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Abstract
Visual Place Recognition (VPR) is often charac-
terized as being able to recognize the same place
despite significant changes in appearance and view-
point. VPR is a key component of Spatial Artificial
Intelligence, enabling robotic platforms and intel-
ligent augmentation platforms such as augmented
reality devices to perceive and understand the phys-
ical world. In this paper, we observe that there are
three “drivers” that impose requirements on spa-
tially intelligent agents and thus VPR systems: 1)
the particular agent including its sensors and com-
putational resources, 2) the operating environment
of this agent, and 3) the specific task that the artifi-
cial agent carries out. In this paper, we characterize
and survey key works in the VPR area considering
those drivers, including their place representation
and place matching choices. We also provide a new
definition of VPR based on the visual overlap – akin
to spatial view cells in the brain – that enables us
to find similarities and differences to other research
areas in the robotics and computer vision fields. We
identify several open challenges and suggest areas
that require more in-depth attention in future works.

1 Introduction
Visual Place Recognition (VPR) is a rapidly growing topic:
Google Scholar lists over 2300 papers matching this exact
term, with 1600 of them published since the pivotal survey
paper by Lowry et al. in 2016. While exhaustive surveys of
works on VPR are given elsewhere [Lowry et al., 2016; Zhang
et al., 2020; Masone and Caputo, 2021], our goal here is to lay
a concrete understanding of VPR as a research problem. VPR
capability is based on the fundamental ability to aptly represent
incoming information and associate the incoming information
with previously stored information. This is required for an
embodied or augmented agent to intelligently understand the
operating environment, to navigate within it and interact with
it, thus evolving Simultaneous Localization And Mapping
(SLAM) into Spatial AI [Davison, 2018]1. We argue that
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1SLAM is the problem of incrementally estimating the envi-

ronment’s structure while simultaneously tracking the robot’s pose
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Figure 1: Visual Place Recognition (VPR) is the ability to recognize
one’s location based on reference and query observations perceived
from overlapping field-of-views. This figure illustrates the main
sections of this paper and how they interrelate.

research on VPR has increasingly become more dissociated:
there is no standard definition of a ‘place’ and comparison
of methods is challenging as benchmark datasets and metrics
vary substantially.

In light of the dissociation and while retaining the accessi-
bility of a compact treatment, we discuss VPR with regards to
its definition (Section 2), how it closely relates to other areas
of research (Section 3), what the key drivers of VPR research
are (Section 4), how to evaluate VPR solutions (Section 5),
and what key research problems still remain unsolved (Sec-
tion 6). Figure 1 illustrates the outline of our paper and shows
how the various sections are interrelated.

2 What is Visual Place Recognition?
Lowry et al. state that VPR addresses the question of “given an
image of a place, can a human, animal, or robot decide whether
or not this image is of a place it has already seen?” [Lowry
et al., 2016]. One can easily see that such a capability is of

within the environment. Traditionally SLAM’s purpose was purely
navigation, while the inclusion of semantics moved SLAM towards
Spatial AI, whose aim is intelligent goal-driven interaction of the
robot with the environment and other agents [Cadena et al., 2016].
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Figure 2: Two observations of the same place were previously considered matching if the physical distance between the observations was
below a threshold. This meant that a VPR algorithm potentially needed to match two images that did not have any visual overlap because of a
large orientation offset (left example). This definition was in line with place cells, which fire regardless of the orientation an animal is facing
(left inset). We instead suggest that two observations should be matched based on their visual overlap – i.e. the left example would not be
considered the same place, while the right example observations would be, despite the large physical distance between the locations (right).
This is in line with spatial view cells, which fire whenever an animal gazes at a certain area (right inset).

crucial importance in tasks like localization and navigation,
which in turn become ever more important with the advent of
artificial intelligence (AI) in autonomous cars, mobile robots
that interact with humans, and intelligent augmentation plat-
forms such as the HoloLens 2. Inspiration for VPR is often
drawn from the animal kingdom, given the remarkable local-
ization and navigation capabilities of even “simple” animals,
and the relatively well understood underlying mechanisms
(even leading to 2014’s Nobel Prize for the discovery of place
cells and grid cells, as further detailed below).

