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Abstract

Combinatorial optimization is a well-established area
in operations research and computer science. Until
recently, its methods have mostly focused on solving
problem instances in isolation, ignoring the fact that
they often stem from related data distributions in prac-
tice. However, recent years have seen a surge of interest
in using machine learning, especially graph neural
networks, as a key building block for combinatorial
tasks, either directly as solvers or by enhancing the for-
mer. This paper presents a conceptual review of recent
key advancements in this emerging field, aiming at
researchers in both optimization and machine learning.

1 Introduction

Combinatorial optimization (CO) has developed into an inter-
disciplinary field spanning optimization, operations research,
discrete mathematics, and computer science, with many critical
real-world applications such as vehicle routing or scheduling [Ko-
rte and Vygen, 2012]. Intuitively, CO deals with problems that
involve optimizing a cost (or objective) function by selecting
a subset from a finite set, with the latter encoding constraints
on the solution space. Although CO problems are generally
hard from a complexity theory standpoint due to their discrete,
non-convex nature [Karp, 1972], many of them are routinely
solved in practice. Historically, the optimization and theoretical
computer science communities have been focusing on finding
optimal [Korte and Vygen, 2012], heuristic [Boussaid et al., 2013],
or approximate [Vazirani, 2010] solutions for individual prob-
lem instances. However, in many practical situations of interest,
one often needs to solve problem instances which share certain
characteristics or patterns. Hence, data-dependent algorithms or
machine learning approaches, which may exploit these patterns,
have recently gained traction in the CO field [Bengio er al., 2021;
Kotary et al., 2021]. The promise here is that by exploiting
common patterns in the given instances, one can develop faster
algorithms for practical cases. Due to the discrete nature of most
CO problems and the prevalence of network data in the real world,
graphs (and their relational generalizations) are a central object of
study in the CO field. In fact, from the 21 NP-complete problems
identified by Karp [1972], ten are decision versions of graph
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optimization problems, e.g., the travelling saleperson problem
(TSP). Most of the other ones, such as the set covering problem,
can also be modeled over graphs. Moreover, the interaction
between variables and constraints in constraint optimization
problems naturally induces a bipartite graph, i.e., a variable and
constraint share an edge if the variable appears with a non-zero
coefficient in the constraint. These graphs commonly exhibit
patterns in their structure and features, which machine learning
approaches should exploit.'

What Are the Challenges for ML? There are several critical
challenges in successfully applying machine learning methods
within CO, especially for problems involving graphs. Graphs have
no unique representation, i.e., renaming or reordering the nodes
does not result in different graphs. Hence, for any machine learning
method dealing with graphs, taking into account invariance to
permutation is crucial. Combinatorial optimization problem
instances, especially those arising from the real world, are large
and usually sparse. Hence, the employed machine learning method
must be scalable and sparsity aware. Simultaneously, the employed
method has to be expressive enough to detect and exploit the
relevant patterns in the given instance or data distribution while
still generalizing beyond its training data. The machine learning
method should be capable of handling auxiliary information, such
as objective and user-defined constraints. Most of the current
machine learning approaches are within the supervised regime.
That is, they require a large amount of training data to optimize the
parameters of the model. In the context of CO, this means solving
many possibly hard problem instances, which might prohibit the
application of these approaches in real-world scenarios.

How Do GNNs Solve These Challenges?  Graph neural net-
works (GNNs) compute a vectorial representation, e.g., a real
vector, of each node in the input graph by iteratively aggregating
features of neighboring nodes. By parameterizing this aggregation
step, the GNN is trained in an end-to-end fashion against a loss
function. The promise here is that the learned vector represen-
tation encodes crucial graph structures that help solve a CO
problem more efficiently. GNNs are invariant by design, i.e.,
they automatically exploit the invariances inherent to the given
instance. Due to their local nature, by aggregating neighborhood
information, GNNSs naturally exploit sparsity, leading to more
scalable models on sparse inputs. Moreover, although scalability

'See [Cappart et al., 2021] for an extended version of the present
work.
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is still an issue, they scale linearly with the number of edges
and employed parameters, while taking multi-dimensional node
and edge features into account [Gilmer et al., 2017], naturally
exploiting cost and objective function information. However, the
data-efficiency question is still largely open. Although GNNs
have clear limitations [Morris ef al., 2019], they have already
proven to be useful in the context of combinatorial optimization,
either predicting a solution directly or as an integrated component
of an existing solver. We will extensively investigate both of these
aspects within our survey.

