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Abstract
Bayesian nonparametric space partition (BNSP)
models provide a variety of strategies for partition-
ing aD-dimensional space into a set of blocks, such
that the data within the same block share certain
kinds of homogeneity. BNSP models are applicable
to many areas, including regression/classification
trees, random feature construction, and relational
modelling. This survey provides the first compre-
hensive review of this subject. We explore the
current progress of BNSP research through three
perspectives: (1) Partition strategies, where we
review the various techniques for generating par-
titions and discuss their theoretical foundation –
self-consistency; (2) Applications, where we de-
tail the current mainstream usages of BNSP models
and identify some potential future applications; and
(3) Challenges, where we discuss current unsolved
problems and possible avenues for future research.

1 Introduction
Describing and understanding implicit and complex relation-
ships between different features (covariates) in a dataset is
typically a key modelling component of many advanced sta-
tistical and machine learning methods. Among these ap-
proaches, Bayesian Nonparametric Space Partition (BNSP)
models provide a flexible and geometrically interpretable way
to describe these relationships. The main idea underlying
BNSP models is to divide a D-dimensional (D ≥ 2) space
into a number of ‘blocks’, using a specified partition strategy,
where the blocks are chosen such that the datapoints within
each block exhibit certain types of homogeneity. The res-
olution of the partition can be arbitrarily fine (i.e. an arbi-
trary number of blocks in the space), perhaps as a function of
the number of datapoints and the complexity of the relation-
ship between the features, resulting in a flexible and adap-
tive nonparametric model able to describe complex data well.
Throughout, we define the random BNSP object, �, as a set
of blocks, � = {�k}k∈N

+

, where �k denotes the k-th block
in the space. The space itself is commonly specified as [0, 1]D

with the observed data being rescaled to this domain.
As an illustration, consider the application of regression

trees to credit risk assessment: the data {(xxxn, yn)}Nn=1 are ob-

served on N individuals, where xxxn denotes individual n’s at-
tributes (e.g. age, monthly expense, monthly income) and yn
her credit risk score. In this setting, one block�k may be con-
structed as: [20, 25] years old × [$2000, $3000] monthly ex-
pense × [$4000, $4500] monthly income. We have xxxn ∈ �k

if the n-th person belongs to the k-th block �k. Individuals
located in block �k are assumed to share similar behaviours
in their risk scores.

To construct regression trees based on BNSP models, an
intensity variable ωk is usually associated with each block
�k, such that �k contributes an impact with intensity ωk to
the labels yn of all xxxn ∈ �k. If we use a Gaussian distribu-
tion to describe the credit risk for individual n, the generative
process could be written as:

(1) {�k}k ∼ BNSP([0, 1]D,−)

(2) {ωk}k ∼ N (0, δ2)

(3) yn ∼ N
(∑

k

ωk · 111xxx∈�k
(xxxn), σ2

)
where 111xxx∈�k

(xxxn) = 1 if xxxn ∈ �k; otherwise 111xxx∈�k
(xxxn) =

0. Step (1) generates the blocks from a BNSP model (with ad-
ditional parameters denoted by ‘−’) on the space spanned by
the (rescaled) feature data {xxxn}Nn=1. This step is the primary
research focus for BNSP models – the investigation of effi-
cient ways to generate meaningful blocks in the space. Step
(2) generates the intensity values {ωk}k for all blocks from
a common Gaussian distribution. Step (3) generates the la-
bel data from a Gaussian distribution, with mean given by
the sum of intensities of all blocks covering xxxn, and with er-
ror variance σ2. Through posterior inference on these random
variables (e.g., the blocks {�k}k, intensities {ωk}k, and error
variance σ2), which is typically implemented using Markov
chain Monte Carlo (MCMC) methods, insightful structural
information can be uncovered.

With different settings of the likelihood function for the
label data, regression trees can be built for either regression
or classification tasks. E.g., the Bernoulli distribution can be
used as the likelihood function, with probability given by the
logistic transform of the sum of intensities. Similarly a cate-
gorical distribution can be used, with the probability given by
a multinomial logistic transform of the sum of intensities.

