
Optimal Transport for Deep Generative Models: State of the Art
and Research Challenges

Viet Huynh1 , Dinh Phung1,2 , He Zhao1

1Department of Data Science and Artificial Intelligence, Monash University, Australia
2 VinAI Research, Vietnam

{viet.huynh, dinh.phung, ethan.zhao}@monash.edu

Abstract
Optimal transport has a long history in mathemat-
ics which was proposed by Gaspard Monge in the
eighteenth century [Monge, 1781]. However, until
recently, advances in optimal transport theory pave
the way for its use in the AI community, particu-
larly for formulating deep generative models. In
this paper, we provide a comprehensive overview of
the literature in the field of deep generative models
using optimal transport theory with an aim of pro-
viding a systematic review as well as outstanding
problems and more importantly, open research op-
portunities to use the tools from the established op-
timal transport theory in the deep generative model
domain.

1 Motivation, Optimal Transport and Deep
Generative Models

Optimal transport and deep generative models have attracted
substantial attention in the machine learning and artificial in-
telligence community in recent years. Tremendous efforts
have been made to leverage to combine the recent develop-
ment of the optimal transport to formulating and learning
deep generative models. The efforts have been resulting in
a rich literature of related publications and methodologies in
using optimal transport distance with deep generative models.
Therefore, a comprehensive and systematic survey reviewing
and categorizing existing approaches and methodologies, rec-
ognizing outstanding research questions, and discussing open
challenges and future directions is imperative yet missing.

To this end, we would like to provide a systematic review
of deep generative models using optimal transport. We cat-
egorize models and methods on the way optimal transport
distance is used to formulate the problems. The goal is to
help interested researchers address outstanding problems and
more importantly, identify open research opportunities to use
the tools from the established optimal transport theory in the
deep generative model domain. To the best of our knowledge,
this is the first comprehensive survey on deep generative mod-
els using optimal transport theory. The notable contributions
of our survey can be summarized as follows: 1) summarizing
and categorizing deep generative models based on their opti-

mal transport distance formulation; 2) addressing the limita-
tions of existing methods and suggest several open challenges
and potential future research directions in the field of using
optimal transport theory for deep generative models.

The rest of this paper is organized as follows. Sections
1.1 and 1.2 introduce the background and definitions of two
main classes of deep generative models and optimal transport
distances. Section 2 reviews optimal transport based deep
generative models categorized by the formulation of optimal
distance. Section 3 discusses the challenges and potential fu-
ture research directions.

Notations. Let X be a compact metric space. We denote
by P (X ) the set of probability measures over X , each of
which is referred to as a probability distribution. For any
measurable function φ from X to R, and a metric c, Lipc(φ)
denotes the Lipschitz constant of φ with respect to c and
Lc , {φ : Lipc(φ) ≤ 1}. We use capital letters to denote
random variables, e.g. X , while bold lower case letters are
used for vectors. Probability distribution of random vari-
able X will be denoted as PX with the probability density
as pX (x). When the context is clear the subscript of proba-
bility density will be removed, e.g. p (x).

1.1 Deep Generative Models
Deep generative model is a deep neural network based frame-
work for estimating a probability distribution that is “close”
to empirical data samples {xi}ni=1 which come from an un-
known data distribution PX over the data space X . Model
distribution Pθ over X is usually assumed as a latent variable
model

pθ (x) =
ˆ
Z
p (x | z) p (z) dz, (1)

where p (z) is some simple well-known distribution, e.g. nor-
mal or uniform distributions while the conditional distribu-
tion p (x | z) can be either deterministic (i.e. Dirac ) or
stochastic. Since the model distribution Pθ is defined via
deep neural networks, it may have no analytical form but can
be easy to sample from. In the following sub-sections, we
review two classes of deep generative models which are con-
sidered as dual (Generative Adversarial Network - GAN) and
primal formulations (Variational Autoencoder - VAE) of the
problem of minimizing the similarity between PX and Pθ.
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Generative Adversarial Network (GAN)
Generative Adversarial Network (GAN) [Goodfellow et al.,
2014] is a framework for estimating empirical data sam-
ples {xi}ni=1 by using two deep neural networks contesting
with each other in a game. The difference between GAN
and density estimation methods, i.e. maximum likelihood
estimation (MLE), is that we do not need to define an ex-
plicit form of the estimator. In MLE, we usually define
the model Pθ as an explicit parametric family of densities
{pθ}θ∈Rd and try to solve the maximum likelihood problem
maxθ∈Rd

