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Abstract
Human-in-the-loop Machine Learning (HIL-ML)
is a widely adopted paradigm for instilling human
knowledge in autonomous agents. Many design
choices influence the efficiency and effectiveness of
such interactive learning processes, particularly the
interaction type through which the human teacher
may provide feedback. While different interaction
types (demonstrations, preferences, etc.) have been
proposed and evaluated in the HIL-ML literature,
there has been little discussion of how these com-
pare or how they should be selected to best address
a particular learning problem. In this survey, we
propose an organizing principle for HIL-ML that
provides a way to analyze the effects of interaction
types on human performance and training data. We
also identify open problems in understanding the
effects of interaction types.

1 Introduction
Human-in-the-loop machine learning (HIL-ML) [Fails and
Olsen Jr, 2003; Amershi et al., 2014] describes learning pro-
cesses in which an agent learns from human interaction to
acquire data for improving its performance. There has been
a recent increase in the number of interaction types through
which a teacher may provide training data, such as providing
a demonstration, indicating a preference between two pos-
sible actions the agent may take, correcting the agent’s ac-
tions, or providing critiques for the agent’s trajectories. To
build effective HIL-ML systems, it is important to understand
how interaction type interplays with other components of a
HIL-ML pipeline to eventually affect the system’s learning
outcomes. For example, performance of a machine learn-
ing model is often bounded by the training data’s quantity
[Kalapanidas et al., 2003; Halevy et al., 2009] and quality
[Cortes et al., 1994; Hänsch and Hellwich, 2019]. Addition-
ally, studies in cognitive science and human-robot interac-
tion have shown that human factors, such as mental work-
load and perceived usability, affect people’s performance on

∗These authors contributed equally to this work.
†Contact Author

tasks [Longo, 2018; Haapalainen et al., 2010]. In this paper,
we survey existing work on HIL-ML through the lens of in-
teraction types. We organize this review by the relationships
between interaction type, human performance, and training
data in order to underscore the effects of interaction type on
learning outcomes.

1.1 Scope and Contributions
A significant challenge in designing HIL-ML systems is their
interconnected nature; the agent’s behavior when querying
the teacher may affect the teacher’s response, which in turn
affects the training data that informs the agent’s future behav-
ior. As a result, HIL-ML is a very broad area of research that
lies at the intersection of computer science, cognitive science,
and psychology. To the best of our knowledge, this survey
is the first to both formalize a comprehensive model of the
HIL-ML paradigm and situate prior and ongoing research re-
garding how the interaction type can affect both a human’s
teaching performance and the agent’s consequential learning
outcomes.

The main contributions of this paper are:

• A relationship graph for understanding the role of inter-
action types in HIL-ML systems, integrating and sum-
marizing insights from studies in both machine learning
and human factors.

• Surveys of recent papers in relevant fields that support
the proposed relationship graph.

• Open problems for future research, particularly open
questions to which the answers would support re-
searchers in robustly comparing and analyzing learning
interactions for HIL-ML systems.

Existing research has investigated the impact of individual
interaction types on learning outcomes. Jeon et al. [2020]
proposed a framework unifying different interaction types in
the reward learning literature and compared how different in-
teraction types influence learning of a reward function assum-
ing optimal inputs. Recent work of Koppol et al. [2021] iden-
tified differentiating features between interaction types and
investigated how these features influence human factors when
users are asked to provide training data. Each of these prior
work presents one way in which interaction types ultimately
affect the HIL-ML process; our work unifies these lenses into
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Figure 1: This graph outlines several key relationships that affect a HIL-ML system’s ability to meet its problem specification, which consists
of the system’s learning objectives and constraints. We survey how the choice of interaction type affects training data, both directly and via
the human’s teaching performance when providing training data.

a comprehensive view of the influence of interaction types in
the overarching HIL-ML process.

The specific domain and physical interface in which an
HIL-ML system is deployed will affect the system’s learning
outcome and the human teacher’s experience [Koppol et al.,
2021; Ke et al., 2020; Dudley and Kristensson, 2018]. Rather
than attempt to enumerate all possible effects of domain and
interface design, we focus on features of interaction types that
differentiate them at the algorithmic level. As a result, the
design choices and relationships analyzed in this paper may
be considered within any domain. To provide concrete ex-
amples, however, we ground our discussion in the context of
a warehouse robot tasked with restocking items. In this ex-
ample, the robot collects data from humans to train separate
models for object recognition and manipulation.