Going Beyond Classical Algorithms The previous discus-
sion mainly dealt with the idea of machine learning approaches,
especially GNNGs, replacing and imitating classical combinatorial
algorithms or parts of them, potentially adapting better to the
specific data distribution of naturally-occurring problem instances.
However, classical algorithms heavily depend on human-made
pre-processing or feature engineering by abstracting raw, real-
world inputs. In the long-term, machine learning approaches can
further enhance the CO pipeline, from raw input processing to
aid in solving abstracted CO problems in an end-to-end fashion.
Several viable approaches in this direction have been proposed
recently, and we will survey them in detail.

1.1 Preliminaries

Here, we introduce notation and give the necessary background
on CO and GNNs.

Notation Let[n] ={1,...,n} C Nforn > 1,andlet {.. E
denote a multiset. For a (finite) set S, we denote its power set as 2°.
A graph G is a pair (V, E) with a finite set of nodes V and a set
of edges E C V2. We denote the set of nodes and the set of edges
of G by V(G) and E(QG), respectively. The neighborhood of v
in V(G) is denoted by N (v) = {u € V(G) | (v,u) € E(G)}.
Combinatorial Optimization Intuitively, CO aims at choos-
ing a subset from a finite set, optimizing a cost function. Formally,
an instance of a CO problem is a tuple ({2, F,w), where {2 is a
finite set, I C 2% is the set of feasible solutions, w: £2 — Q
assigns costs, inducing the cost function ¢(S) = > g w(w)
for S in F. Consequently, CO deals with selecting an element .S*
(optimum) in F that minimizes ¢(S™*) over F.

Graph Neural Networks Intuitively, GNNs compute a vecto-
rial representation, i.e., a d-dimensional vector, for each node in a
graph by aggregating information from neighboring nodes. Each
layer of a GNN aggregates neighbors’ features of each node v
and then passes this aggregated information on to the next layer.
Following [Gilmer er al., 2017], in full generality, a new feature
f®(v) is computed as

Tt (FOD @), Fa (D (w) [w € N(©)})),

where fag/glr aggregates over the multiset of neighborhood features
and fg‘éfge merges the node’s representations from step (¢ — 1)

with the computed neighborhood features. Both f¥ and fyi2.
may be arbitrary differentiable functions with parameters 1/, and

Wa.

2 GNN:s for Combinatorial Optimization

Given that many practically relevant CO problems are NP-
hard, it is helpful to characterize algorithms for solving them as

prioritizing one of two goals. The primal goal of finding good
feasible solutions, and the dual goal of certifying optimality or
proving infeasibility. In both cases, GNNs can serve as a tool for
representing problem instances, states of an iterative algorithm, or
both. Coupled with an appropriate ML paradigm, GNNs have been
shown to guide exact and heuristic algorithms towards finding
good feasible solutions faster (Section 2.1) or to guide certifying
optimality or infeasibility more efficiently (Section 2.2). Beyond
using standard GNN models for CO, the emerging paradigm of
algorithmic reasoning provides new perspectives on designing
and training GNNSs that satisfy natural invariants and properties
(Section 2.3).

2.1 On the Primal Side: Finding Feasible Solutions

Here, we will discuss various approaches that leverage GNNs
in the primal setting. First, we discuss approaches that find a
solutions from scratch, followed by approaches replacing specific
components in solvers.

Learning Heuristics from Scratch

The works in this section attempt to construct a feasible solution
“from scratch”, not using a combinatorial solver to help the
machine learning model. In [Khalil ez al., 2017], GNNs were
leveraged for the first time in the context of graph optimization
problems. Here, the GNN served as the function approximator
for the value function in a Deep Q-learning (DQN) formulation
of combinatorial optimization on graphs, using a GNN [Dai
et al., 2016] to embed nodes of the input graph. Through the
combination of GNN and DQN, a greedy node selection policy,
e.g., iteratively selecting a subset of nodes in a graph, is learned
on a set of problem instances drawn from the same distribution.
In the following, we discuss extensions and improvements of the
work of Khalil et al. [2017], categorized along three axes: The
combinatorial optimization problems being addressed, the use
of custom GNN architectures that improve over standard ones
in some respect, and the use of specialized training approaches
that alleviate bottlenecks in typical supervised or reinforcement
learning (RL) for CO.