∑n
i=1 log pθ (xi) , which is equivalent to minimiz-

ing the Kullback-Leibler divergence between the model pθ
and the empirical distribution of real data px ≈ 1

n

∑n
i=1 δxi ,

i.e. KL (PX ‖ Pθ) = p̄x.
In GAN, we do not need to specify the density pθ which

might not exist or be difficult to characterize in high dimen-
sional data 1. Instead, we can define a mechanism that can
generate samples that are close to those generated from real
data distribution PX (and approximated by empirical distri-
bution P̄X ). The generation process is defined through two
steps: drawing a random variable Z from a fixed distribu-
tion PZ , e.g., uniform distribution in (0, 1) and mapping it
to the same space of the real data samples, with a function
Gθ : Z → X (usually a deep neural network) where θ is
the parameter of the function. The induced distribution de-
fined above is denoted as Pθ. We can vary θ to change the
induced distribution and make it “close” to P̄X . To define
closeness, some divergence between distributions is used. In
vanilla GAN [Goodfellow et al., 2014], the authors used the
Jensen-Shannon divergence between P̄X and Pθ

JS
(
P̄X ‖ Pθ

)
= KL

(
P̄X ‖ Pm

)
+KL (Pθ ‖ Pm) , (2)

where Pm = Pθ+P̄X
2 . A GAN model can be considered as a

latent variable model in Eq 1 in which the conditional distri-
bution P (x | z) is defined using a deterministic map Gθ :
Z → X where Z is latent space, i.e., p (x | z) = 1x(G (z))
where 1x is the indicator function of x.

Variational Auto-Encoders
Variational Auto-encoders (VAE) is a sub-class of latent mod-
els in Eq. 1 in which the latent distributions are (standard)
Gaussian distributions, i.e. p (z) = N (z | 0, I), and the
conditional distribution p (x | z) = p (x | fθ (z)) is the like-
lihood with parameters defined using non-linear functions
(typically a deep neural networks) fθ (z) parameterized by
θ. For instance if the likelihood is a Gaussian distribution,
then p (x | z) = N

(
µθ (z) , diag

(
σ2
θ (z)

))
where µθ (z)

and σ2
θ (z) are non-linear functions with parameters θ. Un-

fortunately, marginal distribution p (x) is not tractable due to
the non-linearity of deep neural networks used to define the
conditional distributions. Variational inference therefore is
used to approximate the posterior distribution PZ|X (and the
marginal distribution PX ). Typically, the variational condi-
tional distribution qω (z | x) = N (µω (x) ,Σω (x)) is used
to approximate the conditional distribution whereµω and Σω

1Data may be in high dimensional space, but the support for den-
sity function may lie on low dimensional manifolds.

are two non-linear functions aka deep neural networks2 with
parameters ω. We can use the Kullback-Leibler divergence
to measure the difference between empirical distribution PX
and marginal distribution Pθ, i.e. infθKL (PX , Pθ) which is
equivalent to optimize the Evidence Lower BOund (ELBO)
infθ,λ− E

q(z|x)
[ln p (x | z)] + E

p(x)

[
KL

(
QZ|X , PZ

)]
.

Applications of Deep Generative Models
Deep generative models have a wide range of applications
real-world problems from image processing such as super
resolution (generating images with higher pixel resolution)
[Ledig et al., 2017; Vasu et al., 2018], image-to-image trans-
lation [Isola et al., 2017], photo inpainting [Pathak et al.,
2016]; game simulation [Kim et al., 2020]; healthcare ana-
lytics [Frid-Adar et al., 2018; Yoon et al., 2019; Costa et al.,
2017; Choi et al., 2017]; drug discovery [Jin et al., 2018;
De Cao and Kipf, 2018]; finance [Takahashi et al., 2019];
bioinformatics [Marouf et al., 2020; Anand and Huang,
2018]; and e-commerce [Kumar et al., 2018]. Most of the
applications are based on image-based generation tasks. The
number of works that can generate data beyond images is still
limited.

1.2 Optimal Transport Theory
In this section, we summarize optimal transport theory which
provides the theoretical framework for defining problems of
deep generative models

Primal Formulation
Given a continuous cost function c : X × X → R, and
two probability distributions PX , PY ∈ P (X ), the optimal
transport distance of order p called Wasserstein-p distance is
defined as the minimal cost for transporting from the density
of px to that of py[Villani, 2008]

Wp (PX , PY ) =
(

inf
π∈Π

ˆ ˆ
cp (x, y)π (x, y) dxdy

)1/p

, (3)

where Π is the set of joint distributions with marginal con-
straints of

´
X π (x, y) dy = px and

´
X π (x, y) dy = px .

Dual Formulation
Owing to the marginal constraint of the joint distribution, the
optimization process in Eq. (3) is hard to employ. In practice,
the celebrated dual from of the optimization in Eq. (3) for
order p = 1 called Kantorovich-Rubinstein duality is often
used [Villani, 2008]

W1 (PX , PY ) = sup
φ∈Lc

ˆ
φ (x) px (x) dx−

ˆ
φ (y) py (y) dy

(4)

This dual form leads to a simpler optimization in comparison
with the primal form which is used to formulate the Wasser-
stein GAN models in section 2.1.