2 Relationship Graph
In HIL-ML systems, a primary goal of selecting an inter-
action type is to choose the one that best aligns the learn-
ing outcomes and learning objectives of the overall system.
These learning outcomes are dependent on the training data
obtained by the system. To understand how interaction type
influences learning outcomes, it is important to understand its
relationship with training data. Existing studies show that in-
teraction type influences training data in at least two different
ways. First, the interaction type directly determines the form
of label that is collected in the training data, as well as the
training implications of that label (e.g., how that label should
be converted into a reward update [Jeon et al., 2020]). Sec-
ond, the interaction type also influences human performance
on the teaching task [Koppol et al., 2021], which can affect
the quantity and quality of training data. We propose a re-
lationship graph (Fig. 1) as an organizing principle for HIL-
ML systems in order to comprehensively analyze the effects
of interaction types. We define each node of the graph in the
remainder of this section. Later, in Sections 3-5, we explore
the relationships indicated by the graph edges.

2.1 Problem Specification
The problem specification consists of the objectives and con-
straints of a given learning problem. Learning objectives
describe the goals of designing a HIL-ML system, which may
consist of objectives such as the expected performance on the
training, testing, and generalization datasets, output consis-
tency, sample efficiency, (adversarial) robustness [Zhang et
al., 2019a], and/or explainability [Rosenfeld and Richardson,

2019]. Constraints of a HIL-ML system specify the require-
ments and limitations, which may include the size of the train-
ing data set, physical limits, safety requirements, and so forth.

In the restocking robot domain, for example, the learning
objective of the robot’s object recognition model is to meet
an expected object detection accuracy above some threshold,
while also being robust to changes in lighting conditions in
the warehouse. Within the robot’s manipulation model, the
objective is to generalize its grasping model learned from a
small set of objects to robustly grasp novel ones, under the
constraint that collisions in any form should be avoided.

2.2 Interaction Type
The interaction between humans and learning agents can take
many forms. Cakmak and Thomaz [2012] proposed a cate-
gorization of interaction queries that correspond to questions
that people tend to ask: label, demonstration, and feature
queries. Zhang et al. [2019b] presented a survey on differ-
ent types of human guidance specifically for deep reinforce-
ment learning and identified four different learning scenarios:
standard imitation learning, learning from evaluative feed-
back, imitation from observation, and learning attention from
human. Najar and Chetouani [2021] presented a taxonomy
of “advice” for RL agents, categorizing it first according to
whether it provides contextual or general advice, and then ac-
cording to whether it indicates feedback, instructions, or con-
straints. Recent work of Koppol et al. [2021] identified four
archetypes of interactions in the literature that differ by the
amount of data the learner requests feedback on, the amount
of data the teacher provides in their response, the granular-
ity of the teacher’s response, and the responses the teacher
can choose from. These archetypes are: Showing, Categoriz-
ing, Sorting, and Evaluating. We will use these as canonical
categories of interactions in the remainder of our survey, and
ground each in a specific scenario: the restocking robot is
learning where to place new items on the shelf.
Showing. The teacher provides a demonstration of the
agent’s expected output. This form of interaction is common
in the highly-active research field on Learning from Demon-
stration [Argall et al., 2009; Chernova and Thomaz, 2014].
For the restocking robot, this feedback is provided as an
image-label pairing for each object to be shelved, and/or a
series of example trajectories demonstrating where to shelve
each object. Alternatively, the teacher may verbally explain
the expected behavior in the form of “advice” indicating what
the agent should or should not do in a particular state [Kren-
ing et al., 2016; Najar and Chetouani, 2021].
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Categorizing. The teacher provides one or more labels
from a predefined set. For the restocking robot, this may in-
volve the teacher watching the robot place an object onto a
shelf, and then providing a single rating of the robot’s per-
formance [Daniel et al., 2014]. Or, the teacher may indi-
cate which object (from a set of candidate objects) the robot
should place on the shelf [Fitzgerald et al., 2018].