Although it might seem inevitable to define a place first, we
instead define VPR directly, remembering that it is a compari-
son of visual data, observed from same or different physical
locations with same or different viewpoints. We argue that a
reference and query observation can lead to successful recog-
nition if there exists a certain degree of visual overlap2 due to
overlapping field-of-view of the underlying sensor, whereby
the acceptable degree depends on the drivers introduced in
Section 4. This implies that: 1) being at the same physical
location is not sufficient, the orientation (i.e. viewpoint) needs
to be somewhat similar as well, and 2) places can also be
recognized when observed from distant physical locations (see
Figure 2). In short, we define VPR as the ability to recog-
nize one’s location based on reference and query observations
perceived from overlapping field-of-views. Note that our def-
inition requires rethinking the typical notion of localization
threshold (as used by almost all datasets and evaluation met-
rics, see Section 5), which is based on metric distances without
considering orientation.

Our definition is complementary to that of Lowry et al., but
has a different underlying motivation. Lowry et al.’s definition
is in line with the notion of place cells, which fire when an
animal is in a particular place in the environment, irrespective
of the animal’s orientation. Instead, our definition is in line
with spatial view cells, which fire when a specific area of
the environment is gazed at by the animal, irrespective of

2Here visual overlap is defined as the common visibility of 3D
points/regions in 2D image views. We do not consider VPR based
on prior knowledge, e.g. scene completion [Hays and Efros, 2007;
Song et al., 2017], where visual overlap may not be needed.

the particular location [Georges-François et al., 1999] (see
Figure 2).

We note that in the context of robotics, VPR often involves
sequential imagery (i.e. using multiple images that were cap-
tured over tens or hundreds of meters) rather than single im-
ages, as this can significantly improve place recognition per-
formance, especially so for challenging environments [Lowry
et al., 2016]. For such sequence-based methods, the equivalent
of visual overlap is the overlap of the volume spanned by the
sequence.

3 Related Areas
In this section, we highlight similarities and differences of
VPR with a handful of related areas of research. This section
does not include downstream tasks such as visual SLAM,
which are instead covered in Section 4.3 (see also Figure 1).
While the relation to image retrieval has been discussed in
other works [Lowry et al., 2016; Zhang et al., 2020; Masone
and Caputo, 2021], it is for the first time that VPR’s relation
to video retrieval, visual landmark recognition, and overlap
detection is systematically presented. We argue that for each
of those areas, there is a potential for mutual benefits: research
into VPR can offer insights for these areas and vice versa.
Image Retrieval: Image retrieval refers to the general prob-
lem of retrieving relevant images from a large database [Arand-
jelović et al., 2017]. VPR is commonly cast as an image
retrieval problem that involves a nearest neighbor search of
compact global descriptors [Arandjelović et al., 2017] or cross-
matching of local descriptors [Liu et al., 2021; Hausler et al.,
2021; Tourani et al., 2021]. With regards to solving the nearest
neighbor search problem, VPR and image-retrieval systems
face similar challenges. However, the underlying goals differ
between the two areas. For image retrieval, similarity criteria
could be based on semantic categories such as ‘clothes’ as
a product category or nighttime image as an environmental
condition category. However, with the additional context of
being a ‘place’ (see Section 2), VPR deviates from the process
of merely retrieving a “similar” image, which instead is one of
the challenges of VPR and referred to as perceptual aliasing
(see Section 4). The notion of similarity in VPR is constrained
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to matching spatial information, where images captured from
the same place would be considered a true match even if envi-
ronmental conditions are dissimilar (e.g. day vs night).
Video Retrieval: The video retrieval problem is analogous
to image retrieval, except that relevant videos are retrieved
from the database leveraging sequential information. In VPR
literature, sequence-based VPR is typically implemented as
a decoupled approach, where single image-based retrieval is
followed by sequence score aggregation [Ho and Newman,
2007; Milford and Wyeth, 2012]. The recent introduction
of explicit sequence-based place representations (where the
representation itself describes the sequence), posing VPR as a
video retrieval problem, opens up new opportunities to obtain
solutions robust to extreme appearance variations [Garg and
Milford, 2021; Garg et al., 2020a; Arroyo et al., 2015].
Visual Landmark Recognition and Retrieval: Visual land-
mark recognition is the classification problem of given an
image and a set of images belonging to a large variety of
landmarks, deciding to which landmark this image belongs.
Recently, the Google-Landmarks dataset [Weyand et al., 2020]
presented a new large-scale instance-level recognition and re-
trieval challenge, with the number of landmarks3 increased
from 30,000 to 200,000 in its second version. This large-scale
recognition is an extreme classification problem [Choroman-
ska et al., 2013], where existing recognition solutions have
relied on retrieval (nearest neighbor search) [Teichmann et
al., 2019]. Google-Landmarks comprises specific places (with
the semantics of unique proper names) as opposed to general
place categories (with the semantics of common names) [Zhou
et al., 2017; Wu et al., 2009].

