaptive e.

Adbversarial training with adaptive € is a good exploration.
However, empirical evidence shows many standard datasets
are distributionally separated, i.e., the distances inter classes
are larger than e used for attacks [Yang et al., 2020b]. This
reflects the limitation of current adversarial training methods
on finding proper decision boundaries.

Adversarial Training with Semi/Unsupervised Learning

One key observation in supervised adversarial training meth-
ods [Madry er al., 2018; Zhang er al., 2019b] is adversarial
accuracy in testing is much lower than in training. There is a
large generalization gap in adversarial training (see Figure 1
in [Schmidt et al., 2018]). The recent work [Schmidt et al.,
2018] studied this problem from the perspective of sample
complexity. It is theoretically proved that adversarially ro-
bust training requires substantially larger datasets than stan-
dard training. However, high-quality datasets with labels are
expensive to collect, which is of particular interest in practice.
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Alternatively, several works appeared concurrently, exploring
the possibility of training with additional unlabeled data.

Following the analysis of Gaussian models in [Schmidt
et al., 2018], a couple of works [Alayrac et al., 2019;
Carmon et al., 2019; Zhai et al., 2019] theoretically show
that unlabeled data significantly reduces the sample com-
plexity gap between standard training and adversarial train-
ing. They share the same idea of decomposing the adver-
sarial robustness like TRADES and utilize unlabeled data
for stability while labeled data for classification. Empiri-
cally, they investigated the impact of different factors on ad-
versarial training like label noise, distribution shift, and the
amount of additional data. On the other hand, Najafi er
al. (2019) introduced some new complexity measures like
Adversarial Rademacher Complexity and Minimum Super-
vision Ratio for theoretical analysis on generalization. It is
also observed that adversarial robustness is benefited by self-
supervised training [Hendrycks et al., 2019].

It is inspiring to see the improvement of adversarial robust-
ness brought by additional unlabeled data. However, theoreti-
cal or empirical guarantees that how much additional data are
needed precisely still lack. Besides, the cost of such methods
should not be neglected, including collecting data and train-
ing adversarially on data multiple times larger than original
datasets.

Efficient Adversarial Training

One well-known limitation of conventional adversarial train-
ing methods like PGD-AT is that their training time is 3-30
times longer than that in standard training [Shafahi er al.,
2019]. The main reason is the min-max problem described
in Equation (3) is solved iteratively. This line of research of
adversarial training aims to reduce the time cost while keep-
ing the performances of adversarial training.

As the first attempt, the core idea of free adversarial
training (Free-AT) [Shafahi et al, 2019] is to reuse the
gradients computed in the backward pass when doing for-
ward pass. In Free-AT, both the model parameters and im-
age perturbations are updated simultaneously. Concretely,
for the same mini-batch data, the same operation is done
for m times in a row, equivalent to utilizing strong adver-
sarial examples in PGD-AT. Further upon Free-AT, Wong
et al. (2020) proposed fast adversarial training (FAST-AT),
which utilizes FGSM with random initialization and is as ef-
fective as the PGD-AT. They also attributed the failure of
FGSM-based adversarial training methods to the catastrophic
overfitting and zero-initialized perturbation. However, An-
driushchenko and Flammarion (2020) found these fast train-
ing methods [Shafahi et al., 2019; Wong et al., 2020] suf-
fer from catastrophic overfitting as well. They also pointed
out the reason for randomization to take effect in [Wong et
al., 2020] is that randomization slightly reduces the mag-
nitude of perturbations. Kim et al. (2021) supported the
above finding and demonstrated catastrophic overfitting is be-
cause single-step adversarial training uses only adversarial
examples with maximum perturbations. For the purpose of
preventing catastrophic overfitting, many improvements are
proposed like GradAlign [Andriushchenko and Flammarion,
2020], dynamic schedule [S. and Babu, 2020], inner inter-

val verification [Kim et al., 2021], domain adaption [Song et
al., 2019] and regularization methods [Vivek and Babu, 2020;
Huang et al., 2020].

Intrinsic from the above works, Zhang et al. (2019a) pro-
posed You Only Propagate Once (YOPO) from the perspec-
tive of Pontryagin’s Maximum Principle. According to their
analysis on adversarial training, they discovered that adver-
sarial gradients update is only related to the first layer of
neural networks. This property enables YOPO to focus on
the first layer of the proposed network architecture for ad-
versary computation while other layers are frozen, signifi-
cantly reducing the numbers of forward and backward propa-
gation. The authors claimed that Free-AT is a particular case
of YOPO.