Relaxed Formulation
In practice, an entropic regularization version of Wasserstein
distance in Eq. 3 which is faster to compute in discrete cases
was proposed in [Cuturi, 2013] and called Sinkhorn distance.

2called inference networks
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The definition of Sinkhorn distance can be extended for con-
tinuous cases as follows

Wε (PX , PY ) = inf
π∈Π(PX ,PY )

ˆ ˆ
c (x, y)π (x, y) dxdy

(5)
+ εKL (π | px ⊗ py) ,

where KL (π | px ⊗ py) ,
´ ´

ln π(x,y)
px(x)py(y)dxdy is the rel-

ative entropy between the joint coupling and the marginals.
However, the relaxed formulation of Sinkhorn distance in Eq.
5 is not a proper distance since Wε (PX , PX) 6= 0 for ε > 0.
Sinkhorn divergences [Ramdas et al., 2017] are introduced to
resolve the drawback

Sε (PX , PY ) = Wε (PX , PY )− 1
2Wε (PX , PX) (6)

− 1
2Wε (PY , PY )

which becomes to Wasserstein distance with ε → 0 and
reaches MMD with ε→∞ [Ramdas et al., 2017].

Approximated Formulation
Although Wasserstein distance on higher dimensions does not
possess closed-form formulation in general, one can compute
explicitly Wasserstein distance for one-dimensional measures
[Villani, 2008]. This property motivates to approximate
Wasserstein distance by projection probability distributions
on high-dimensional to one-dimensional space [Bonneel et
al., 2015]

SW (PX , PY ) =
ˆ
Sd
W (PXθ , PYθ ) dθ, (7)

where Sd =
{
θ ∈ Rd : ‖θ‖ = 1

}
is the unit d−dimensional

sphere, and W (PXθ , PYθ ) is 1-dimensional Wasserstein dis-
tance between 1-dimensional projected measures with xθ =
〈x,θ〉 and yθ = 〈y,θ〉 for x,y ∈ X . The number of pro-
jections required to approximate sliced Wasserstein distance
with a given accuracy are exponential proportion to data di-
mension [Kolouri et al., 2019a]. To mitigate the projection
complexity, max-sliced Wasserstein distance was proposed
[Deshpande et al., 2019]

maxSW (PX , PY ) = max
θ∈Sd

W (PXθ , PYθ ) . (8)

A generalized version of sliced Wasserstein distance in Eq.
7 was introduced to replace the dot product in the projection
with generalized Radon transform [Kolouri et al., 2019a] g :
X ×

(
Rd\ {0}

)
→ R , i.e. xθ = g (x, θ) where θ ∈ Ω ,

Rd\ {0}

GSW (PX , PY ) =
ˆ

Ω
W (PXθ , PYθ ) dθ.

Similarly, maximum generalized sliced Wasserstein distances
are defined in a similar fashion in Eq. 8. Recently, [Nguyen
et al., 2021a] have introduced a slice-based variant called dis-
tributional sliced Wasserstein distance which that seeks for an
optimal distribution over projections on the unit sphere.

DSW (PX , PY ) = sup
ρ(θ)∈MC

E
ρ(θ)

[W (PXθ , PYθ )] ,

Figure 1: Categorization of optimal transport-based deep generative
models. Models are categorized into four groups based on the opti-
mal transport distance formulations.

where MC =
{
ρ ∈ P

(
Sd
)
| E
θ,θ′∼ρ

[∣∣∣θTθ
′
∣∣∣] ≤ C} is the

set probability measures ρ on Sd satisfying E
θ,θ′∼ρ

[∣∣∣θTθ
′
∣∣∣] ≤

C and not empty.

Wasserstein Distance for Structured Objects
Gromov-Wasserstein distance: let PX ∈ P

(
Rdx

)
and PY ∈

P
(
Rdy

)
be two probability measures on Euclidean spaces

of different dimension dx and dy . Distance function cx :
Rdx × Rdx → R+(resp. cy : Rdy × Rdy → R+) defines the
similarity between samples in PX (resp. PY ) . The Gromov-
Wasserstein distance of order p, GWp (PX , PY ), is defined
as [Mémoli, 2011]

GW p
p (PX , PY ) = inf

π∈Π(PX ,PY )
E
π

[∥∥cx (x, x′)− cy (y, y′)∥∥p] ,
(9)

where Π is the set of joint distributions with marginal con-
straints defined similarly in Eq. (3).

2 Generative Models Using Optimal
Transport

In this section we review and categorize deep generative mod-
els based on how optimal transport distance is used to formu-
late the objective functions. Figure 1 denotes the categoriza-
tion of models based on the formulations of optimal transport
described in Sec 1.2.