In contrast, VPR refers to the ability of distinctively rec-
ognizing any ordinary place or a region in the 3D world,
thus posing an ‘extremer’ classification problem. It re-
mains to be seen how methods developed for landmark
recognition and retrieval can be leveraged in the context
of VPR – recent advances include learning to aggregate
‘relevant’ landmarks [Teichmann et al., 2019], as well as
jointly training local and global descriptors [Cao et al., 2020;
Sarlin et al., 2019].
Visual Overlap Detection: As discussed in Section 2, our
definition of VPR is based on an overlapping field of view
between the two places that should be matched; thus VPR
and the area of visual overlap detection become more closely
linked. The contrast between defining VPR using visual over-
lap as opposed to “positional offset” impacts the choice of
ground truth for both training and evaluation procedures. This
contrast has recently been shown to lead to noticeable changes
in absolute performance when benchmarking localization al-
gorithms [Pion et al., 2020].

As the ground truth visual overlap might not be available
for all datasets, overlap detection measures could be used as
a supervision signal [Rau et al., 2020; Chen et al., 2020] to
develop better VPR techniques. A noteworthy recent proposal
on overlap detection [Rau et al., 2020] introduced the ‘nor-

3In the context of mobile robotics, the term ‘landmark’ is typically
used to indicate any specific visual entity in the scene relevant for
localization [Luo et al., 1992; Xin et al., 2019].

malized surface overlap’ to measure the number of pixels of
image A visible in image B (and vice versa). This leads to an
asymmetric, but interpretable, measure that can also estimate
the relative scale between pairs of images.

4 What Drives VPR Research?
This section outlines the three key drivers of spatially intelli-
gent systems, including intelligent autonomous systems oper-
ating in industry and household domains. As drivers, we refer
to components that typically impose requirements on the sys-
tem with regards to a) how the problem should be defined, b)
how the solution (in the context of VPR: place representation
and matching) should be designed, and c) how these solutions
should be evaluated, both in terms of datasets and metrics.
The three drivers are the Environment where an agent oper-
ates (Section 4.1), the Agent on which the spatially intelligent
system is deployed (Section 4.2), and the Downstream Task
that is performed (Section 4.3). In practice, different aspects
of each of these drivers are simultaneously at play. We detail
why it is crucial to understand the influence of these drivers to
design better spatially intelligent systems, in particular in the
VPR domain.

4.1 Environment
The first driver of VPR research is the operating environment,
where research often branches out, as methods that work in
certain environment types might cease to do so in other envi-
ronment types. Differing branches include indoor vs outdoor,
suburban vs highway, structured vs open, and human-made
vs natural. The operating environment is often tightly cou-
pled with the robotic agent choice (Section 4.2) – for example,
driverless cars do not operate in office environments, or at
least should not.

While the general aim of VPR systems is often stated to
be invariance to changes in viewpoint as well as changes
in appearance (including structural, seasonal, and illumina-
tion changes) [Lowry et al., 2016; Arandjelović et al., 2017;
Garg et al., 2018b; Zhang et al., 2020], we argue that 1) not all
environments/agents require invariance to both viewpoint and
appearance (as detailed below), and 2) that there is a trade-off
between viewpoint and appearance invariance achievable by
current systems (as detailed in Section 6.1). Therefore, know-
ing the operating environment can provide crucial advantages
when deciding how to represent and match places.
Structured Environments and Viewpoint Variations: In
well-structured environments such as road infrastructure, the
extent of 6-DoF viewpoint variations is generally confined,
e.g. for driverless cars on roads, viewpoint varies mostly
in the yaw direction [Maddern et al., 2017]. Similar ef-
fects in viewpoint variations can be observed for other plat-
forms, too. For example, as soon as aerial vehicles reach a
certain height, one can assume a planar homography (“flat
world”), simplifying template matching [Saurer et al., 2016;
Mount et al., 2019]. Planar homographies are also present
when mounting the camera at a fixed distance from the sur-
face and pointing towards the surface. In structured indoor
environments such as warehouses and offices, aisles and corri-
dors enable Manhattan world assumptions and often simplify
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Simultaneous Localization And Mapping (SLAM) [Li et al.,
2018].
Environment-Dependent Appearance Variations: Appear-
ance invariance is similarly often constrained when assuming
a certain operating environment. However, this kind of in-
variance is harder to quantify as changes in appearance can
originate from a wide range of factors: Examples include
changes in the time of the day, seasonal changes, structural
changes, and weather changes. Therefore, while viewpoint
change could be quantified by the metric shift in translation
and rotation, there is no linear scale in the difficulty of appear-
ance invariance [Zaffar et al., 2021]. There are even some
counter-intuitive examples, where a reference image captured
outdoor in the morning might be easier to match to a well-lit
nighttime image than to an image captured at noon which has
shadows cast on a large area of the image [Corke et al., 2013].