Modeling Combinatorial Problems and Handling Con-
straints Kool et al. [2019] tackle routing-type problems by
training an encoder-decoder architecture, based on Graph Atten-
tion Networks [Veli¢kovi¢ et al., 2018], using an Actor-Critic
reinforcement learning approach. Thus far, the problems discussed
in this section have constraints that are relatively easy to satisfy,
e.g., by restricting the reinforcement learning action space appro-
priately. In many practical problems, some of the constraints may
be trickier to satisfy. Consider the more general TSP with Time
Windows (TSPTW) [Savelsbergh, 1985], in which a node can only
be visited within a node-specific time window. Here, edge weights
should be interpreted as travel times rather than distances. Ma et
al. [2019] tackle the TSPTW by augmenting the building blocks
we have discussed so far (GNN with reinforcement learning) with
a hierarchical perspective. Some of the learnable parameters
are responsible for generating feasible solutions, while others
minimize the solution cost. Note, however, that the approach
of Ma et al. [2019] may still produce infeasible solutions, although
it is reported to do so very rarely in experiments. Liu et al. [2021]
employ GNNs to lean chordal extensions in graphs. Specifically,
they employ an on-policy imitation learning approach to imitate
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the minimum degree heuristic. For SAT problems, Selsam et
al. [2019] introduce the NeuroSAT architecture, a GNN that learns
to solve SAT instances in an end-to-end fashion by modelling
them as bipartite graphs. The model is directly trained to act as a
satisfiability classifier, which was further investigated in [Cameron
et al., 2020], also showing that GNNs are capable of generalizing
to larger random instances.

GNN Architectures Deudon et al. [2018], Nazari et al. [2018],
and Kool et al. [2019] were perhaps the first to use attention-based
models for routing problems. As one moves from basic problems
to richer ones, the GNN architecture’s flexibility becomes more
important in that it should be easy to incorporate additional
characteristics of the problem. Notably, the encoder-decoder
model of [Kool et al., 2019] is adjusted for each type of problem
to accommodate its special characteristics, e.g., node penalties
and capacities, the constraint that a feasible tour must include
all nodes or the lack thereof, et cetera. This allows for a unified
learning approach that can produce good heuristics for different
optimization problems. Recently, Joshi e al. [2019] propose the
use of residual gated graph convolutional networks [Bresson and
Laurent, 2017] in a supervised manner to solve the TSP. Unlike
most previous approaches, the model does not output a valid TSP
tour but a probability for each edge to belong to the tour. The
final circuit is computed subsequently using a greedy decoding
or a beam-search procedure. The current limitations of GNN
architectures for finding good primal solutions have been analyzed
in [Joshi er al., 20201, using the TSP as a case study. Besides,
Frangois er al. [2019] have shown that the solutions obtained by
Deudon et al.; Kool et al.; Joshi et al.; Khalil et al. [2018; 2019;
2019; 2017] can be efficiently used as the first solution of a local
search procedure for solving the TSP.

[Li et al., 2019; Fey et al., 2020] investigate using GNNs
for graph matching. Here, graph matching refers to finding
an alignment between two graphs such that a cost function is
minimized, i.e., similar nodes in one graph are matched to similar
nodes in the other graph. Specifically, Li ef al. [2019] use a GNN
architecture that learns node embeddings for each node in the two
graphs and an attention score that reflects the similarity between
two nodes across the two graphs. The authors propose to use
pair-wise and triplet losses to train the above architecture. Fey er
al. [2020] propose a two-stage architecture for the above matching
problem. In the first stage, a GNN learns a node embedding
to compute a similarity score between nodes based on local
neighborhoods. To fix potential miss-alignments due to the first
stage’s purely local nature, the authors propose a differentiable,
iterative refinement strategy that aims to reach a consensus of
matched nodes.

