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Abstract
Real human language mechanisms and the artificial
intelligent language processing methods are two in-
dependent systems. Exploring the relationship be-
tween the two can help develop human-like lan-
guage models and is also beneficial to reveal the
neuroscience of the reading brain. The flourish-
ing research in this interdisciplinal research field
calls for surveys to systemically study and analyze
the recent successes. However, such a comprehen-
sive review still cannot be found, which motivates
our work. This article first briefly introduces the
interdisciplinal research progress, then systemati-
cally discusses the task of brain decoding from the
perspective of simple concepts and complete sen-
tences, and also describes main limitations in this
field and put forward with possible solutions. Fi-
nally, we conclude this survey with certain open re-
search questions that will stimulate further studies.

1 Introduction
How the human brain encodes and processes languages at-
tracts research attention from neuroscientists, computational
linguists and psychologists. Studies have shown that distinct
spatial pattern of neural activity is related to the viewing pic-
tures of certain semantic categories [Mitchell et al., 2008].
Mitchell et al. [2008] presents the first computational model
that makes directly testable predictions of the fMRI activi-
ties from concrete nouns. As shown in Figure 1, the study
presents concrete nouns to subjects, collects fMRI data dur-
ing the word presentation, and trains a linear model to predict
the fMRI activity from the word vector. The underlying the-
ory is that the distributional properties of nouns in a large
corpus is related to the neural basis of the semantic represen-
tation in the human brain. Based on this theory, subsequent
studies extend the prediction tasks from concrete nouns to ab-
stract nouns [Wang et al., 2013], text fragments [Wehbe et al.,
2014a; Huth et al., 2016], and sentences [Sun et al., 2021].

In recent years, the rapid progress of deep learning and
natural language processing (NLP) provide an opportunity
for further exploration. Distributed representation of words
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Figure 1: Predict fMRI from word stimuli [Mitchell et al., 2008]

or sentences can encode richer semantic information. Some
studies attempt to use extensive word vectors to predict
neuron activity patterns and evaluate the performance ac-
cordingly [Murphy et al., 2012; Anderson et al., 2013;
Fernandino et al., 2015; Bulat et al., 2017; Abnar et al., 2018;
Wang et al., 2020b; Pereira et al., 2010]. Most recently, pre-
trained language models (LMs) have achieved success in var-
ious fields of NLP. The network structure and rich training
data enables the model to capture more information covering
syntax, semantics and even common sense knowledge from
the context. On this basis, much work attempts to deeply
explore the relationship between pre-trained LMs and human
language mechanisms [Schwartz et al., 2019; Toneva and We-
hbe, 2019; Jat et al., 2019; Schwartz and Mitchell, 2019; Hale
et al., 2015; Søgaard, 2016; Minnema and Herbelot, 2019;
Pereira et al., 2010].

We give a survey of recent efforts on bridging natural lan-
guage processing and neuroscience of language, aiming to
provide a comprehensive overview of existing research, dis-
cussing the focuses, limitations and future directions.

2 Background
2.1 Motivation
By drawing correlation between computational representa-
tions and neural representations, we can benefit both the
development of NLP algorithm and the understanding of
brain activities. Some studies revealed the correlations be-
tween deep neural networks and human language process-
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Dataset Type Language Stimulus #Subject Paradigm Task

Pereira et al. [2001] fMRI English 20 sentences 6 reading decoding
Cox and Savoy [2003] fMRI English 10 object pictures 4 reading decoding
Mitchell et al. [2004] fMRI English concrete noun 10 reading decoding
Mitchell et al. [2008] fMRI English 60 concrete noun 9 reading encoding
Sudre et al. [2012] MEG English 60 concrete noun 9 reading decoding
Anderson et al. [2012] fMRI Italian 70 concrete&abstract noun 7 reading decoding
Wehbe et al. [2014b] fMRI English story 9 reading encoding
Wehbe et al. [2014c] MEG English story 3 reading decoding
Rafidi [2014] MEG English 32 sentences 8 reading decoding
Frank et al. [2015] EEG English 205 sentences 24 reading decoding
Huth et al. [2016] fMRI English story 7 listening encoding
Brennan et al. [2016] fMRI English story 26 listening decoding
Hollenstein et al. [2018] EEG English 700 sentences 12 reading /
Brennan and Hale [2019] EEG English story 33 listening decoding
Zinszer et al. [2017] fNIRS English 8 concrete noun 24 viewing & listening decoding
Oseki and Asahara [2020] EEG Japanese 20 newspaper articles 40 reading /
Cao et al. [2021] fNIRS Chinese 50 concrete nouns 7 viewing & listening decoding