For different platforms and environments, the requirement
of representing and matching places in an appearance-invariant
or viewpoint-invariant manner can differ significantly. For ex-
ample, driverless cars typically traverse a well-defined route
and could trade-off viewpoint-invariance with appearance-
invariance which can be relatively more challenging due to
variations in the time of day, season, structural changes in-
cluding roadworks and differing traffic conditions [Warburg
et al., 2020]. On the other hand, when an autonomous agent
is deployed indoors or when considering an unmanned aerial
vehicle, its route or maneuvers may not always be constrained,
thus requiring viewpoint-invariance more than appearance-
invariance.
Perceptual Aliasing: Another consideration that is tied to
the operating environment is the extent of perceptual aliasing.
Perceptual aliasing is the problem that two distinct places can
look strikingly similar, often more similar than the same place
observed under different conditions [Lowry et al., 2016]. For
example, indoor environments often contain corridors and hall-
ways that are hard to distinguish. In outdoor settings, different
places along a highway or a natural vegetative environment
tend to be more perceptually aliased than different places
within the man-made urban or suburban dwellings.
Dynamic Environments: Problems related to the operating
environment that – to our knowledge – have not yet been
addressed in VPR research are sensor dust, reflections (in
glass or puddles) and undesired objects close to the camera
(e.g. windscreen wipers). Such conditions are expected in
challenging environments like mines and forests, which have
come into focus in recent years [Nardari et al., 2020; Garforth
and Webb, 2020]. It would be interesting to model the impact
of such ‘noise’ explicitly or measure the impact of sensor noise
in existing VPR systems.

4.2 Agent
VPR has widespread applications and is thus deployed on a
large variety of robotic platforms, including unmanned ground
vehicles and autonomous cars [Doan et al., 2019], unmanned
aerial vehicles [Zaffar et al., 2019] and unmanned underwa-
ter vehicles [Li et al., 2015b]. Other platforms where VPR
is applied are those tightly coupled to human users such as
virtual/augmented reality devices [Sattler et al., 2016] and
mobile phones [Torii et al., 2018].

Computational Resources: A robotic agent typically runs
a large number of processes, many of them interacting with
each other through tools like the Robot Operating System
(ROS) [Quigley et al., 2009; Fischer et al., 2021]. These
processes share limited onboard resources and often require
cognitive architectures [Fischer et al., 2018] to interact effi-
ciently. Thus the resources dedicated to the VPR system might
be relatively small, and a GPU (that significantly boosts infer-
ence times of deep networks) might not be available. Similarly,
storage limitations could mean that the reference map of the
operating environment (in the form of images, global/local de-
scriptors, point clouds) has to be of reasonable size. Section 6
discusses some of the open problems in VPR in this context,
for example, compact global description, efficient indexing
and quantization, and hierarchical place matching pipelines.
Suitable Sensor Suite: Depending on the agent and the oper-
ating environment, robust VPR solutions can be developed by
using additional suitable sensors. For example, event cameras
perform exceptionally well when a high dynamic range is re-
quired, such as when exiting a dark tunnel and moving into
bright sunlight [Fischer and Milford, 2020]. LIDAR-based
systems can perceive the scene’s geometry even in the most
challenging nighttime conditions, although those systems lack
appearance information [Guo et al., 2019]. Using omnidirec-
tional cameras or multi-camera rigs increase the field-of-view
and thus the visual overlap, which results in reduced complex-
ities in image matching.

Correct sensor type choice can also aid in tackling specific
challenges such as nighttime conditions. Crucially, the sensor
capabilities should drive the research regarding what charac-
teristics are required in our learned descriptors. We believe
that using novel sensor types such as 3D ultrasonic sensors
(e.g. the Toposens TS3) and sensor fusion [Jacobson et al.,
2015] could further improve the robustness of VPR systems.