Sorting. The teacher indicates their relative preferences
over a set of choices presented by the agent [Sadigh et al.,
2017]. For example, the restocking robot may suggest n can-
didate locations for a particular item, which the teacher then
orders by their appropriateness. The restocking robot could
also suggest two potential grasps for an object and then ask
the teacher for their preference.

Evaluating. The teacher provides granular feedback on an
agent’s proposed or executed actions. For example, the
teacher may supervise the restocking robot and correct its be-
havior in anticipation of an error (e.g., adjusting the robot’s
grasp of an object if they believe it to be unstable). These cor-
rections may range from fine-tuned adjustments of the robot’s
end-effector pose [Argall et al., 2010; Fitzgerald et al., 2019]
to perturbations of the robot’s intended trajectory [Bajcsy
et al., 2017] to changes in the hierarchical structure of the
task [Gutierrez et al., 2018].

2.3 Human Performance
In a HIL-ML system, the agent’s task is to achieve specified
objectives, and the human teacher’s task is to provide data
that supports the learner. The quality of this training data is
critical to the agent’s learning outcomes, and is affected by
how well the human teacher executes their teaching task. We
define human performance as a human’s ability to provide
accurate feedback during a learning interaction. For exam-
ple, if the restocking robot requests feedback on grasping a
new object, human performance consists of the human’s abil-
ity to provide a demonstration, correction, or other indicator
that results in a stable grasp of the object. The teacher’s abil-
ity to provide quality data depends on how they may provide
feedback; if the robot requests a ranking between two candi-
date grasping poses that are equally bad, the teacher may have
difficulty deciding between the two and is unable to express
feedback about how the robot should grasp the object.

2.4 Training Data
Training data is the set of data samples generated by the hu-
man teacher through interacting with the learning agent. For
the restocking robot, this could consist of object type labels,
robot arm trajectories, and/or ratings of trajectories.

2.5 Learning Outcomes
The outcomes of HIL-ML systems are the objective mea-
sures of performance of the trained system. In an ef-
fective HIL-ML system, these outcomes should fulfill the
previously-described learning objectives that define the per-
formance goals of the system. We first consider three com-
mon performance-based learning outcomes. Training per-
formance reflects the model’s ability to represent its training
data. The exact performance metric is domain-specific. In

supervised learning, training accuracy is a common metric
representing how well the trained model can reproduce the
expected output from its training dataset. For reward-based
task learning, policy loss in the training environment is often
used as a performance metric. Testing performance reflects
the model’s ability to produce the expected output for inputs
that are drawn from the same distribution as, but not included
in, the original training dataset. This testing dataset repre-
sents the set of problems that the trained model is expected
to encounter in its domain. Generalization performance re-
flects the model’s ability to produce the expected output for
inputs that are drawn from a significantly different distribu-
tion from the original training dataset. This type of learning
outcome may not apply to all learning domains, but is fre-
quently used in domains where the agent learns multiple tasks
(e.g. one-/few-shot learning).

In the restocking robot example, the agent’s learning out-
come for the object recognition task would be its training and
testing performance in classifying catalogued items, and gen-
eralization performance in identifying newly-introduced, un-
catalogued objects.

2.6 Relationships
Having introduced the nodes of our proposed relationship
graph (Fig. 1), we now define the edges in the graph through
surveying relevant literature. Throughout this survey, we
identify prior work highlighting the importance of the follow-
ing relationships within HIL-ML systems that are affected by
interaction types:

(i) Data implication: characteristics of training data that
affect the agent’s ability to fulfill its learning outcomes,

(ii) Feedback interpretation: how the teacher’s feedback
is synthesized into training data,

(iii) Teaching quality: how the human teacher’s experience
affects the quality of their feedback, and

(iv) User experience: how the queries posed via this inter-
action type are perceived by the human teacher.

We subsequently address each of these relationships.

3 Data Implication
The quality and quantity of training data affect learning out-
comes in various ways. Two measures of quality of a data
set are noisiness and distribution. Quantity straightforwardly
refers to the number of samples in the data—however, how
much data is enough is often determined by the complexity
of the task itself and the learning objectives of the agent.