Other Variants

In addition to the above branches of adversarial training meth-
ods, several other variants of adversarial training are sum-
marized as follows. Some works modify the learning ob-
jectives of vanilla adversarial training, like adversarial dis-
tributional training [Dong et al., 2020] where a distribution-
based min-max problem is derived from a general view; bi-
lateral adversarial training [Wang and Zhang, 2019] where
the model is training on both perturbed images and la-
bels; adversarial training based on feature scatter [Zhang
and Wang, 20191, which utilizes a distance metric for sets
of natural data and their counterparts and produces adver-
sarial examples in feature space; and adversarial training
integrated with self-supervised learning [Kim et al., 2020;
Jiang et al., 2020]. Some replace the fundamental compo-
nents of models for better performances, like hypersphere
embedding [Pang er al., 2020], and smoothed ReLU func-
tion [Xie et al., 2020]. Lastly, Lee e al. (2020) proposed
AVmixup to augment adversarial examples by interpolation.

3.3 Generalization Problem in Adversarial
Training

For deep learning algorithms, generalization is a significant
characteristic. Though most efforts in the research commu-
nity are paid for improving adversarial training under given
adversarial attacks, the voice of discussions on generalization
is getting louder. This subsection mainly reviews the stud-
ies on the generalization of adversarial training from three
aspects: standard generalization, adversarially robust gener-
alization, and generalization on unseen attacks.

Standard Generalization

Despite the success in improving the robustness of neural net-
works to adversarial attacks, adversarial training is observed
that hurts standard accuracy badly [Madry et al., 2018], lead-
ing to the discussion of relationships between adversarial ro-
bustness and standard accuracy. We refer to it as standard
generalization.

One popular viewpoint is the trade-off between adversar-
ial robustness and standard accuracy. Tsipras et al. (2019)
claimed that standard accuracy and adversarial robustness
might at odds and demonstrated the existence of the trade-
off via a binary classification task. Su ef al. (2018) evaluated
the recent SOTA ImageNet-based models on multiple robust-
ness metrics. They concluded a linearly negative correlation
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between the logarithm of model classification accuracy and
model robustness. Zhang et al. (2019b) decomposed the ro-
bust error as the sum of natural error and the boundary error
and provided a tight upper bound for them, theoretically char-
acterizing the trade-off.

However, some works have different opinions that adver-
sarial robustness and standard accuracy are not opposing.
Stutz et al. (2019) studied the manifold of adversarial exam-
ples and natural data. They confirmed the existence of adver-
sarial examples on the manifold of natural data, adversarial
robustness on which is equivalent to generalization. Yang et
al. (2020b) investigated various datasets, from MNIST to Re-
stricted ImageNet, showing these datasets are distributionally
separated, and the separation is usually larger than 2e¢ (the
value of e differs in different datasets, e.g., 0.1/1 for MNIST,
8/255 for CIFAR). It indicates the existence of robust and ac-
curate classifiers. They also claimed existing training meth-
ods fail to impose local Lipschitzness or are insufficiently
generalized. Experiments in [Raghunathan e al., 2019] sup-
port this statement, where additional unlabeled data is proved
to help mitigate the trade-off.

As suggested in [Yang er al., 2020b], the trade-off might
not be inherent but a consequence of current adversarial train-
ing methods. Though researchers haven’t reached a consen-
sus on the cause of the trade-off, existing evidence does reveal
some limitations on adversarial training. Adversarial robust-
ness should not be at the cost of standard accuracy. Some
variants of adversarial training show better standard general-
ization empirically, such as adaptive € for adversarial training
reviewed in Section 3.2, robust local features [Song et al.,
2020] and £, penalty [Xing et al., 2020].

Adversarially Robust Generalization

The phenomenon that adversarially trained models do not
perform well on adversarially perturbed test data is firstly ob-
served in [Madry et al., 2018]. In other words, there is a
large gap between the training accuracy and test accuracy on
adversarial data. Other than CIFAR-10, similar experimen-
tal results are observed on multiple datasets, such as SVHN,
CIFAR-100, and ImageNet [Rice et al., 2020]. These gaps
indicate that a severe overfitting happens in current adversar-
ial training methods. Such overfitting is initially studied by
[Schmidt ez al., 2018], who refer to it as adversarially robust
generalization.

Schmidt ef al. (2018) revealed the difficulty of obtaining a
robust model with the fact that more training data are required
for adversarially robust generalization. Later many efforts are
made to improve generalization empirically, such as adversar-
ial training with semi/unsupervised Learning, AVmixup, and
robust local feature [Song er al., 2020]. In contrast, Rice ef
al. (2020) systematically investigated various techniques used
in deep learning like ¢; and {5 regularization, cutout, mixup
and early stopping, where early stopping is found to be the
most effective and confirmed by [Pang et al., 2021].

On the other hand, though researchers attempt to ana-
lyze this generalization problem with different tools like
Rademacher complexity [Yin et al., 2019] and VC dimen-
tion [Cullina er al., 2018], theoretical progress is, in fact, lim-
ited, and the generalization problem is far from being solved.
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Generalization on Unseen Attacks

It is proved that the specific type of attacks are not sufficient
to represent the space of possible perturbations [Tramer er
al., 2018; Goodfellow et al., 2015]. However, in adversar-
ial training, the inner maximization problem’s constraints: I,
norm and e are pre-fixed. Thus, adversarially trained mod-
els, which are robust to a specific attack, e.g., [, adversarial
examples, can be circumvented easily by different types of
attacks, e.g., other [, norms, or larger ¢, or different target
models [Kang et al., 2019]. Simply combining perturbations
with different [, norms in adversarial training proves to be
useless [Tramer and Boneh, 2019]. This kind of poor gener-
alization to other attacks significantly degrades the reliability
of adversarial training.