Table 1: Summary of available datasets for brain decoding and encoding.

ing. Supervised RNNGs [Dyer et al., 2016] have been shown
can better encode syntactic properties of language [Kun-
coro et al., 2017] and correlate with electrophysiological re-
sponses in the human brain [Hale et al., 2018]. A recent
study [Schrimpf et al., 2020] tested 43 LMs on three neural
datasets and found that the most powerful generative Trans-
former models [Radford et al., 2019] accurately predict neu-
ral responses.

Brain activity can be leveraged to increase the performance
of NLP models. For example, Bingel et al. [2016] found
that the fMRI data contains a strong signal, enabling a 4%
error reduction over a state-of-the-art unsupervised parts of
speech (PoS) tagger. Hollenstein et al. [2019a] leveraged
the EEG and eye-tracking data to improve the performance
of named entity recognition, relation classification and sen-
timent analysis, yielding significant improvements over the
baselines. Hollenstein et al. [2020] reviewed studies leverag-
ing different cognitive processing signals, i.e., eye-tracking,
MEG, EEG, and fMRI data recorded during language under-
standing, and proposed practical strategies for using cognitive
signals to augment NLP models.

Another interesting usage of brain activity data is evaluat-
ing how much a word representation can reflect the seman-
tic representation in the human brain. Xu et al. [2016] pre-
sented a fast and lightweight tool, Brainbench, which can
evaluate word vectors of 60 concrete nouns with their fMRI
brain images. Hollenstein et al. [2019b] presented the first
multi-modal large-scale cognitive word embedding evalua-
tion framework, CogniVal. The word vector can be evaluated
by fitting 15 datasets of eye-tracking, EEG, and fMRI signals.

2.2 Task
Neuroscientists use decoding and encoding to analyze the
information represented in brain activity. Decoding and en-
coding are two complementary processes: decoding uses neu-
ral activity to predict stimuli while encoding uses stimuli to
predict brain activity. The pioneering work of decoding and
encoding is Pereira et al. [2001] and Mitchell et al. [2008], re-
spectively. Both approaches are used to establish a mapping

between brain activity and feature space, with the only dif-
ference of the mapping direction. Thus we do not distinguish
them in the discussion. We summarize the most used brain
activity datasets in these tasks in Table 1. Among these re-
searches, brain activity data including fMRI, EEG, MEG, and
fNIRS are used. From the point of data usage, the main dif-
ference lies in the temporal and spatial resolutions. Given the
space limit, we do not discuss the difference of data types in-
depth. Instead, below we categorize concept representations
in detail and list the most representative works in Table 2.

3 Concept Representation
Decoding concepts from patterns of brain activity is also re-
ferred neurosemantics. It aims to learn the mapping between
concepts and the neural activity patterns elicited during neu-
roimaging experiments. This task relies on three essential
parts: semantic vectors, brain activity data, and mapping
functions. Collecting brain activity data is subject to the com-
plex experiment environment and the high expenses. The lin-
ear mapping can give the lower bound of the mapping. Thus
the majority of neurosemantic studies focuses on the discus-
sion of semantic vector construction.

3.1 Feature-based Representations
Initial studies mainly focused on constructing semantic fea-
tures. The work of Mitchell et al. [2008] computed the noun
representations based on their co-occurrence with a hand-
designed set of 25 verbs (reflecting sensory-motor features)
in a trillion-token corpus. Fernandino et al. [2015] instead
focused on only five semantic attributes related to sensory-
motor experience: sound, color, manipulation, visual motion
and shape. Rather than the co-occurrence rate, the ratings
for these attributes reflect the salience of each attribute to the
meaning of the word on a 7-point Likert scale ranging from
“not at all important” to “very important”. Babaeian Jelo-
dar et al. [2010] used the same 25 features [Mitchell et al.,
2008] to represent the concrete nouns. But instead of cor-
pus statistics, the value for the 25 features were computed
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Type Concept Representations Representative Works