Noise. Noise can be introduced during data collection
through human error (labeling error). Noisy data often leads
to a false measure of training and testing performance [Cortes
et al., 1994; Hänsch and Hellwich, 2019], the effect of
which is specific to the training algorithm [Kalapanidas et
al., 2003]. During data collection, especially when crowd-
sourcing [Lease, 2011], it is important to control such noise
in labels through explicitly correcting for labeling bias [Snow
et al., 2008] or modeling noisy labelers [Sheng et al., 2008].
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Distribution. This encompasses the diversity, biases, and
representativeness of the data sets. ML models may overfit
not only to training data, but also to test and generalization
data as a result of the research community using identical
benchmarks [Recht et al., 2019]. It is important to design dis-
tributions of test and generalization sets that account for do-
main shifts to better understand generalization errors of ML
models [Subbaswamy and Saria, 2020].

Quantity. Data quantity has proven to be a crucial factor of
performance of ML models [Halevy et al., 2009], especially
for deep neural networks, as demonstrated on image classi-
fication [Deng et al., 2009] and natural language processing
[Brown et al., 2020]. Small training datasets can lead to over-
fitting [Raudys et al., 1991]. Performance of deep models
on vision tasks increases logarithmically with the volume of
training data [Sun et al., 2017]. Leveraging large amounts of
unlabeled data, self-supervised representation learning also
improves performance of deep models [Misra and Maaten,
2020].

4 Feedback Interpretation
Information gain has been used to select queries in active
HIL-ML systems in studies of individual interaction types,
such as when querying a teacher to critique a robot’s motion
[Cui and Niekum, 2018] or when querying a teacher to indi-
cate their preference over two proposed actions [Biyik et al.,
2020]. Recent work of Jeon et al. [2020] proposes a formu-
lation of information gain for finding the best feedback type
for reward learning, assuming optimal feedback. We build on
these studies and formulate information gain for measuring
the effect of interaction types on training data for HIL-ML
systems. Information gain represents the expected change in
the model’s information entropy (H) resulting from new in-
formation. In a HIL-ML context, this information consists of
the training data obtained from one interaction between the
teacher and agent. In the remainder of this section, we frame
this training data as resulting from a choice made by the hu-
man teacher in response to the agent’s query. Each interac-
tion type defines the ways in which the agent may query the
teacher for training data and, as a result, defines the number
and distribution of possible responses by the human teacher
to the agent’s query. We ground the problem of calculating
the information gain Φi for the optimal query of interaction
type i as follows:

Φi(ω, s) = max
q∈Qi(ω,s)

IG(ω,Ci(q)) (1)

= H(ω)− min
q∈Qi(ω,s)

E
c∈Ci(q)

[
H(ω|c)

]
(2)

where s is the state in which the query q occurs using inter-
action type i, and ω represents the random variable for model
weights/parameters. This formulation also relies on a func-
tion Q that produces a set of queries, and a function C that
produces a set of feedback choices, both of which we define
later. Here, the notion of state s can be generalized to any
input data, such as an image for a visual classification task.
In an active learning context, the agent may be able to select

the state that maximizes the information gain over ω from its
interaction, e.g. by selecting the most informative datapoint
to be labeled [Kapoor et al., 2007] or changing the behavior
of other agents in the environment [Sadigh et al., 2016]. Oth-
erwise, the state remains static, and the agent’s objective is
to select an action query that maximizes the information gain
over ω within that state.

Alternatively, information gain can be expressed as the ex-
pected Kullback–Leibler divergence of the prior distribution
from the posterior belief distribution over model weights:

Φi(ω, s) = max
q∈Qi(ω,s)

E
c∈Ci(q)

[
DKL(p(ω|c)||p(ω))

]
(3)

Both formulations introduce three key, interaction-specific
functions: Qi(ω, s), Ci(q), and H(ω|c) (used in Eqn. 2)
or DKL(p(ω|c)||p(ω)) (used in Eqn. 3). We describe these
functions and their relationship with interaction types in the
reminder of this section.