In contrast to the Dirichlet process [Ferguson, 1973] and
its explicit view, the stick-breaking process [Sethuraman,
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1994], which are often applied only in one-dimensional-
space problem settings, BNSP models are typically imple-
mented in multi-dimensional spaces. For particular defini-
tions of the space and modelling objectives, BNSP mod-
els have been successfully implemented in many real-world
applications. For example, when the space is spanned by
data features and the modelling objective is the labels at-
tached to those features, BNSP models can be applied to
regression/classification trees [Chipman et al., 2010; Lak-
shminarayanan et al., 2014] and online learning [Laksh-
minarayanan et al., 2014; Lakshminarayanan et al., 2016;
Mourtada et al., 2017; Fan et al., 2020]; when the space
is spanned by the communities in a social network and the
modelling objective is the linkages between the nodes in
the network, BNSP models can be implemented in rela-
tional modelling [Kemp et al., 2006; Roy and Teh, 2009;
Nakano et al., 2014a] and community detection [Nowicki and
Snijders, 2001]. Other examples of applications include ran-
dom feature construction [Balog et al., 2016], voice recogni-
tion [Nakano et al., 2014b], co-clustering [Wang et al., 2011],
and matrix permutation approximation [Kuck et al., 2019].
Some potential application areas of BNSP models are spatial-
temporal modelling, and image detection and segmentation.

In this survey, we will explore the following aspects of
BNSP models: (1) Partition strategies, where we first in-
troduce an important property in defining the model – self-
consistency – and then review the various strategies that
have been developed for generating the partitions in the
space. These include regular-grid partitions, hierarchical
partitions (axis-aligned cuts), hierarchical partitions (sloped
cuts), floorplan partitions, and rectangular bounding parti-
tions. We also summarise and contrast the characteristics of
each approach as no single strategy will dominate the others
in all cases; (2) Applications, where we demonstrate how to
apply BNSP models to the real-world studies of online learn-
ing, random feature construction and relational modelling; (3)
Challenges, where we discuss the current challenges in BNSP
research and avenues for future work, including scalable in-
ference methods, partition flexibility, posterior concentration
analysis and analysis of deep neural networks.

2 Partition Strategies
The partition strategies for BNSP models can be divided into
five categories. Illustrations of particular implementations of
these in 2-dimensional space are shown in Figure 2. A critical
aspect underpinning BNSP processes is the concept of self-
consistency of the process. We review this below.

Self-consistency: The main idea behind self-consistency is
to ensure that the probability of any partition remains invari-
ant under the expansion or shrinkage of the space.

More formally, suppose we have a partition �Y of a space
Y ∈ F(RD), generated from a BNSP process, where F(RD)
denotes the set of all finite rectangular boxes in RD. When re-
stricting the BNSP process to a sub-space X , where X ⊂ Y ,
the resulting partition of �Y restricted to X should be dis-
tributed as if it were generated via the BNSP process work-
ing on X directly. Figure 1 illustrates the self-consistency of
the Rectangular Bounding Process (RBP) [Fan et al., 2018b],

𝑃( ) = 𝑃( ) + 𝑃( ) + ⋯

Space expansion

Space restriction

Figure 1: Illustration of self-consistency of the Rectangular Bound-
ing Process (RBP). The solid black boxes denote 2-dimensional
spaces; the red boxes denote different blocks generated by the RBP.
The lhs of the equality denotes the probability of an RBP partition
in a smaller space X ⊂ Y , and the rhs shows the probabilities of an
infinite number of possible partitions expanded to a larger space Y
from X (i.e. the lhs probability is obtained by marginalizing out all
possible partitions in the expanded region Y/X).

which will be reviewed in detail below (Section 2.5). A
BNSP process is defined to be self-consistent if and only if
the probability of a partition on X equals to the sum of prob-
abilities of all possible partitions on Y extended from the
partition on X . Mathematically, this can be represented as
PY
�

(
π−1Y,X(�X)

)
= PX

� (�X), where πY,X denotes the re-
striction operator from Y to X . For continuous spaces, the
number of possible extensions is usually uncountably infinite.

The self-consistency property ensures that the partition of
a smaller space can be safely extended to larger spaces. On-
line learning is a typical scenario in which self-consistency
is essential. When new data points are observed outside the
range of the current data (i.e the minimum bounding box of
all existing data points, X), the BNSP sample can immedi-
ately be extended to include these new data points within
a new bounding box (Y ). Further, if we make use of the
Kolmogorov Extension theorem [Oksendal, 2013], the self-
consistency property then allows BNSP models to define par-
titions in the infinite multi-dimensional space.