While some sensors can be a replacement for RGB cameras,
another area worthy of more thorough investigation is the use
of additional information in the form of prior position or ego-
motion. For example, one can assume that autonomous cars
are equipped with a GPS sensor. Still, despite the popularity of
datasets such as Oxford RobotCar [Maddern et al., 2017] that
contain GPS information, it is rarely used for VPR [Vysotska
et al., 2015] – using GPS information in environments where
available could refocus research on GPS-denied environments
like tunnels or underground mines that have distinct challenges.
While there are many examples of GPS-denied environments,
almost all mobile robots have some odometry information, but
it has only been used in a limited manner for VPR [Pepperell
et al., 2014].

4.3 Downstream Task
Here, we consider the different tasks that an agent (robotic
platform or intelligent augmentation) might perform. In this
paper, we consider the VPR problem in the context of local-
ization, although VPR does not strictly imply localization. For
example, VPR can also be used to solve the problem of scene
change detection where localization based image pairing is
assumed [Park et al., 2021], especially in the context of up-
dating the map of the environment [Alcantarilla et al., 2018;
Tanaka, 2018].
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It is also worth noting that localization does not strictly
require VPR. For example, satellite-based (e.g. GPS) coarse
position estimation can be fused with additional sensor in-
formation to enable 6-DoF visual SLAM in outdoor envi-
ronments [Schneider et al., 2016]. However, limitations of
satellite-based pose estimation such as unavailability indoors,
sensitivity to atmospheric changes, and signal obstruction in
cluttered environments, deem vision-based alternatives such
as VPR necessary.

Localization, SLAM and Kidnapped Robot Problem:
A purely topological visual SLAM system4 can be directly
defined through VPR, which is highly relevant for large-
scale mapping [Cummins and Newman, 2008; Doan et al.,
2019]. Such a topological SLAM system requires determining
whether the currently observed place is a revisited one or is a
new ‘unseen’ place, thus posing unique design requirements
on VPR.

For metric or topo-metric SLAM systems4, the final goal is
typically to estimate the agent’s 6-DoF pose, thus requirements
of VPR systems vary in this case. For example, when VPR is
used to provide a coarse estimate of the pose within a 6-DoF
localization-only [Toft et al., 2020] or SLAM algorithm [Mur-
Artal et al., 2015], the error bounds need to be very tight and
the visual overlap between the two places relatively large with
sufficient parallax. This is opposed to a scenario where loose
error bounds are sufficient – a rough location estimate might
sufficiently narrow down the search space for a subsequent
laser-based pose estimation for global re-localization of a
mobile robot (“kidnapped robot problem”) [Jacobson et al.,
2021].

The requirements with regards to precision and recall are
also varying for different scenarios. When using VPR for
generating loop closures for SLAM (i.e. recognizing that a lo-
cation has been visited previously, so that a globally consistent
map can be built), incorrect matches can lead to catastrophic
failures, thus requiring high precision VPR [Cadena et al.,
2016]. On the other hand, one could use VPR to select top k
matches which are then passed to computationally more inten-
sive stages for further processing; in this case, higher recall
is more important than the precision. Thus, the downstream
task is a key determining factor for formulating and evaluating
VPR, as further discussed in Section 5.
Higher-level Tasks: The requirements of some downstream
tasks like SLAM and Structure from Motion (SfM) are rela-
tively well understood; yet, these requirements are very dis-
tinct and probably need a suitably tailored treatment. For
example, SfM-based large-scale 3D reconstruction is typically
performed offline [Schönberger and Frahm, 2016] and needs
sub-pixel accurate alignment of images. The computational
requirements of a VPR system then play a much lesser role
than in real-time deployments on a mobile platform mapping
an unknown environment using visual SLAM.

4Topological SLAM captures the connectivity of the environment
rather than building a geometrically accurate map [Brooks, 1985].
This is opposed to metric SLAM, where geometrically accurate maps
are built. Topo-metric SLAM systems build local maps that are
geometrically accurate and then topologically connected to form the
overall map [Cadena et al., 2016].