Feature-based Tom 25 Mitchell et al. [2008]
Sensor-motor Devereux et al. [2010], Babaeian Jelodar et al. [2010], Fernandino et

al. [2015]
Distributional GloVe, Word2Vec, fastText, etc. Ruan et al. [2016], Abnar et al. [2018], Wang et al. [2020b]

Dependency-based Murphy et al. [2012], Abnar et al. [2018], Wang et al. [2020b]
Multi-modal Text, Visual, Audio-derived Anderson et al. [2013], Anderson et al. [2015], Anderson et al. [2017],

Bulat et al. [2017], Cao et al. [2020]
Context-aware LSTM, ELMo, BERT, GPT,

RoBERTa, etc.
Jain and Huth [2018], Gauthier and Levy [2019], Schwartz et
al. [2019], Jat et al. [2019], Sun et al. [2021], Schwartz and
Mitchell [2019], Schrimpf et al. [2020], Wang et al. [2020a]

Table 2: Concept representations and representative works

by the WordNet similarity. They also combined the WordNet
extracted features with corpus based semantic features of the
nouns. And they found that the combined features gave better
results in predicting brain activity patterns.

The above studies suggest that the meaning defined by
sensor-motor verbs may have a distinctive role in predict-
ing brain activity. However, Devereux et al. [2010] reached
different conclusions. Rather than using sensor-motor fea-
tures, they extracted general feature-based conceptual repre-
sentation from four different sources of information available
in corpora and evaluated performance individually. Surpris-
ingly, the study did not find any significant difference in per-
formance between the four models. This suggested that gen-
eral feature-based conceptual representations were equally
capable of predicting activation to conceptual stimuli and
placed no priority distinction on sensory-motor properties.

3.2 Distributional Representations
Subsequently, distributional representation seman-
tics [Mikolov et al., 2013; Pennington et al., 2014] became
popular and achieved great success in the NLP community.
The distributed representation can be automatically gener-
alized to novel situations and is also tunable to changing
environment [Hinton et al., 1986]. Thus researchers attempt
to use distributed concept representation to correlate with
brain activity. Most studies evaluated the correlation of brain
activity with various concept representations to explore the
brain concept representation mechanism, and evaluated the
similarity of human and distributed concept representation.

Murphy et al. [2012] examined different corpus-based
models and concentrated on which types of basic corpus pat-
tern perform well on the neurosemantic decoding task. The
study found that dependency parse-based features were the
most effective and achieving accuracy higher than any pub-
lished corpus-based model. The study also found that simple
word features rich in directional information provided a near-
optimal solution at a much lower computational cost.

Pereira et al. [2013] examined whether it was possible to
learn a semantic space from a relatively small corpus that re-
flected semantic representations of those concepts in the hu-
man mind. They produced semantic features by topic models
on a corpus of a few thousand Wikipedia articles about con-
crete or visualizable concepts, and showed that the learned
features can outperform those in other brain decoding tasks.

Subsequent studies [Murphy et al., 2011; Anderson et al.,

2013; Bingel et al., 2016; Ruan et al., 2016; Abnar et al.,
2018; Wang et al., 2020b] tested various concept represen-
tation methods, including Word2Vec [Mikolov et al., 2013],
GloVe [Pennington et al., 2014], fastText [Joulin et al., 2016],
Dependency [Levy and Goldberg, 2014], Meta-word and
RWSGwn [Goikoetxea et al., 2015]. The overall conclusion
is that different word classes can be decoded most effectively
with different word embeddings, and syntactically informed
models (dependency) give the overall best performance.

3.3 Multi-modal Representations
Humans obtain multi-modal information from the real world
and form conceptual representations in the brain. During
the data collection procedure, subjects can be given text,
image, and audio stimuli simultaneously and were also re-
quired to think of the properties of the stimuli. Thus, in
addition to text-based features, some studies attempted to
use multi-modal features, mainly vision and auditory, to pre-
dict brain activity [Ruan et al., 2016; Anderson et al., 2017;
Bulat et al., 2017; Wang et al., 2020b]. The general approach
to construct the visual feature is to use the deep neural net-
work, such as ResNet [He et al., 2015], VGG [Simonyan and
Zisserman, 2015], to extract image features of the same class
from ImageNet. The extracted features are averaged across
image class so that the salient features of that class will be
retained. Finally, the resulting features are used to correlate
with brain activity. The process of extracting auditory fea-
tures is similar. But the acoustic features here are extracted
from real sounds, such as the jingle of keys.