Training Approaches Toenshoff er al. [2019] propose a
purely unsupervised approach for solving constrained optimization
problems on graphs. Thereto, they trained a GNN on the bipartite
constraint-variable graph using an unsupervised loss function,
reflecting how the current solution adhers the constraints. Further,
Karalias and Loukas [2020] propose an unsupervised approach
with theoretical guarantees. Concretely, they use a GNN to produce
a distribution over subsets of nodes, representing possible solution
of the given problem, by minimizing a probabilistic penalty loss
function. To arrive at an integral solution, they de-randomize the
continuous values, using sequential decoding, and show that this
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integral solution obeys the given, problem-specific constraints with
high probability. Nowak er al. [2018] train a GNNs in a supervised
fashion to predict solutions to the Quadratic Assignment Problem
(QAP). To do so, they represent QAP instances as two adjacency
matrices, and use the two corresponding graphs as input to a
GNN. Prates et al. [2019] train a GNN in a supervised manner
to predict the satisfiability of the decision version of the TSP,
considering instances up to 105 cities.

Learning Hybrid Heuristics

Within the RL framework for learning heuristics for graph prob-
lems, [Abe et al., 2019] propose to guide a Monte-Carlo Tree
Search (MCTS) algorithm using a GNN, inspired by the success
of AlphaGo Zero [Silver et al., 2017]. A similar approach appears
in [Drori et al., 2020]. Despite the popularity of the RL approach
for CO heuristics, Li et al. [2018] propose a supervised learning
framework which, when coupled at test time with classical algo-
rithms such as tree search and local search, performs favorably
when compared to S2V-DQN and non-learned heuristics. They use
Graph Convolutional Networks [Kipf and Welling, 2017, GCNs],
a simple GNN architecture, on combinatorial problems that are
easy to reduce to the Maximum Independent Set (MIS), again
a problem on a graph. A training instance is associated with a
label, i.e., an optimal solution. The GCN is then trained to output
multiple continuous solution predictions, and the hindsight loss
function [Guzman-Rivera et al., 2012] considers the minimum
(cross-entropy) loss value across the multiple predictions. As
such, the training encourages the generation of diverse solutions.
At test time, these multiple (continuous) predictions are passed on
to a tree search and local search in an attempt to transform them
into feasible, potentially high-quality solutions.

Nair et al. [2020] propose a neighborhood search heuristic for
ILPs called neural diving as a two-step procedure. By using the
bipartite graph induced by the variable constraint relationship,
they first train a GNN by energy modeling to predict feasible
assignments, with higher probability given to better objective
values. The GNN is used to produce a tentative assignment of
values, and in a second step, some of these values are thrown
away, then computed again by an integer programming solver
by solving the sub-ILP obtained by fixing the values of those
variables that were kept. A binary classifier is trained to predict
which variables should be thrown away at the second step.

Ding et al. [2020] explore to leverage GNNSs to approximately
solve MIPs by representing them as a tripartite graph consisting
of variable and constraint nodes, and a single objective node.
Here, a variable and constraint node share an edge if the variable
participates in the constraints with a non-zero coefficient. The
objective shares an edge with every other node. The GNN aims to
predict if a binary variable should be assigned O or 1. They utilize
the output, i.e., a variable assignment for binary variables, of the
GNN to generate either local branching global cuts [Fischetti
and Lodi, 2003] or using these cuts to branch at the root node.
Since the generation of labeled training data is costly, they resort
to predicting so-called stable variables, i.e., a variable whose
assignment does not change over a given set of feasible solutions.

Concerning SAT problems, Yolcu and Péczos [2019] propose
to encode SAT instances as an edge-labeled, bipartite graph and
used a reinforcement learning approach, namely REINFORCE
parameterized by a GNN, to learn satisfying assignments inside a
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stochastic local search procedure, representing each clause and
variable as a node. Here, a clause and a variable share an edge if
the variable appears in the clause, while the edge labels indicate if
a variables is negated in the corresponding clause.