We now explore the various partition strategies, where the
order is approximately in terms of the proposed times and
model complexities of these strategies.

2.1 Regular-Grid Partitions
Grid-style BNSP models use one-dimensional partitions on
each univariate dimension to construct a regular-grid on the
full dimensional space. Regular-grid partitions extend triv-
ially from one-dimensional partitions (e.g. the stick-breaking
process), and are a historically earlier and simpler instance of
BNSP models. For a D-dimensional space, the model is con-
structed using D independent stick-breaking processes, each
designated as a partition of one dimension. The orthogonal
crossover of the partition on these dimensions (Figure 2(a))
produces regular-grid blocks in the full-dimensional space.
Due to the self-consistency of the stick-breaking process in
each dimension separately, the resulting regular-grid partition
is also self-consistent.

The regular-grid partition is an over-simplified partition
strategy, as its construction ignores any dependency between
dimensions and generates partitions over each dimension in-
dependently. Accordingly, this approach is very likely to gen-
erate trivial and unneeded blocks in data-sparse regions. Cur-
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(a) Regular-Grid Partition (b) Hierarchical Partition
(Axis-Aligned Cuts)

(c) Hierarchical Partition
(Sloped Cuts)

(e) Rectangular Bounding 
Partition

(d) Floorplan Partition

Figure 2: Visualisation of five typical BNSP partition strategies in a 2-dimensional space.

rently, this approach is mainly applied in relational modelling
in 2-dimensional space. A specific implementation is the In-
finite Relational Model (IRM) [Kemp et al., 2006], which
is an infinite-state variant of the Stochastic Block Model
(SBM) [Nowicki and Snijders, 2001]. Other models in this
category include dynamic IRMs [Ishiguro et al., 2010] for
modelling dynamic relational data, and multi-membership re-
lational modelling [Schmidt and Mørup, 2013].

2.2 Hierarchical Partitions (Axis-Aligned Cuts)
Hierarchical partitions follow a top-down strategy to recur-
sively cut an existing block into two new blocks. In this way,
the blocks are organized in a binary tree. The Mondrian pro-
cess (MP) [Roy and Teh, 2009] is the representative construc-
tion of hierarchical partitions. In general, the MP recursively
generates axis-aligned cuts on a unit hypercube [0, 1]D, and
divides the space in a hierarchical fashion known as kd-tree
(Figure 2(b)). The kd-tree construction process is regulated
by attaching an exponentially distributed cost to each axis-
aligned cut. The process is then terminated when the accu-
mulated sum of the costs exceeds a provided budget value.
Because the MP can partially consider inter-dimensional de-
pendency, it can produce fewer trivial blocks than regular-
grid partitions. The MP retains the self-consistency property
by carefully modelling the relationship between the cut cost
and the generation of axis-aligned cuts.

2.3 Hierarchical Partitions (Sloped Cuts)
In comparison to the axis-aligned cuts, a related group of tree-
structured hierarchical partition models consider sloped (non-
axis-aligned) cuts for cutting a space (Figure 2(c)). BNSP
processes adopting this strategy include the Ostomachion
process [Fan et al., 2016], the Binary Space Partition-Tree
(BSP-Tree) process [Fan et al., 2018a] and Random Tessella-
tion Forests (RTF) [Ge et al., 2019]. In contrast to the axis-
aligned partitions of the MP, the BSP-Tree process accounts
for inter-dimensional dependency by generating sloped cuts,
and thereby forming convex polygon-shaped blocks in a 2-
dimensional space. Binary Space Partition Forests [Fan et al.,
2019] extend the mechanism of producing sloped cuts from 2-
dimensional spaces to D-dimensional spaces (D ≥ 2). This
results in the production of convex-polyhedron blocks, with
the restriction that the cutting hyperplane is parallel to D− 2
dimensions.

Similarly, RTF are constructed by generating arbitrary
sloped cutting hyperplanes in a D-dimensional space. These
sloped cuts permit a greater focus on describing the multi-
dimensional dependence; as a result, the model has the poten-
tial to produce partitions more efficiently in the space. Recent

work is able to efficiently generalise cut directions using the
iteration stable (STIT) tessellations technique [O’Reilly and
Tran, 2020].