The requirements of other “higher-level” tasks such as those
of augmented reality platforms and navigation are not yet well
established. This is in part due to the complex hierarchical na-
ture of typical spatially intelligent systems, for example an aug-
mented reality platform would involve many interrelated com-
ponents such as image retrieval, sequential localization, local
feature matching, visual odometry, and pose refinement [Sten-
borg et al., 2020]. Furthermore, the utility of VPR and
mapping for navigation purposes [Milford and Wyeth, 2007;
Dall’Osto et al., 2020] is a vastly unexplored area, and a
deeper understanding of task requirements is needed.

5 How to Evaluate Visual Place Recognition?
This section discusses the evaluation datasets and metrics, in
the context of the drivers.

5.1 Evaluation Datasets
There are numerous place recognition datasets, each covering
different aspects of VPR (for recent overviews see [Warburg
et al., 2020; Masone and Caputo, 2021]). Thus some datasets
are better suited to investigate specific configurations of pro-
posed drivers (i.e. environments, agents and downstream tasks,
see Section 4), while other datasets better represent different
scenarios. This highlights the importance of clearly stating the
application scenario targeted by a particular VPR system – it
may be sufficient that the VPR system excels in datasets that
are close to the actual use-case (but not in others).

Recent progress has enabled easier comparison of different
methods. VPR-Bench [Zaffar et al., 2021] provides a mech-
anism for the comparison of a new method on an extensive
range of datasets. In the light of highly successful standard
benchmark datasets in other research areas like visual object
tracking [Kristan et al., 2018], we believe that such bench-
marking will accelerate VPR research. Mapillary Street Level
Sequences (MSLS) [Warburg et al., 2020] is a single dataset
that tries to capture all variations of appearance/viewpoint
change at once. MSLS notably also introduces ‘sub-tasks’
that can be separately investigated, including sub-tasks like
summer to winter, day to night, and old to new. An additional
benefit of MSLS is that it provides a hold-out test set that can
be used for challenges.

If the aim is to design a VPR system applicable in all dif-
ferent scenarios, an open challenge is to design systems that
are equally applicable indoors and outdoors. Few studies eval-
uate systems both indoors and outdoors, one of them being
the above mentioned VPR-Bench [Zaffar et al., 2021]. VPR-
Bench has shown that performance trends can vary noticeably
across environment types, e.g. indoor vs outdoor. However,
care should be taken to not make generic assumptions about
an architecture when the trained descriptors heavily depend on
the training data – the training data should be representative of
the data encountered at deployment time. Most recently, [War-
burg et al., 2020] have shown that training on more diverse
data drastically improves performance on unseen data. This is
distinct from the approach where different network configura-
tions are explicitly trained for different scenarios, e.g. one for
indoors and another for outdoors [Sarlin et al., 2020].
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5.2 Evaluation Metrics
The previous examples show that the downstream task and
the relevant evaluation metrics are tightly coupled. However,
we note that many VPR papers do not state why a particular
evaluation metric was chosen. Notable exceptions include
system papers where VPR is one of many components, and
a specific downstream task is considered, such as [Cummins
and Newman, 2008]. The computer vision community typi-
cally uses the Recall@k measure, which indicates that in this
context the VPR system is benchmarked based on its ability to
retrieve a correct match within the top-k retrievals regardless
of the false matches. On the other hand, the mean average
precision (mAP) metric [Philbin et al., 2007], used in the im-
age retrieval community, explicitly penalizes selection of false
matches. The mAP metric could be adopted to measure VPR
performance for SLAM-like downstream tasks (Section 4.3)
where precision is more important, complementing measures
like Recall at 100% Precision.

The area under the precision-recall curve and the F-score
are sometimes used as summary statistics [Molloy et al., 2021].
However, their practical use is unclear, as these summary statis-
tics imply that recall and precision are of similar importance,
which is unlikely the case for most downstream tasks. More-
over, these measures are based on the distribution of match
scores which may only be relevant for topological SLAM-
like scenarios where VPR needs to be highly precise and no
subsequent outlier rejection method is employed.

Most of the VPR datasets in robotics are in the form of
trajectories with inherent sequential information (Section 2).
Thus, evaluation metrics such as ‘maximum open-loop dis-
tance traveled’ (that is, the extent of visual odometry or dead
reckoning based robot motion without loop closures) have also
been considered in the literature [Clement et al., 2020]. We
believe it would be beneficial to investigate metrics that tightly
couple single-image and sequence-based VPR.