2.2 On the Dual Side: Proving Optimality

Besides finding solutions that achieve as good an objective value
as possible, another common task in CO is proving that a given
solution is optimal, or at least proving that the gap between the
best found objective value and the optimal objective value, known
as the optimality gap, is no greater than some bound. Computing
such bound is usually achieved by computing cheap relaxations
of the optimization problem. A few works have successfully
used GNNss to guide or enhance algorithms to achieve this goal.
Because the task’s objective is to offer proofs (of optimality or the
validity of a bound), GNNs usually replace specific algorithms’
components.

In integer linear programming, the prototypical algorithm is
branch and bound, forming the core of all state-of-the-art solving
software. Here, branching attempts to bound the optimality gap
and eventually prove optimality by recursively dividing the
feasible set and computing relaxations to prune away subsets that
cannot contain the optimal solution. An arbitrary choice usually
has to be made to divide a subset by choosing a variable whose
range will be divided in two. As this choice has a significant
impact on the algorithm’s execution time, there has been increased
interest in learning policies, e.g., parameterized by a GNN, to
select the best variable in a given context. The first such work
was the approach of Gasse er al. [2019], who teach a GNN
to imitate strong branching, an expert policy taking excellent
decisions, but computationally too expensive to use in practice.
The resulting policy leads to faster solving times than the solver
default procedure and generalizes to larger instances than trained
on. Building on that, Gupta et al. [2020] propose a hybrid
branching model using a GNN at the initial decision points
and a light multilayer perceptron for subsequent steps, showing
improvements on CPU-only hardware. Also, Sun et al. [2020]
uses a GNN learned with evolution strategies to improve on
the GNN of Gasse et al. [2019] on problems defined on graphs
sharing a common backbone. Finally, Nair et al. [2020] expand
the GNN approach to branching by implementing a GPU-friendly
parallel linear programming solver using the alternating direction
method of multipliers that allows scaling the strong branching
expert to substantially larger instances. Combining this innovation
with a novel GNN approach to primal diving (see Section 2.1)
they show improvements over SCIP [Gamrath et al., 2020] in
solving time on five real-life benchmarks and MIPLIB [Gleixner
et al., 2020], a standard benchmark of heterogeneous instances.

In logic solving, such as for Boolean Satisfiability, Satisfiability
Modulo Theories, and Quantified Boolean Formulas solving, a
standard algorithm is Conflict-Driven Clause Learning (CDCL).
CDCL is a backtracking search algorithm that resolves conflicts
with resolution steps. In this algorithm, one must repeatedly
branch, i.e., pick an unassigned variable and a polarity (value,
0 or 1) to assign to this variable. Some authors have proposed
representing logical formulas as graphs and using a GNN to select
the best next variable, the analog of a branching step. Namely,
Lederman et al. [2020] model quantified boolean formulas as
bipartite graphs and teach a GNN to branch using REINFORCE,
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achieving substantial improvements in number of formulas solved
within a given time limit compared to VSIDS, the standard
branching heuristic. Kurin et al.; ? [2020; ?] explore similar
ideas using ()-learning and evolution strategies, respectively.
Finally, in a different direction, Selsam and Bjgrner [2019] use
the end-to-end GNN NeuroSAT architecture [Selsam et al., 2019],
a GNN on the bipartite variable-clause graph, inside existing
SAT solvers, e.g., MiniSat, Glucose, and Z3, to inform variable
branching decisions. They train the GNN to predict the probability
of a variable being in an unfeasible core, and assume that this
probability correlates well with being a good variable to branch
on. Using the resulting network for branching periodically, they
report solving more problems on standard benchmarks than the
state-of-the-art heuristic EVSIDS.

In constraint programming, optimal solutions are found using
backtracking search algorithms, e.g., branch and bound or iterative
limited discrepancy search, repeatedly selecting variables and
corresponding value assignments, similarly to logic solvers. Value
selection has, in particular, a significant impact on the quality of
the search. In the case of constraint satisfaction or optimization
programs that can be formulated as Markov decision processes
on graph states, such as the TSP with time windows, Cappart et
al. [2020] train a GNN to learn a good policy or action-value
function using reinforcement learning to drive value selection
within the backtracking search algorithms of CP solvers. This
idea has been further extended by Chalumeau er al. [2021],
who propose a new CP solver that natively handles a learning
component.