2.4 Floorplan Partitions
It is noted that the regular-grid partitions and hierarchical par-
titions (axis-aligned cuts) are limited to support a subset of
floorplan partitions (e.g., they cannot form Figure 2(d)). Bax-
ter Permutation Partitions (BPPs) [Nakano et al., 2020] were
recently proposed to produce arbitrary floorplan partitions on
a continuous space (Figure 2(d)). The BPP first uses the one-
to-one correspondence between Baxter permutations [Dulucq
and Guibert, 1998] and floorplan partitions to generate floor-
plan partitions on 2-dimensional arrays. This is then com-
bined with the block-breaking process – a multi-dimensional
extension of the stick-breaking process [Sethuraman, 1994]
– to produce a discrete-time Markov process over the set of
floorplan partitions on a continuous space. By getting rid of
the restriction of a regular-grid or hierarchical structure, the
BPPs are able to produce a variety of partition structures. The
BPP is self-consistent and has been successfully applied in
relational modelling tasks.

A discrete space alternative is the Rectangular Tiling Pro-
cess (RTP) [Nakano et al., 2014a], which produces a floor-
plan partition structure on a 2-dimensional array. It typi-
cally uses the geometric distribution to generate the length
of each block, with the constraint that the length does not vi-
olate the rectangular restriction of existing blocks. It is also
self-consistent due to the memoryless property of the geo-
metric distribution. However, its generative process is quite
complicated for practical usage and the domain of discrete
array in RTP restricts it being used in e.g. relational mod-
elling applications only. In contrast, the partition strategies
discussed above can be applied to both continuous space and
multi-dimensional arrays (with trivial modifications).

2.5 Rectangular Bounding Partitions
In direct contrast to the cutting-based strategies (including
regular-grid partitions, hierarchical partitions and floorplan
partitions), the Rectangular Bounding Process (RBP) [Fan et
al., 2018b] uses a bounding strategy to partition the space. By
independently constructing rectangular bounding boxes in the
space, the RBP can cover and concentrate on significant re-
gions and avoid data sparse regions (Figure 2(e)). The RBP
requires a budget parameter τ to control the number of bound-
ing boxes, and a length parameter λ to control the size and
location of the bounding boxes. The probability that any data
point occupies a box is the same. The RBP is self-consistent,
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and can generate more bounding boxes given a larger budget
or a larger space.

The biggest advantage of the RBP is the parsimonious par-
tition of a space. Real data points are typically not evenly
distributed over the entire space, but clusters in local re-
gions. The cutting-based strategies, such as regular-grid and
hierarchical partitions, inevitably produce too many cuts for
sparse regions with few data points while trying to fit data
in the dense regions. Recall the credit risk modelling prob-
lem, where two dimensions of the feature space are ‘age’ and
‘salary’. Traditional cutting-based models may inevitably cut
the regions of young age and very high salary even if there are
very few people in those regions, simply by placing cuts in
other areas of the space. In contrast, the RBP can place more
bounding boxes in the most important regions, and fewer in
data-sparse and noisy regions. As a result, the RBP is able to
balance the fitness and parsimony of the partition.

2.6 Non-Self-Consistent Partitions
There are a number of space partition models that do not
have the self-consistency property, which implies that their
applicability is limited. Bayesian plaid models [Caldas and
Kaski, 2008] generate ‘plaid’-like (discrete) partitions on a 2-
dimensional array. Usually, the plaids are generated through
the Beta-Bernoulli process, or the Indian Buffet Process (IBP)
for an infinite number of plaids. The plaid models can pro-
duce bounding boxes similar to the continuous-space RBP,
although the plaid models are restricted to discrete spaces.
Each block is formed through individual row and column per-
mutations. Plaid models are not self-consistent.

Similarly, Matrix Tile Analysis (MTA) models [Givoni et
al., 2006] are constructed on a 2-dimensional array, although
it is a non-Bayesian method. MTA generates rectangular
boxes on discrete arrays with the constraint that the boxes
cannot be overlapped. Due to its non-Bayesian nature, the
self-consistency property is not applicable to it.

The Bayesian Additive Regression Trees (BART) [Chip-
man et al., 2010] is a space-partition model using the hier-
archical partition strategy, but without the self-consistency
property. In general, BARTs assign uniform distributions to
the cutting positions and use the Bernoulli distribution to reg-
ulate the tree depth. As the parameter in the Bernoulli distri-
bution is inversely related to the depth of the node in the tree,
deeper nodes have a lower probability of being split.