Some studies [Ruan et al., 2016; Anderson et al., 2017;
Bulat et al., 2017; Wang et al., 2020b] compared the perfor-
mance of text, images, auditory features and their combina-
tions in predicting brain activity pattern. The conclusion is
consistent among different studies: 1. Each modal of features
can be used to predict brain activity among the chance level
significantly. 2. Image features or multi-modal features in-
cluding image features give a better performance than others.

3.4 Abstract Concept
The studies surveyed above mainly focused on the decoding
of concrete concepts. Fernandino et al. [2015] demonstrated
that the prediction by using sensor-motor features was suc-
cessful for concrete concepts but not for abstract ones. To
investigate how abstract knowledge is organized in the brain,
many studies have repeated the process of decoding concrete
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concepts (i.e., presenting the abstract stimuli to the subject
and then correlating the brain activity). It is worth noting
that instructing the subject in data collection is different when
the stimulus is an abstract or concrete concept. With con-
crete concepts, subjects are usually instructed to think ac-
tively about the properties of the object, but eliciting prop-
erties are not so easy for abstract concepts. Subjects appear
able to produce situation-related objects [James A., 1981;
McRae et al., 2005]. Therefore, subjects are often instructed
to “think about situations that exemplify the object the word
refers to” when stimuli are abstract concepts.

Anderson et al. [2012] studied the decoding of abstract
concepts from brain activity. In the study, subjects were pre-
sented with 60 abstract concepts belonging to 6 categories
(location, social role, event, communication, attribute and
urabstract). As a comparison, subjects were also presented
with 10 concrete concepts of 1 category (tools). The con-
cepts were selected from two different domains (music and
law). This study came to two conclusions : “(1) WordNet-
style taxonomic categories for abstract concepts are at least
cognitively relevant in that they can be distinguished from
neural data. (2) In contrast to previous findings for concrete
concepts, it is unable to detect a relationship between inter-
representation of abstract concept categories in fMRI data and
inter-representations in popular distributed semantic models.”

There has been extensive subsequent research in abstract
concept decoding. Wang et al. [2013] found that single-trial-
based brain activity was sufficient to distinguish abstract ver-
sus concrete representations. In addition to distinguishing the
concepts, Anderson et al. [2014] investigated how concrete-
ness of the concepts can affect the decoding performance by
varying concreteness of the stimuli. They found a clear con-
creteness effect: concrete concepts can be reliably predicted
for unseen participants, but less concrete concepts can only be
reliably predicted withing subjects. They also found that do-
main (e.g., law vs. music) can be better predicted for less con-
crete categories. Thus the author concluded that “both taxo-
nomic and domain class distinctions are relevant for interpret-
ing neural structuring of concrete and abstract concepts”.

In addition to textual features, some work [Anderson et
al., 2013; Anderson et al., 2015; Anderson et al., 2017;
Wang et al., 2020b] adopted visual features to decode brain
activity. The conclusions are consistent: both visual and tex-
tual models decode the more concrete nouns. Anderson et
al. [2017] investigated how visually grounded and textual se-
mantic models decode abstract and concrete concepts. It de-
coded the concrete and abstract concepts from brain activity
by using text or image-derived features separately. The re-
sults suggest that both models significantly decod the most
concrete nouns and the decoding accuracy is significantly
greater using the text-based models for the most abstract
nouns. The observation is also in line with the dual-coding
theory [Paivio, 1971]: the human brain represents concrete
concepts in terms of visual and linguistic code, whereas it
represents abstract concepts only in linguistic code.

There is an arguable fact when decoding abstract concepts
by using image-derived features [Anderson et al., 2017].
Most studies use Google Image to select images for abstract
concepts. It may not perform as well as concrete concepts,

thus can lead to decreased performance in decoding accuracy.

3.5 Associative Thinking
Subjects were often instructed to think of the properties of
the stimuli during the experiments. So brain activity was not
only stimulated by stimuli but also influenced by association
concepts. Small World of Words [De Deyne et al., 2018]
is a word association dataset, where more than 100K flu-
ent English speakers were asked to list three associations for
each target word. For example, when subjects were given the
word apple, most people can think of fruit, red, orange, tree,
and pear. Inspired by this, some studies [Bulat et al., 2017;
Cao et al., 2020] attempted to use the associate word de-
coding brain activity. The results suggested that cognitively-
motivated association-based models performed on par with or
better than other linguistic models.