4.1 Query: Qi(ω, s)

A query q is a specific set of data that an agent requests feed-
back on during a single instance of an interaction. Qi(ω, s)
is then the set of all possibly queries that can be posed to the
teacher, given ω and s. In a showing interaction, the agent
queries the teacher for an example action, or series of actions
(trajectory). Therefore, there is only one possible query in the
set Qi(ω, s): the agent requests a demonstration from state s
without providing any additional information to the teacher.
In a sorting interaction, the agent’s query consists of some
n trajectories originating from state s (e.g., the teacher might
be asked to order n trajectories with respect to their effec-
tiveness). If we assume that there are k feasible trajectories
originating from state s, then |Qi(ω, s)| =

(
k
n

)
. In both cat-

egorizing and evaluating interactions, which differ on the
basis of their choice space and choice implications, an agent
queries the teacher for feedback on a proposed trajectory, and
so |Qi(ω, s)| = k.

4.2 Choice Space: Ci(q)

Once a query has been selected, the process for expanding
a query into a set of possible explicit and implicit choices
available to the teacher is also interaction-specific [Jeon et al.,
2020; Koppol et al., 2021]. For example, both a categorizing
and an evaluating interaction consist of querying the teacher
by proposing a series of actions (e.g. a motion trajectory for
a robot arm, or proposed labels for a set of object images).
However, the set of feedback choices available to the teacher
in response to an individual query varies by interaction. In the
categorizing interaction, the teacher may be presented with
a set of ±1 rating choices over the agent’s entire proposed
sequence of actions. In the evaluating interaction, however,
the teacher may observe the same sequence of actions but
provide feedback at a finer scale, such as ±1 ratings on seg-
ments of the agent’s manipulation trajectory rather than a sin-
gle rating over the full trajectory. An alternative evaluating
interaction may involve providing corrections instead of cri-
tiques, enabling the teacher to interrupt the agent’s actions in
real-time to provide alternative actions. That is, the teacher
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must choose whether to interrupt the agent’s action at each
time step, after which they must also choose what alternative
action the agent should take. Thus, teachers make more feed-
back choices in response to a single evaluation query than a
single categorizing query.

Overall, these examples illustrate the effect of interaction
type on the choice set available to the teacher. These effects
are apparent both across different interaction types (e.g., the
density of the feedback resulting from a categorizing interac-
tion versus an evaluating interaction), as well as within the
same interaction type (e.g., critiques and corrections are both
evaluating-type interactions, but result in different feedback
choices that are available to the teacher).

Furthermore, the likelihood of the choice set containing the
optimal choice is dependent on the quantity and quality of
that set. For interaction types that provide an infinite set of
query responses, such as a showing interaction, the teacher
may provide feedback from an infinite set of options. In eval-
uating interactions, the teacher is also provided an additional
option of whether to provide feedback or not. As a result of
the infinite quantity of choices, the optimal choice must be
contained within this set of options.

For interaction types that provide a finite set of query re-
sponses, such as sorting interactions, the quantity of choices
available to the teacher are limited, and so the training data
is dependent on the quality of the choices presented to the
teacher. The quality of a choice set may be defined by the in-
formativeness of each possible choice, estimated through an
information gain formulation [Biyik et al., 2020].

4.3 Choice Implications: H(ω|c) or
DKL(p(ω|c)||p(ω))

The implications of the teacher’s choice on the agent’s train-
ing data is also dependent on the interaction type. In an in-
formation gain context, this implication can be represented
as the conditional entropy over the model’s parameters given
the feedback that the teacher did and did not provide [Jeon et
al., 2020]. When leaning from showing interactions, such as
demonstrations, existing work in inverse reinforcement learn-
ing typically assumes that the teacher’s feedback represents
the optimal action that the agent should take and updates
the agent’s reward model accordingly [Abbeel and Ng, 2004;
Ramachandran and Amir, 2007]. The demonstrations may
also be used to learn a nonlinear cost function that represents
the dynamics of the demonstrated task [Finn et al., 2016].

In categorizing interactions, the teacher’s feedback may be
used to directly learn a regression model of the reward func-
tion that replicates their feedback (as shown by the TAMER
framework [Knox and Stone, 2009; Warnell et al., 2018]). By
training an action model separately from the reward model,
improvements in the action model may be used to guide the
agent’s queries to improve its reward model [Daniel et al.,
2014]. However, feedback does not always reflect the reward
of the agent’s state. Thomaz et al. [2006] show how catego-
rizing feedback not only reflects the teacher’s feedback on the
agent’s prior actions, but also feedback on their expectations
of the agent’s future behavior. As a result, a key challenge is
determining which states and/or state features correspond to
the teacher’s feedback [Knox and Stone, 2009]. Furthermore,

this feedback may correspond more closely to an “advantage
function” that reflects the advantage of choosing a particular
action in the agent’s current state, rather than the reward of
entering the state itself [Mnih et al., 2016].