2.7 Comparison
Table 1 summarises the similarities and differences of the re-
viewed space-partition models, in terms of: whether it pos-
sesses self-consistency, whether it is applicable to continuous
or discrete spaces, the number of dimensions D in which it
can be applied, the available inference methods, whether it
can account for inter-dimensional dependency, and suitable
applications. Apparently, there is not one single model that
can dominate others in all modelling aspects, so in practice it
is important to select the most appropriate model.

Most of the inference algorithms for BNSP models are
based on Markov chain Monte Carlo (MCMC) methods. In
particular, Gibbs samplers are used for the regular-grid par-
tition models, Bayesian plaid models and BARTs, as conju-

gacy between the prior and posterior distributions is satisfied
by each latent variable. The Reversible-Jump MCMC (RJ-
MCMC) and Particle Gibbs (PG) algorithms are required for
the hierarchical partition-based models, due to the tree struc-
tures of their latent variables. The Metropolis-Hastings (M-
H) algorithm is used for the RTP, BPP and RBP models, due
to the specially designed distributions of their latent variables.
The Iterative Condition Modes (ICM) method [Givoni et al.,
2006] is used for the non-Bayesian MTA model.

3 Applications
In addition to regression trees (with static data), BNSP con-
structions can be applied to other modelling scenarios. In the
following we review three of them: online learning, random
feature construction, and relational modelling.

3.1 Online Learning
Some BNSP processes can be extended beyond regression-
tree modelling for static datasets, to the online learning set-
ting [Lakshminarayanan et al., 2014; Lakshminarayanan et
al., 2016; Mourtada et al., 2017; Fan et al., 2020]. Suppose
we observe a set of N labelled data points {(xxxn, yn)}Nn=1 ∈
RD×R which arrive over time, with yn as the corresponding
label of xxxn. When a new data point arrives, it is incorporated
into the analysis, and the BNSP structure is updated accord-
ingly without refitting the model using the full dataset.

The online learning application of BNSP processes fol-
lows the same spirit as online random forest-type al-
gorithms [Breiman, 2000], which assume that the tree-
structured model is generated independently of the data la-
bels. The Mondrian Forest (MF) [Lakshminarayanan et al.,
2014; Lakshminarayanan et al., 2016] is the first model to
apply BNSP processes to the online learning setting. It uses
the Mondrian process [Roy and Teh, 2009] to place a proba-
bility distribution over all kd-tree partitions of the space. To
regularize the MF to be universally consistent (which ensures
the prediction error converges to the Bayes error), the bud-
get parameter is increased with the amount of data [Mourtada
et al., 2017], and so the model can achieve the minimax rate
in a multi-dimensional space for single decision trees. [Mour-
tada et al., 2018] shows the advantage of forest-based settings
through improved convergence results. The Online Binary
Space Partition Forest [Fan et al., 2020] similarly extends the
BSP-Tree to the online learning setting, randomly generating
sloped hyperplanes to cut the feature space.

3.2 Random Feature Construction
The generative process of BNSP models can support the con-
struction of random features to approximate kernels [Rahimi
and Recht, 2008]. Given N data points and K generated
blocks, a binary random feature matrix ΦΦΦ ∈ {0, 1}N×K can
be used to record the box coverage status for the data points,
where the (n, k)-th entry indicates whether the n-th data point
is covered by the k-th block. The random features ΦΦΦn for each
data point can replace the observed feature vector xxxn, and be
used to approximate certain kinds of kernel.

The Mondrian Kernel (MK) [Balog et al., 2016] is the first
model to implement the random feature construction based
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Models Self-consistency Continuous D Inference IDD Applications
Regular-grid X X 2 Gibbs × RM

MP X X ≥ 2 RJ-MCMC & PG X RM & RT & RFC
BSP X X ≥ 2 RJ-MCMC & PG X RM & RT
RTF X X ≥ 2 SMC X RT
BPP X X 2 M-H X RM
RBP X X ≥ 2 M-H × RM & RT
Plaid × × 2 Gibbs × RM
MTA × × 2 ICM × RM
BART × X ≥ 2 Gibbs × RT