3.6 Incorporating Context
Most previous studies focus on word-level representations
and thus ignore the influence of context on language un-
derstanding. Relatively little early work considered decod-
ing whole sentences from brain activation patterns. This is
largely because the experimental process of using sentences
as stimuli is more complicated, and sentence representation
remained a challenge for NLP at the dawn of brain decod-
ing. With NLP development in recent years, some studies
pay attention to relating sentence encoding with brain activ-
ity patterns [Jain and Huth, 2018; Gauthier and Levy, 2019;
Jat et al., 2019; Sun et al., 2021]. There are two main types
of sentence encoding. The first is the bag-of-words encoding,
which sums the word embedding together and then uses the
average value as the sentence encoding. It is mainly used as a
baseline. Such sentence encoding ignores the order of words,
and consequently the influence of syntax and context. The
second is sequence models, such as LSTM [Hochreiter and
Schmidhuber, 1997], Transformer [Vaswani et al., 2017], and
pre-trained language models like BERT [Devlin et al., 2019].

Jain and Huth [2018] used LSTM [Hochreiter and Schmid-
huber, 1997] language models to encode sentences and then
correlate the sentence encoding with brain activity. The
results suggested that contextual models performed signifi-
cantly better than word embedding models. They also com-
pared the effectiveness of models that used multiple LSTM
layers output and context lengths. The results revealed a hier-
archy of brain areas sensitive to different types of contextual
information and different temporal receptive field sizes.

Gauthier and Levy [2019] fine-tuned a pre-trained
BERT [Devlin et al., 2019] on various natural language un-
derstanding (NLU) tasks to find out what NLU tasks lead
to improvements in brain-decoding performance. However,
the results suggested that none of the sentence encoding tasks
tested yielded significant increases in brain decoding perfor-
mance. Further analysis revealed that fine-tuning BERT with
scrambled sentences yielded significant improvements in per-
formance. The authors named such sentence encoding as
syntax-light sentence representation. But this does not mean
that syntactic information is not retained in brain activity. It
is more likely that the brain activity data used in the study is
fMRI, which is too coarse to preserve the syntactic trace.
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4 Discussion
Decoding language (words, phrases, sentences) from brain
activity can benefit both NLP and neuroscience. Past decades
of studies have promoted this field a big step forward, how-
ever, we currently have only very limited understanding. This
section discusses the main factors that limit the progress, and
promising future directions to take.

4.1 Limitations
Limitation on brain activity data. The most commonly
used brain activity data are fMRI, EEG, MEG, and fNIRS.
Each type of data has its advantages and disadvantages. For
example, fMRI has a very high spatial resolution and is very
suitable for source analysis. This means that we can ac-
curately pinpoint the position in the brain. If we want to
find a specific concept that will elicit a response to a spe-
cific location in the brain, fMRI is the best choice. However,
the extremely low time resolution of fMRI makes it unsuit-
able for sentence-level analysis. fMRI takes about two sec-
onds to complete a scan. This is far lower than the speed at
which humans can process language. So this makes it diffi-
cult for fMRI to capture syntactic information. As mentioned
in Gauthier and Levy [2019], when using fMRI to decode
sentences, the accuracy is higher after removing the syntactic
information from the text-derived sentence features. Other
studies have produced conflicting results when using fMRI
for syntactic research. EEG can preserve rich syntactic in-
formation [Hale et al., 2018] due to the high temporal res-
olution, but the extremely low spatial resolution restricts it
from performing source analysis. fNIRS is a compromise op-
tion, the time resolution of fNIRS is better than fMRI, and the
spatial resolution is better than EEG. Some studies [Zinszer
et al., 2017; Cao et al., 2021] demonstrated that the fNIRS
preserves information for concept decoding tasks. However,
some believe that the balance of spatial and temporal resolu-
tion is not enough to compensate for the loss in both.