6 What Are Open Research Problems?
This section aims to highlight open research problems, con-
sidering the drivers discussed in Section 4. For space reasons
and to avoid duplication, we do not cover the open research
problems discussed in recent surveys on deep learning meth-
ods for VPR [Zhang et al., 2020; Masone and Caputo, 2021],
which include using autoencoders as an alternative to Convo-
lutional Neural Networks (CNNs), use of generative methods
including Generative Adversarial Networks (GANs), using
semantic information, making use of heterogeneous data in-
cluding multi-sensory fusion, and the choice of loss function.

Here, we broadly classify the open research problems into:
1) representation, discussing the need for better global de-
scriptors and enriched/synthesized reference maps, and 2)
matching, discussing the need for better hierarchical matching
frameworks, relevant distance metrics and ‘learning to match’.

6.1 Place Representation
Global Descriptors – Appearance & Viewpoint Invari-
ance: Section 4.1 discussed the requirements on view-
point and appearance invariance depending on the operat-
ing environment. Here we note that there is a trade-off

when learning a descriptor of a fixed size/type: increasing
viewpoint-invariance will inevitably reduce some degree of
appearance invariance (assuming the same amount of train-
ing data) [Arandjelović et al., 2017; Chen et al., 2017;
Garg et al., 2019]. This is evident from significant differences
observed in place recognition performance when considering
a cross-combination of datasets such as Nordland (same view,
varying appearance) [Sünderhauf et al., 2013] and Pittsburgh
(similar appearance, varying view) [Arandjelović et al., 2017]
with feature learning/aggregation methods such as Hybrid-
Net (viewpoint-assumed) [Chen et al., 2017] and NetVLAD
(viewpoint-agnostic) [Arandjelović et al., 2017].

There is a vast research gap, and a need for global descrip-
tion mechanisms that go beyond the binary nature of encoding
viewpoint, that is, viewpoint-assumed vs viewpoint-invariant.
This might be achieved by learning novel ways to incorporate
local geometric information in the global descriptor formation,
such as using vertical blocks (Stixels) [Hernandez-Juarez et
al., 2019], semantic blobs [Gawel et al., 2018], objects [Qin et
al., 2021] or superpixels [Neubert et al., 2015], where learning
could be based on attention mechanisms such as that employed
in Transformers [Vaswani et al., 2017] and Graph Neural Net-
works [Veličković et al., 2018].

Global Descriptors – Efficiency: Most of the state-of-
the-art global image descriptors are high-dimensional (with
dimensions varying from 512 [Sarlin et al., 2019] to
70,000 [Sünderhauf et al., 2015a]). Increasing the descrip-
tor’s dimensionality directly leads to increased computational
requirements. To improve efficiency, researchers commonly
employ dimension-reduction methods such as Principal Com-
ponent Analysis (PCA), and have also explored quantiza-
tion [Jegou et al., 2010; Brandt, 2010; Ge et al., 2013], bina-
rization [Lowry and Andreasson, 2018; Arroyo et al., 2015;
Jegou et al., 2008], hashing [Vysotska and Stachniss, 2017;
Gionis et al., 1999; Andoni and Indyk, 2006] and efficient
indexing [Cao et al., 2020] techniques.

However, there have not been any attempts to learn these
efficiency-inducing processes for VPR, particularly consider-
ing that retrieving places can include additional information in
the form of sequences or odometry. This could be achieved by
learning to reduce dimensions [McInnes et al., 2018; Amid and
Warmuth, 2019] or to hash [Wang et al., 2017], while main-
taining the overall structure of the appearance space learnt
through the existing global descriptor methods. Existing effi-
cient VPR techniques consider sequential or odometry infor-
mation in a decoupled manner [Vysotska and Stachniss, 2017;
Garg and Milford, 2020] but could benefit from jointly consid-
ering additional information when optimizing for efficiency.

Enriched Reference Maps: With the rapid increase in data
gathering, more so in the field of autonomous driving, it is
high time to consider the use of an enriched reference map,
which could be in the form of multiple reference images
per location [Churchill and Newman, 2012] or semantically-
annotated 3D maps [Garg et al., 2020b]. In the simplest
case, choosing the best reference set can lead to vast per-
formance improvements. More sophisticated approaches
fuse multiple reference sets to achieve even better perfor-
mance [Churchill and Newman, 2012; Linegar et al., 2015;
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Molloy et al., 2021]. Multiple reference sets are often used
when long-term autonomy is required, as structural changes
can be detected and incorporated over time. While significant
progress using multiple reference maps has been made in the
past, open questions remain around the increased storage and
computational requirements when using multiple reference
sets. There is clearly a trade-off, and preliminary efforts in
that direction [Doan et al., 2019] need further attention.
View Synthesis: To deal with significant viewpoint variations,
researchers have also explored matching through multiple
synthesized views of the observed places [Torii et al., 2018;
Milford et al., 2015], although the process requires additional
computation. However, this can be mitigated by performing
view synthesis offline during the mapping traverse and using
compact global descriptors with an efficient nearest neighbor
search for retrieval. The current bottleneck of automatically
generating accurate and relevant views can potentially be ad-
dressed by recent advances in volumetric rendering [Milden-
hall et al., 2020], performed offline to generate novel views
under novel lighting conditions.