Finally, a recently introduced, generic way of obtaining dual
bounds in CO problems is through decision diagrams [Bergman
et al., 2016]. These are graphs that can be used to encode the
feasible space of discrete problems. For some of those problems,
it is possible to identify an appropriate merging operator that
yields relaxed decision diagrams, whose best solution gives a
dual bound. However, the bound’s quality is highly dependent on
the variable ordering that has been considered to construct the
diagram. Cappart et al. [2019] train a GNN by reinforcement
learning to decide which variable to add next to an incomplete
decision diagram representing the problem instance that needs to
be solved. The resulting diagram then readily yields a bound on
the optimal objective value of the problem.

2.3 Algorithmic Reasoning

Neural networks are traditionally powerful in the interpolation
regime, i.e., when we expect the distribution of unseen (“test”)
inputs to roughly match the distribution of the inputs used to train
the network. However, they tend to struggle when extrapolating,
i.e., when they are evaluated out of distribution. Extrapolating
is a potentially important issue for tackling CO problems with
(G)NN s trained end to end. As a critical feature of a powerful
reasoning system, it should apply to any plausible input, not just
those within the training distribution. Therefore, unless we can
foreshadow the kinds of inputs our neural CO approach will
be solving, it could be essential to address out-of-distribution
generalization meaningfully.

One resurging research direction that holds much promise here
is algorithmic reasoning, i.e., directly introducing concepts from
classical algorithms [Cormen er al., 2009] into neural network
architectures or training regimes, typically by learning how to
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Figure 1: Algorithmic alignment, in the case of the Bellman-Ford shortest
path-finding algorithm. It computes distance estimates for every node,
d,. Specifically, a GNN aligns well with this dynamic programming
update. Node features align with intermediate computed values (red),
message functions align with the candidate solutions from each neighbor
(blue), and the aggregation function aligns with the optimization across
neighbors (green).

execute them. Classical algorithms have precisely the kind of
favorable properties (strong generalization, compositionality,
verifiable correctness) that would be desirable for neural network
reasoners. Bringing the two sides closer together can therefore
yield the kinds of improvements to performance, generalization,
and interpretability that are unlikely to occur through architectural
gains alone. Further, initial theoretical analyses [Xu et al., 2019b]
demonstrated that GNNs align with dynamic programming
[Bellman, 1966] (Figure 1), which is a language in which most
algorithms can be expressed. This motivates the use of GNNs in
this setting.

Algorithmic Alignment The concept of algorithmic align-
ment introduced in [Xu ef al., 2019b] is central to constructing
effective algorithmic reasoners that extrapolate better. Informally,
a neural network aligns with an algorithm if that algorithm can
be partitioned into several parts, each of which can be “easily”
modeled by one of the neural network’s modules. Essentially,
alignment relies on designing neural networks’ components and
control flow such that they line up well with the underlying
algorithm to be learned from data. The work from [Veli¢kovié et
al., 2020b] on neural execution of graph algorithms is among the
first to propose algorithmic learning as a first-class citizen and
suggests several general-purpose modifications to GNNs to make
them stronger combinatorial reasoners. These include using the
encode-process-decode paradigm [Hamrick et al., 2018], favoring
max-aggregation, or leveraging strong supervision [Palm et al.,
20171.

It should be noted that, concurrently, significant strides have
been made on using GNNss for physics simulations [Sanchez-
Gonzalez et al., 2020; Pfaff et al., 2020], coming up with a largely
equivalent set of prescriptions. Simulations and algorithms can be
seen as two sides of the same coin. Algorithms can be phrased
as discrete-time simulations, and, as physical hardware cannot
support a continuum of inputs, simulations are typically realized
as step-wise algorithms. As such, the observed correspondence
comes as little surprise—any progress made in neural algorithmic
reasoning is likely to translate into progress for neural physical
simulations and vice-versa. Several works have expanded on
these prescriptions even further, yielding stronger classes of

GNN executors. IterGNNs [Tang et al., 2020] provably align
well with iterative algorithms, adaptively learning a stopping
criterion without requiring an explicit termination network. Neural
Shuffle-exchange Networks [Freivalds et al., 2019; Draguns et al.,
2020] directly fix connectivity patterns between nodes based on
results from routing theory, allowing them to efficiently align
with O(nlogn) sequence processing algorithms. Lastly, pointer
graph networks (PGNs) [Velickovié et al., 2020a] take a more
pragmatic view of this issue. The graph used by the processor
GNN needs not to match the input graph, which may not even
be given in many problems of interest. Instead, PGNs explicitly
predict a graph to be used by the processor, enforcing it to match
data structures’ behavior.