Such limitation is intrinsically caused by adversarial train-
ing itself, and the key is how to solve the inner problem prop-
erly. The research line in EAT can be seen as the first attempt
to approximate the optimal solutions to the inner problem by
increasing the number and diversity of targeted models dur-
ing training. Similarly, Maini et al. (2020) adopted adver-
saries under different /,, norm and use the steepest descent to
approximate the optimal values for the inner problem. Dong
et al. (2020) proposed to explicitly model the distribution of
adversarial examples around each sample, replacing the the
perturbation set B(z,¢). Differently, Stutz er al. (2020) at-
tributed the poor generalization to enforcing high-confidence
predictions on adversarial examples, and suggested calibrat-
ing the confidence scores during adversarial training. Be-
sides, it is worth investigating the connections between adver-
sarial examples and common image corruptions e.g., Gaus-
sian noises [Gilmer et al., 2019]. There are evidences that
models trained on such common corruptions show robust-
ness to adversarial examples [Gokhale et al., 2020; Wong
and Kolter, 2021]. In the meanwhile, Volpi et al. (2018) and
Qiao et al. (2020) also utilize adversarial data augmentation
for better generalization on unseen domains.

Though significant, the generalization problem of adver-
sarial training on unseen attacks is only occasionally studied
at this time. One possible reason is that our understanding of
adversarial examples is limited and incomplete. The truth of
adversarial examples is still underground, which also needs
much effort.

4 Conclusion and Future Directions

In this paper, we present recent advances of adversarial train-
ing methods for adversarial robustness. To our best knowl-
edge, for the first time, we review adversarial training with
a novel taxonomy and discuss the generalization problem
in adversarial training. We also summarize the benchmarks
and provide performance comparisons of different methods.
Despite extensive efforts, the vulnerability of deep learn-
ing models to adversarial examples has not been completely
solved by adversarial training. Several open problems remain
yet to solve, which are summarized as follows.

Min-Max Optimization in Adversarial Training. Adver-
sarial training is formulated as a min-max problem. How-
ever, due to the non-convexity of deep neural networks, it is
very challenging to obtain the global optimum for adversarial
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training. In existing methods, PGD is a prevalent technique
for approximating the optimum, as Madry et al. (2018) em-
pirically proved the tractability of adversarial training with
PGD. But it can hardly provide a “robustness certificate” af-
ter solving the problem [Razaviyayn et al., 2020]. In other
words, the robustness of adversarially trained models is not
guaranteed [Kang et al., 2019]. For this purpose, the devel-
opment of new techniques for solving non-convex min-max
problems is necessary and crucial.

Overfitting in Adversarial Training. Overfitting is a com-
mon problem in deep learning, and there are effective coun-
termeasures to alleviate the overfitting. In adversarial train-
ing, however, overfitting seems to be more severe and those
widely-used techniques in deep learning help little [Rice et
al., 2020]. The generalization gap between adversarial train-
ing accuracy and testing accuracy is very large. From the
perspective of generalization, the theory of sample complex-
ity [Schmidt et al., 2018] explains such a phenomenon par-
tially, and is supported by experimental results in derivative
works [Alayrac et al., 2019; Carmon et al., 2019]. As sug-
gested by [Schmidt ef al., 2018], it is essential to explore the
intersections between robustness, classifiers and data distri-
bution. Some open problems can be found in [Schmidt ef al.,
2018].

Beyond Adversarial Training. Though many theories
have been proposed for improving adversarial training, it is
undeniable that these improvements are less effective than
claimed [Pang er al., 2021]. Some basic settings e.g., training
schedule, early stopping, seem to owe much on the improve-
ment of adversarial training. The shreds of evidence in [Yang
et al., 2020b; Stutz et al., 2019] show that adversarial training
might not be the optimal solution for obtaining models with
desirable robustness and accuracy. The trade-off between ro-
bustness and generalization can also be seen as an intrinsic
limitation of adversarial training. Thus it is critical and nec-
essary to investigate new methods beyond adversarial training
for adversarial robustness in the future.

Adversarial Training in Other Domains. This paper dis-
cusses the recent advances of adversarial training in the image
domain, which is the most active research field of adversar-
ial robustness. However, adversarial training is not just lim-
ited to images. Adversarial training has been successfully ap-
plied to texts [Miyato et al., 20171, graphs [Dai et al., 20191,
audios [Pandey and Wang, 2018], and reinforcement learn-
ing [Pattanaik er al., 2017]. Therefore, we hope this survey
can provide helpful insights to interested researchers and in-
spire more progress in different domains.
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