Table 1: Comparison of various space-partition strategies (IDD: Inter-Dimensional Dependency; RM: Relational Modelling; RT: Regression
Trees; RFC: Random Feature Construction; PG: Particle Gibbs; ICM: Iterative Conditional Modes).
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Figure 3: Relational modelling using BNSP models. The relation intensity of any pair of coordinates can be mapped to a unit interval using
a graphon function (denoted by g1, . . . , g4). From left to right: regular-grid partitions; hierarchical partition (axis-aligned cuts); floorplan
partitions, and rectangular bounding partitions. The darker color of the point (u(1)

i , u
(2)
j ) corresponds to a higher intensity in the interval,

which means that there is a higher probability to generate a link between u
(1)
i and u

(2)
j .

on BNSP models. In particular, the MK generates a set of
M Mondrian process partitions on the feature space and in-
corporates all M partitions into one random feature matrix
Φ̄ΦΦ ∈ {0, 1}N×(MK). As a result, the product Φ̄ΦΦnΦ̄ΦΦ

>
n′ rep-

resents the count of blocks covering both the n-th and n′-th
data points. [Balog et al., 2016] shows that both the expecta-
tion of Φ̄ΦΦΦ̄ΦΦ

>, and the case of Φ̄ΦΦΦ̄ΦΦ
> as M → ∞ results in the

Laplace kernel. [O’Reilly and Tran, 2020] extends the axis-
aligned cuts in the Mondrian process to arbitrary directions,
and characterise all possible kernels (including the radial ba-
sis function kernel and the Laplace kernel) that the hierarchi-
cal partitions can approximate.

3.3 Relational Modelling for Link Prediction
Each data point in relational modelling represents the linkage
information of entities, with the value of the link (e.g. Rij

between individuals i and j) as the label. Each entity is as-
sociated with one latent covariate (e.g. an a priori uniformly
distributed variable ui for individual i). The feature infor-
mation for Rij is then the pair of random variables (ui, uj).
The blocks then define community-by-community interac-
tions, and the links located in the same block follow the same
Bernoulli distribution.

For relational modelling, the observed linkage data RRR =
[Rij ] is regarded as the label data, which is usually pre-
sented as a symmetric (undirected) or asymmetric (directed)
matrix RRR ∈ {0, 1}N×N , with Rij = 1 indicating that en-
tity i interacts with entity j, otherwise Rij = 0. Since RRR
represents pairwise linkage relations, the space of this appli-
cation is spanned by two community distributions, and en-

coded as a unit square [0, 1]2. The model generates pseudo
attributes u(1)i , u

(2)
i , and for each link Rij , concatenates them

as [u
(1)
i , u

(1)
j ]> for entities i and j as pseudo features. The

corresponding generative process is expressed as:

(1) {�k}k ∼ BNSP([0, 1]2,−);

(2) {ωk}k ∼ Beta(−);

(3) {u(1)i , u
(2)
i }i ∼ Uniform[0, 1];

(4) Rij ∼ Bernoulli(ω
k:(u

(1)
i ,u

(2)
j )∈�k

).

where {�k}k represents meaningful community-by-
community interaction groups, and the intensity ωk denotes
the influence contributing to the links belonging to �k.

There are various extensions to the above basic generative
process. In the case of overlapping blocks [Fan et al., 2018b],
the intensity can be assumed to follow a normal distribution.
Positive (negative) intensity would then promote (suppress)
links located in the corresponding block. In the case of cate-
gorical or real-valued links, different types of likelihood func-
tions can be adopted. E.g., a Gamma distribution likelihood
can be used to model non-negative real-valued links.

Connection to graphons: Relational modelling applica-
tions are closely related to the graphon (graph function) lit-
erature [Orbanz and Roy, 2015]. Given the exchangeable
relational data for relational modelling, the Aldous–Hoover
theorem [Aldous, 1981] provides the theoretical foundation
to model exchangeable multi-dimensional arrays conditioned
on a stochastic partition model. A random 2-dimensional ar-
ray is separately exchangeable if its distribution is invariant
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under separate permutations of rows and columns. Specifi-
cally, the theorem states that:

Theorem 1. [Orbanz and Roy, 2015] A random array (Rij)
is separately exchangeable if and only if it can be represented
as follows: there exists a random measurable function F :

[0, 1]3 7→ X such that (Rij)
d
=
(
F (u

(1)
i , u

(2)
j , νij)

)
, where

{u(1)i }i, {u
(2)
j }j and {νij}i,j are two sequences and an array

of i.i.d. uniform random variables in [0, 1], respectively.