Lastly, recent theoretical results have provided a unifying
explanation for why algorithmically inspired GNNs provide
benefits to extrapolating both in algorithmic and in physics-based
tasks. Specifically, [Xu et al., 2020] make a useful geometric
argument—ReLLU MLPs tend to extrapolate linearly outside of the
training set support. That is, learning roughly-linear ground-truth
functions, e.g., by message functions in GNNs, implies stronger
out-of-distribution performance.

Reasoning on Natural Inputs Classical algorithms are de-
signed with abstraction in mind, enforcing their inputs to conform
to stringent preconditions. This is done for an apparent reason,
keeping the inputs constrained enables an uninterrupted focus
on “reasoning” and makes it far easier to certify the resulting
procedure’s correctness, i.e., stringent postconditions. However,
we must never forget why we design algorithms, to apply them to
real-world problems.

Being able to satisfy algorithms’ preconditions necessitates
converting their inputs into an abstractified form, which, if done
manually, often implies drastic information loss, meaning that
our combinatorial problem no longer accurately portrays the
dynamics of the real world. The data we need to apply the
algorithm may also be only partially observable, and this can
often render the algorithm completely inapplicable. Both points
should be recognized as important issues within the combinatorial
optimization as well as operations research communities. Further,
they present fertile ground for neural networks. However, even
if we use a neural network to encode inputs for a classical
combinatorial algorithm properly, due to the discrete nature of
CO problems, usual gradient-based computation is often not
applicable.

Although promising ways to tackle the issue of gradient estima-
tion have already emerged in the literature [Knobelreiter et al.,
2017; Wang et al., 2019; Vlastelica et al., 2020; Mandi and Guns,
20201, another critical issue to consider is data efficiency. Even if
a feasible backward pass becomes available for a combinatorial
algorithm, the potential richness of raw data still needs to be
bottlenecked to a scalar value. While explicitly recovering such a
value allows for easier interpretability of the system, the solver
is still committing to using it; its preconditions often assume
inputs are free of noise and estimated correctly. In contrast, neural
networks derive flexibility from their latent representations, that
are inherently high-dimensional; if any component of the neural
representation ends up poorly predicted, other components are
still able to step in and compensate.

Mindful of the above, advances in neural algorithmic reasoning
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could lend a remarkably elegant pipeline for reasoning on natural
inputs. The power comes from using the aforementioned encode-
process-decode framework [Hamrick et al., 2018]. Assume we
have trained a GNN executor to perform a target algorithm on
many (synthetically generated) abstract inputs. The executor
trained as prescribed before will have a processor network P,
which directly emulates one step of the algorithm, in the latent
space. Thus, within the weights of a properly-trained processor
network, we find a combinatorial algorithm that is

(a) aligned with the computations of the target algorithm;

(b) operates by matrix multiplications, hence natively admits
useful gradients;

(c) operates over high-dimensional latent spaces, hence is not
vulnerable to bottleneck phenomena and may be more
data-efficient.

The caveat is that, being a tractable-depth GNN, the computa-
tions of P are necessarily in P. Unless P=NP, this is unlikely to
be enough to produce general solutions to NP-hard problems
(only their polynomial-time heuristics).

The general procedure for applying an algorithm A (which
admits abstract inputs Z) to raw inputs x is as follows:

1. Learn an algorithmic reasoner for A, on synthetic inputs,
Z, using the encode-process-decode pipeline. This yields
functions f, P, g such that g(P(f(Z))) =~ A(Z).

2. Design encoder and decoder neural networks, f and g, to
process raw data and produce desirable outputs. f should
produce embeddings that correspond to the input dimension
of P, while g should operate over input embeddings that
correspond to the output dimension of P.