Individual differences. Humans form representations of
concepts based on their own experiences. Therefore, the same
concept typically causes different brain activity among peo-
ple (e.g. igloos may never have been experienced by people
in the tropics). These differences in experiences have caused
huge differences between individuals in the same experiment.
We can observe the high variance in performance among
subjects [Mitchell et al., 2008; Gauthier and Levy, 2019;
Pereira et al., 2018; Cao et al., 2021]. Despite this, there are
some commonalities in concept representations among sub-
jects. Some studies [Cao et al., 2021] use data from multiple
subjects for training and then apply the trained model to new
subjects. The results suggested that the model can decode the
brain activity of an unseen subject to some extent. However,
the performance will not improve all the time as the number
of training subjects increases. Learning the commonality of
the brain activity among subjects is inevitable, and we believe
that future work can seek breakthroughs from two directions.
First, we can try to use adversarial training. Adversarial train-
ing can be used to learn the commonalities between different
distributions. Suppose we treat the brain activity of subjects
as different distributions. It is possible to learn more com-

monalities by using adversarial training. Second, we can em-
ulate the idea of pre-training in NLP and computer vision. We
train a model using data from multiple subjects, then use the
new subject data to fine-tune the pre-trained model. In this
way, the model retains the commonality of most subjects and
reflects the differences among them.

Linking hypothesis. Most studies in decoding brain activ-
ity are using pure linear transformation. As Gauthier and
Levy [2019] pointed out “It is likely that some syntactic infor-
mation — among other features of the input — is conserved
in the fMRI signal but not readable by a linear decoder.” Cao
and Zhang [2019] used a three-layer neural network to decode
concrete nouns, and the effect is better than linear regression.
But this may be because neural networks inherently have bet-
ter fitting functions. It cannot be explained that this is because
the human representation of concepts is nonlinear.

Limitation in brain research. The most fundamental lim-
itation is that the neural mechanism of human language pro-
cessing has not been fully revealed in the current research.
Consider computer vision as an analogy. Current research
has studied the neural mechanisms of human visual pathways,
and we can imitate visual pathways to build visual networks.
For example, the convolution region in the most classic neu-
ral network CNN imitates the receptive field in the human
visual system. However, we understand less about the neural
mechanism in the language process, making it difficult to di-
rectly use neural networks to simulate human brain language
processing. For example, the most widely used NLP neural
networks (such as RNN and Transformers [Vaswani et al.,
2017]) simulate humans’ behavior-i.e., eye movement- rather
than neural activity in reading sentences. In general, the net-
work in computer vision is closer to the human visual system,
while the model in NLP temporarily stays at imitating human
behavior in reading. This may be the reason for the faster
development of the computer vision research field.

4.2 Future Directions
The future direction of this field can be developed from two
perspectives. From the NLP perspective, the existing research
can detect the syntactic traces [Hale et al., 2018] from the
neural signal. Then we should be able to use neural signals
to fine-tune LMs to make it more human-like. It should be
noted that fine-tuning LMs requires at least thousands of data
entries, and neural data is not easy to obtain. Jat et al. [2019]
generate synthetic brain data and show that it helps in im-
proving subsequent stimuli decoding task accuracy. Future
research can attempt to fine-tune LM using synthetic brain
data.

From the perspective of neuroscience, future research
can try to use deep NLP models to explore the neural
mechanisms of language processing. There is a successful
study [Ratan Murty et al., 2020] in the field of human vision
research recently. There is an area in the human brain named
fusiform face area (FFA) [Kanwisher et al., 1997] responsi-
ble for processing face-related information. However, it is
difficult to prove that FFA deals with face-related processing
exclusively because it is impossible to present subjects with
all the objects in the world. Instead, the researchers trained a
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visual network by using neural activity data from FFA. Then
they tested the network with millions of images from Ima-
geNet [Deng et al., 2009] and found that this network only
has a strong activation for face pictures. This largely proves
that FFA only deals with facial information in the brain.

A recent study [Schrimpf et al., 2020] tested state-of-the-
art artificial neutral network (ANN) LMs to predict language
processing in the brain. The results indicate a strong correla-
tion between ANN LMs and the brain activity, opening a win-
dow for neuroscience. Although both the human brain and
ANN LMs are black-box models, the variables of LMs can
be altered to generate various outputs. This allows multiple
outputs to be correlated with brain activity without the need
to experiment with humans, providing an option to probe the
neural mechanism of language processing in the human brain.
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