In sorting interactions, the training implications of the
teacher’s choice is dependent on the other choices available
to them. A pairwise preference between two actions may be
interpreted as a loss function representing the margin between
the agent’s predicted preference over the two options (ac-
cording to its reward function) and the human’s actual pref-
erences [Christiano et al., 2017]. As a result, the objective
of the model is not necessarily to estimate an action’s reward
itself, but rather, to learn a reward function that preserves the
relative ranking of one action over another [Liu et al., 2017].
Learning from relative rankings has an added benefit: by re-
moving the assumption that either of the ranked options is
optimal, the model can learn a reward function that exceeds
the performance of the teacher [Brown et al., 2019]. Since
the strength of the teacher’s preference is unknown, it may be
beneficial to provide an option to indicate equal preference
between two options rather than force the teacher to indicate
a preference [Holladay et al., 2016].

In evaluating interactions, the teacher provides feedback
over a series of proposed or executed actions by the agent.
This feedback must be considered with respect to the ac-
tions before and after the teacher’s feedback. For example,
Celemin and Ruiz-del Solar [2019] presents a method for ap-
proximating the magnitude of the teacher’s binary feedback
based on the variability of that feedback over time. In cor-
rective interactions, the teacher’s feedback can be interpreted
as an alternate demonstration that results in higher reward or
performance than the agent’s originally proposed action. This
correction can be used to update the agent’s behavior in real-
time [Bajcsy et al., 2017] or interpreted as a singular sample
of the desired change in the agent’s model (reinforced through
additional corrections) [Fitzgerald et al., 2019].

Implicit and Explicit Information. While we have con-
sidered the training implications of the teacher’s explicit re-
sponses to the agent’s queries, the teacher may provide addi-
tional data that may be incorporated into the agent’s training
process. For example, they may also reveal additional, im-
plicit information via gestures [Breazeal et al., 2005], facial
expressions [Cui et al., 2020], gaze [Zhang et al., 2020], or
other social cues. The teacher’s lack of feedback in some
states may also provide implicit data, such as when ignoring
a web link or skipping a video [Bayer et al., 2017]. Inter-
preting a teacher’s silence as positive feedback may speed up
learning [Cederborg et al., 2015]; however, the direction and
magnitude of reward implied by a teacher’s silence is likely
to be domain-specific. Furthermore, higher-level information
about the task may be learned implicitly through multiple in-
teractions [Niekum et al., 2015]. Leveraging both implicit
and explicit information may result in increased informative-
ness of an interaction without asking of any additional effort
from the teacher.
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5 User Experience and Teaching Quality
In Section 2, we discussed how, in a HIL-ML setting, “human
performance” on a task equates to their teaching performance.
We now survey how interaction types influence human per-
formance, discuss metrics of the effects of interaction types
on human performance, and review how human performance
can influence training data.

5.1 Interactions Affect Human Performance
Different interaction types have been shown to differently in-
fluence human factors such as ease of use, cognitive load
[Koppol et al., 2021], and perception of the learner [Cakmak
and Thomaz, 2012]. However, no existing work has directly
studied the effects of these human factor differences on learn-
ing outcomes. We can consider these human factors as facets
of a human teacher’s mental model of an interaction, which
includes the teacher’s model of the learning agent (e.g. capa-
bility, performance) and their own perceived task as a teacher.
We subsequently summarize a few ways in which such a men-
tal model may affect human performance.

Passive vs Active Learner. Passive learning involves the
agent using a training set that is defined irrespective of its
learning status. Active learning enables the learner to query
for informative data points, thus improving its sample effi-
ciency [Settles, 2012]. The relationship between the learner
and the user varies dramatically depending on whether learn-
ing is passive or active [Cakmak et al., 2010] due to the co-
adaptive nature of active learning [Dudley and Kristensson,
2018], and also varies due to the type of queries posed during
active learning [Chao et al., 2010].