3. Learn parameters of f and g by gradient descent on any
differentiable loss function that compares g(P(f(x))) to
ground-truth outputs, y. Parameters of P should be frozen.

Therefore, algorithmic reasoning presents a strong approach—
through pre-trained processors—to reasoning over natural inputs.
The raw encoder function, f, has the potential to further enhance
the CO pipeline, as is learning how to map raw inputs onto the
algorithmic input space for P, purely by backpropagation. This
construction has already yielded useful architectures in the space
of reinforcement learning, mainly implicit planning. Herein, the
XLVIN architecture [Deac et al., 2020] has enabled the value
iteration algorithm to be executed on arbitrary reinforcement
environments by a direct application of this blueprint.

3 Future Research Directions

In the following, we propose several directions for stimulating
future research.

Understanding the Trade-off in Scalability, Expressivity,
and Generalization Current GNN architectures might miss
crucial structural patterns in the data [Morris ez al., 2019; Xu et al.,
2019al, while more expressive approaches [Morris er al., 2020;
Maron et al., 2019] do not scale to large-scale inputs. What is
more, decisions inside combinatorial optimization solvers, e.g., a
branching decision, are often driven by simple heuristics that
are cheap to compute. Although negligible when called only a
few times, resorting to a GNN inside a solver for such decisions
is time-consuming compared to a simple heuristic. Moreover,
internal computations inside a solver can hardly be parallelized.
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Hence, devising GNN architectures that scale and simultaneously
capture essential pattern remains an open challenge. However,
increased expressiveness might negatively impact generalization.
Hence, understanding the trade-off between these three aspects
remains an open challenge for deploying GNNs on combinatorial
tasks.

Relying on a Limited Number of Data and the Use of Rein-
forcement Learning The final goal of machine learning-based
CO solvers is to leverage knowledge from previously solved
instances to solve future ones better. Many works in this survey
hypothesize that an infinite amount of data is available for this
purpose. However, unlimited labeled training is not available in
practice. Further, in many cases, it may be challenging to procure
labeled data. Hence, an open challenge is to develop approaches
able to learn efficiently with a restricted number of potentially
unlabeled instances. An obvious candidate circumventing the need
for labeled training data is reinforcement learning. Compared
to supervised approaches the systematic use of reinforcement
learning to solve CO problems is only at the beginning, which is
most likely because these approaches are hard to train, and there
is little understanding of which reinforcement learning approaches
are suitable for CO problems. Hence, adapting currently used
RL agents to CO problems’ specific needs remains another key
challenge.

Programmatic Primitives While existing work in algorith-
mic reasoning already can use GNNs to align with data structure-
backed iterative algorithms comfortably, there exist many domains
and constructs that are of high interest to CO but are still not
explicitly treated by this emerging area. As only a few examples,
we highlight string algorithms, (common in bioinformatics), flow
algorithms, and explicitly supporting recursive primitives, for
which any existing GNN executor would eventually run out of
representational capacity.

Perceptive CO Significant strides were already made to use
GNN:s to strengthen abstractified CO pipelines. Further efforts
are needed to support combinatorial reasoning over real-world
inputs as CO problems are often designed as proxies for solving
them. Our algorithmic reasoning section hints at a few possible
blueprints for supporting this, but all of them are still in the
early stages. One issue still untackled by prior research is how to
meaningfully extract variables for the CO optimizer when they
are not trivially given. While natural inputs pose several such
challenges for the CO pipeline, it is equally important to keep in
mind that “nature is not an adversary”’—even if the underlying
problem is NP-hard, the instances provided in practice may
well be effectively solvable with fast heuristics, or, in some case
exactly.

4 Conclusions

We gave an overview of the recent applications of GNNs for CO.
To that, we surveyed primal approaches that aim at finding a
heuristic or optimal solution with the help of GNNs. We then
explored recent dual approaches, i.e., ones that use GNNs to
facilitate proving that a given solution is optimal. Moreover,
we gave an overview of algorithmic reasoning, i.e., data-driven
approaches aiming to overcome classical algorithms’ limitations.
Finally, we identified a set of critical challenges to stimulate
future research and advance the emerging field.
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