6.2 Place Matching
Mutually-informed Hierarchical Systems: Different down-
stream tasks can impose very different requirements on the
VPR system (see Section 4.3). For example, a visual SLAM
system can be built with [Cummins and Newman, 2011] or
without [Angeli et al., 2009; Cummins and Newman, 2008] us-
ing a geometric verification step based on local feature match-
ing. Cummins and Newman found this verification to be
particularly essential for large datasets. However, it remains
an open question how an effective hierarchical system should
be designed, where the variables are: the number of comple-
mentary VPR techniques fused [Hausler et al., 2019], number
of stages, and types of unique methods involved, e.g., query
expansion [Chum et al., 2011] and keypoint filtering [Garg et
al., 2018b].

The complementarity and information transfer within dif-
ferent stages in the hierarchy requires an in-depth investiga-
tion. This can reveal answers to several overarching questions:
should these stages always operate independently or could
earlier stages better inform subsequent stages (beyond simply
providing candidate images); could one selectively apply a
subset of the techniques to save computational resources; how
such behavior of hierarchical retrieval can be learnt; and in
doing so do some of the stages become redundant.
Choice of Distance Metric: When comparing the global de-
scriptors of two images, one has to choose a suitable distance
metric or a similarity measure. Some of the most commonly
employed measures include Euclidean [Arandjelović et al.,
2017; Sünderhauf et al., 2015b], cosine [Sünderhauf et al.,
2015a; Garg et al., 2018a; Garg et al., 2018b], and Ham-
ming [Lowry and Andreasson, 2018; Neubert et al., 2019] dis-
tance. While some descriptors are better matched using one
distance than the other, the range of distances distribution is
typically relatively narrow, even in non-matching images of a
completely different appearance. Therefore a more systematic
investigation considering both a theoretical viewpoint and prac-
tical performance implications is needed. In particular, impor-

tant consideration factors include suitability to loss functions
(e.g. max-margin triplet loss) [Arandjelović et al., 2017; Re-
vaud et al., 2019; Garg and Milford, 2021], descriptor normal-
ization [Arandjelovic and Zisserman, 2013; Garg et al., 2018a;
Schubert et al., 2020], whitening [Jégou and Chum, 2012;
Arandjelovic and Zisserman, 2013], feature scaling [Beatty
and Manjunath, 1997; Li et al., 2015a], and quantiza-
tion/binarization [Jegou et al., 2010; Lowry and Andreasson,
2018].
Learning to Match: While learning to ‘describe’ (i.e. local or
global descriptors) has been widely explored, there have been
limited attempts to learn to ‘match’. Such matchers can either
be learnt through siamese networks [Altwaijry et al., 2016]
or cross-attention based on graph neural networks [Sarlin et
al., 2020]. The outcome of such matcher could either be a
matched reference index or relative 3D pose [Gridseth and
Barfoot, 2020]. Learning-to-match frameworks for VPR and
localization could potentially eradicate the need for sophisti-
cated matching pipelines.

7 Conclusions
This survey defines VPR based on the visual overlap of two
observations, in line with spatial view cells found in primates.
This new definition enabled us to discuss how VPR closely
relates to other research areas. This paper also identified
and detailed three key drivers of Spatial AI: the environment,
agent and downstream task. Considering these drivers, we then
discussed numerous open research problems that we think are
worth addressing in future VPR research.

To date, VPR research has addressed the problems of rep-
resenting, associating (matching), and searching of spatial
data, and is a key enabler of Spatial AI. Further advances in
VPR research will require unifying the efforts of the artificial
intelligence, computer vision, robotics, and machine learn-
ing communities, particularly taking into account embodied
agents. To achieve this, an in-depth understanding of the prob-
lem, research goals and evaluation protocols is necessary, and
this paper takes a step in that direction.
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