Offline vs Online Learner. The learning agent interact-
ing and querying the human teacher may update its model
during an interaction, and can update at different frequen-
cies, ranging from fully offline to fully online. An on-
line learner will collect a batch of data, update its model,
and demonstrate its improved performance before receiving
additional feedback. This provides the teacher with feed-
back on how well the agent is learning, and allows them
to change their teaching strategy by providing targeted data
according to the model state [Kronander and Billard, 2012;
Kulesza et al., 2015]. In contrast, an offline learner collects
a single training set and performs no model update during
the interaction, thus requiring less time and interaction effort
from the teacher.

Pedagogical vs Pragmatic Teaching. People have been
shown to demonstrate tasks differently if they know that a
learner is attempting to learn from them, as opposed to if they
are asked to complete it as efficiently as possible [Fisac et al.,
2020]. Pedagogical human teachers may intentionally take
sub-optimal actions in order to communicate more informa-
tion in a single query response [Ho et al., 2016].

Mental Model of the Agent’s Learning Status. In addi-
tion to having a mental model of their interaction with the
agent, the teacher may also have a mental model of the agent’s
learning status as well; that is, the agent’s current knowledge
and performance over the task. A teacher’s mental model

can affect various factors of their task performance includ-
ing planning, persistence, and satisfaction [Jih and Reeves,
1992]. As a result, it is important to consider how this men-
tal model may be affected by the agent’s performance and
the interaction between the teacher and agent. Hedlund et
al. [2021] found that agent performance can affect a teacher’s
mental model of both the agent and their own teaching capa-
bility. Krening and Feigh [2018] showed how teachers per-
ceived an agent trained using verbal demonstrations as being
more intelligent and better-performing than the one trained
through binary critiques. Furthermore, interactive learning
methods lent themselves to more accurate assessments of
agent capability as compared to passive, supervised learning
[Cakmak et al., 2010].

5.2 Indicators of Human Performance
While “ground-truth” for optimal human performance in
HIL-ML systems may not exist, there are measures that are
known to affect human performance. In particular, an in-
crease in workload has been correlated with a decrease in
task performance [Sweller, 1988; Prewett et al., 2010]. Work-
load can be measured both in subjective, self-reported mea-
sures and in objective task measures [Longo, 2018]. The
NASA-TLX survey [Hart and Staveland, 1988] has been
widely adopted in human factors research to measure subjec-
tive workload, and consists of several sub-metrics including
mental demand, physical demand, temporal demand, perfor-
mance, effort and frustration. The popular System Usability
Scale (SUS) is a validated survey that provides a subjective
measure of the usability of any given system, reflecting mea-
sures such as users’ ease and confidence when using a sys-
tem. A strong, positive association exists between task perfor-
mance and subjective satisfaction with an interface [Nielsen
and Levy, 1994]. Workload and usability have also been
found to be non-overlapping measures in an HCI task, which
suggests that combining them may provide a more accurate
prediction of objective task performance [Longo, 2018].

5.3 Direct Effects of Human Performance on
Training Data

In Section 3, we described how noisiness in the data, as well
as the quantity and distribution of collected data affect learn-
ing outcomes. We now address how human performance can
directly influence those factors.

Noise. We focus on noise introduced via human error (e.g.,
where a human teacher fails to provide the conventional
ground truth). For example, data collected from crowdwork-
ers can be low quality, as workers are incentivized to maxi-
mize their own earnings at the potential expense of provid-
ing thoughtful labels [Hsueh et al., 2009]. Noisiness can also
arise from human teachers without adversarial intentions, due
to factors such as the amount of precision afforded by a par-
ticular user interface [Aker et al., 2012].

Distribution. Collecting well-distributed data that captures
domain shifts is critical for robust models. The availability of
crowdworkers suggests the possibility of increased diversity
in dataset curation [Lease, 2011], and has already been shown
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to manifest in more efficient exploration and learning [Man-
dlekar et al., 2018]. The teaching interaction may be adapted
in response to poorly-distributed training data; for example,
tasking a teacher with finding a positive example in an un-
derrepresented region of the state space [Lin et al., 2018].
However, interaction mechanisms that are not designed to be
accessible and usable by a variety of individuals may result in
datasets that either eschew or result in low-accuracy feedback
from entire swaths of people [Vashistha et al., 2018].