Many of the BNSP models comply with this theorem, with
specific forms of mapping function F . For instance, as illus-
trated in Figure 3, given the uniformly distributed node co-
ordinates (u

(1)
i , u

(2)
j ), the regular-grid partition is related to a

regular-grid graphon; the hierarchical partitions (axis-aligned
cuts) is related to a kd-tree structured graphons; and the RBP
is related to a box-wise constant graphon. All these graphons
are piece-wise constant in [0, 1]2.

4 Challenges
While BNSP models have developed into highly flexible
models that have demonstrated outstanding successes in a
number of useful applications, there are still a number of open
research questions and remaining challenges.

4.1 Scalable Inference Methods
To the best of our knowledge, most inference methods for
BNSP models rely on MCMC simulation (see Table 1).
Since MCMC methods often result in long computational
times and require convergence assessment, alternative scal-
able inference methods are necessary to deal with larger-scale
data problems. Variational methods, in particular the popu-
lar variational auto-encoder methods [Kingma and Welling,
2013], are promising solutions as they produce optimization-
based (rather than simulation-based) posterior approxima-
tions. However, there has been little progress in developing
variational inference methods for BNSP models, with the ex-
ception of the regular-grid partition. One possible reason for
this might be the complexity of the partition structure, such
as the tree structure in a hierarchical partition.

Among hierarchical partition models, the BNSP strategy of
using sloped cuts for partitions seems to be more effective and
flexible than the axis-aligned cutting strategy. However, the
improvement of modelling capability comes at the price of
increased computational cost. The cost of current sloped-cut
models scales at least quadratically with the number of di-
mensions of the space, whereas the cost of axis-aligned mod-
els often scales linearly with the number of dimensions. Effi-
cient ways of circumventing computational complexity, while
retaining self-consistency, is an interesting challenge.

4.2 Flexibility of Partitions
Dependent BNSP partitions: Currently, BNSP models
generate space partitions independently of other partitions.
One potential for improvement could be to allow for depen-
dence between different partitions, and accordingly extend
the application of BNSP models to a greater range of data for-
mats, such as dynamic data, in which data have dependence

across different time points, cross-domain data, in which
data may contain dependencies across different domains, and
multi-view data, in which data have dependencies through
different descriptions. However, such extensions would be
nontrivial, as it would be easy to violate self-consistency. In-
novative approaches may be needed to incorporate partition
dependence while simultaneously retaining self-consistency.

Convex-polygon bounding blocks: In the bounding box-
based strategy, it is assumed that the partition is constructed
independently in all dimensions, such that rectangular bound-
ing boxes are produced. In practice, the most efficient shape
of a block might be a convex or even an irregular polygon. For
example, in credit risk modelling (with expense and salary),
one high risk block might be formed by a sloped cutting line
of expense ≥ salary. In this problem, the challenge is to de-
fine the convex polygon while retaining self-consistency.

4.3 Posterior Concentration Analysis
The importance of posterior concentration behavior in the
Bayesian generative process has been repeatedly emphasised
in the literature. Currently, [Rocková and van der Pas, 2017]
has developed a series of posterior concentration results for
BARTs, based on the work of [Ghosal et al., 2007]. No such
results exist for other BNSP models. It would be interesting to
see how posterior concentration analysis could be integrated
into the hierarchical partition or even rectangular bounding
partition BNSP models.

4.4 Analysis of Deep Neural Networks
Recent work [Balestriero and Baraniuk, 2018; Balestriero et
al., 2019] explores the possibility of using a Power-Diagram
partition – a generalisation of a Voronoi tiling partition – to
analyse the piecewise-affine activation functions between the
layers of a Deep Neural Network (DNN). However, this work
is restricted to analysing piecewise-affine activation functions
and is unable to be applied to general DNN architecture
with non-linear activation functions. Exploring these ideas
with more flexible and advanced partitioning structures could
bring great insights and new ideas to DNN research.

5 Conclusions
In this brief survey, we provide a first review on Bayesian
Nonparametric Space Partition (BNSP) models, through
studying five typical BNSP strategies, introducing current ap-
plications of BNSP models, and discussing current challenges
of BNSP models.
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