Quantity. In HIL-ML systems, the interaction type being
leveraged can affect the rate of data collection, and ultimately
limit the amount of data collected. Demonstrations on physi-
cal robots, for example, can be difficult and time-consuming
to provide; simulated approaches with user-tested interfaces
can increase labeling throughput and lead to better learned
policies [Mandlekar et al., 2018; Kent et al., 2017].

6 Challenges and Open Questions
Benchmarks have played an important role in modern ad-
vances of machine learning through facilitating standard
datasets and environments for fair comparisons. Existing
HIL-ML benchmarks exist in the form of datasets or use ex-
pert models obtained from training reinforcement learning
algorithms, bypassing active interactions with human teach-
ers, and therefore do not provide a mechanism for comparing
across different interaction types. Developing novel methods
to efficiently evaluate HIL-ML systems with real/simulated
human inputs will be beneficial to the research community.

To systematically compare the effects of different interac-
tions types, it is important to have a standard measure for
teaching cost that applies to all of them. Rigter et al. [2020]
demonstrates how a robot may moderate its own autonomy
in a shared autonomy setting in order to minimize both in-
teraction and failure cost, but assumes a hand-coded measure
of both cost values. Teaching cost of an interactive learn-
ing algorithm has been measured primarily as the interaction
duration and/or subjective cognitive load [Racca et al., 2019;
Cui et al., 2019; Jauhri et al., 2020]. However, interaction du-
ration alone does not capture all the aspects of teaching cost,
and subjective measures of cognitive load tend to have huge
variance across people. Recent work of Bıyık et al. [2020]
proposes to measure teaching cost of a single comparison
query as a function of interaction duration, complexity of the
question, and similarity to past queries. A unified set of met-
rics for evaluating teaching cost across different interaction
types is needed.

Modeling human behaviors in HIL-ML systems is not
only important for interpreting collected data but also cru-
cial for analyzing the effects of different interaction types on
learning outcomes. Despite rich evidence in psychology re-
search that humans are not rational decision makers [Arkes
and Ayton, 1999; Hewig et al., 2011], many existing meth-
ods have been assuming rational or noisily rational human
teachers and the same human teacher model has been em-
ployed by various algorithms that learn from different inter-
action types [Sadigh et al., 2017; Jeon et al., 2020]. With
different systematic biases known to exist in human deci-
sion making [Shah et al., 2019] and known behavior differ-

ences under different settings (such as pedagogical vs prag-
matic), it is important to understand how these factors in-
teract with the design of interaction types. At the same
time, crowdsourcing has become a promising way of ac-
quiring large-scale human annotated data [Vaughan, 2017;
Osentoski et al., 2010]. Designing learning systems that will
interact with many different users and collect data from them
brings additional challenges for modeling teaching behaviors.

Given the complex relationship between interaction types
and training data, there may not be a single best interaction
type to use for a particular task. The optimal solution may
arise from combining different types of interaction types.
Work of Ibarz et al. [2018] and Palan et al. [2019] lever-
age multiple types of interaction. Bullard et al. [2018] ar-
bitrates between showing and categorizing. The work of Jeon
et al. [2020] proposes a way to optimize for interaction types
for reward learning from the information gain perspective but
does not take human performance into account.

Understanding how social biases [Fiske, 2016] can be in-
troduced during data collection has been identified as an in-
creasingly important component of building fair and respon-
sible ML models [Liu et al., 2018; Drozdowski et al., 2020].
Our proposed relationship graph identifies two pathways by
which interaction types can influence training data, and may
provide a new perspective on sources of bias in HIL-ML sys-
tem development.

In summary, we have surveyed existing literature on in-
teraction types, established a relationship graph outlining and
justifying effects of interaction types on learning outcomes,
and presented a unifying representation of the training data
implications of these interaction types. We anticipate that this
comprehensive overview of the role of interaction types in
HIL-ML systems will support future research that leverages,
compares, or constructs interactions for learning.
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[Hänsch and Hellwich, 2019] Ronny Hänsch and Olaf Hellwich.
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