2.1 Dual Formulation
Wasserstein Generative Adversarial Network (WGAN)
One of the first works that had tried to use Wasserstein dis-
tance for learning deep generative models is the work by
[Arjovsky et al., 2017]. Wasserstein distance was proposed
to use for learning since it has the weak*-topology property
that allows defining the distance between two distributions
with non-overlapped supports and is expected to alleviate the
mode-collapsing problem of GANs. In Wasserstein GAN,
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the authors suggested using the dual form Wasserstein dis-
tance of order 1 in Eq (4) instead of Jensen-Shannon diver-
gence. The function φω (·) in Eq (4) is parameterized using
a (deep) neural networks of parameters ω. However, one of
the important constraints for φ is the Lipschitz condition, i.e.
|φ (x)− φ (y)| ≤ c (x, y)3 for all x, y ∈ X , which is not
always satisfied by an arbitrary deep network. To endow the
constraint, Arjovsky et al. suggest a heuristic to clip weights
of network to some certain ranges, e.g. the clipped box of ω ∈
[−0.01, 0.01]. Despite the heuristically constraining the Lips-
chitz condition, Wasserstein GANs showed stability improve-
ment in training processes. However, the weight clipping
trick may lead to poor samples or fail to converge as observed
in [Gulrajani et al., 2017]. There are the following works
[Gulrajani et al., 2017; Petzka et al., 2018; Wei et al., 2018;
Miyato et al., 2018] that solve the 1-Lipschitz constraint with
principled approaches.

Lipschitz Constraint Variants
[Gulrajani et al., 2017, Corollary 1] have proved that
the optimal critic function, φ∗, has gradients norm 1 al-
most everywhere. Hence, they proposed to train Wasser-
stein GAN with gradient penalty instead of weight clip-
ping which results with a more stable and improved perfor-
mance called WGAN gradient penalty (WGAN-GP) RGP =
E
PX̄

[
(‖∇ωφ (x)‖2 − 1)2

]
where X̄ = tX + (t − 1)Y for

t ∼ Uni (0, 1) and X ∼ PX , Y ∼ Pθ which re-
spectively are real and generated samples. This is moti-
vated by the fact that the optimal critic function φ∗ con-
tains straight lines with gradient norm 1 connecting cou-
pled points from PX , and Pθ(cf. [Gulrajani et al., 2017,
Proposition 1]). [Petzka et al., 2018] then proposed an al-
ternative to gradient penalty called Lipschitz penalty which
replace a l2 norm of gradient in GP to l1, RLP =
E
PX̄

[
(max {0, ‖∇wf (x)‖ − 1})2

]
. Gradient and Lipschitz

penalty regularizers only enforce Lipschitz constraint on a lo-
cal data domain (not ∀x, y ∈ X ), therefore [Wei et al., 2018]
further improved the WGAN-GP by incorporating a consis-
tency term to the objective function of WGAN-GP to en-
force the (global) Lipschitz constraints of Wasserstein GAN.
They defined a practical form of term CT as follows RCT =
E

x∼PX
[max (0, c (x1, x2) + 0.1 · d (x1−, x2−)−K)], where

x1, x2 and x1−, x2− are perturbed embedded real data via
critic φ, i.e. x1,2 = φdrop (x) where φdrop is a hidden layers
dropout of φ 4. Two vectors x1−and x2− are outputs of the
last layer of φdrop corresponding to x1,x2. Spectral normal-
ization technique proposed by [Miyato et al., 2018] allows to
set the upper bound of the Lipschitz constant of φ. In this
setting, the weight matrix in each layer is normalized by the
spectral norm of that matrix which is equivalent to the largest
singular value. A recent work by [Avraham et al., 2019] has

3In [Arjovsky et al., 2017], authors concretely chose the cost
function c (x, y) = ‖x− y‖ which allows weight clipping inducing
Lipschitz condition.

4Note that since dropout is stochastic,φdrop produces two differ-
ent networks for x1and x2.

introduced an additional low dimensional representation (la-
tent space) in parallel with original data and used Wasserstein
distances on both latent space and original space5.

Another line of work that aims to remove the Lipschitz
condition in the dual form of Wasserstein distance is to re-
formulate it. The work of [Liu et al., 2018] redefined the
dual form in Eq. (3) as two-step of optimization: solving lin-
ear programming to approximate discretized critic function T
and then regress the critic φ to fit T . Recent work of [Dam
et al., 2019] introduced a new function called mover to get
rid of the Lipschitz constraint but a new function to optimize.
Their new objective function becomes a min-max-min loss.

Customized Transport Loss Wasserstein GAN
As Wasserstein distance is defined based on cost function
c (·, ·) which is reflected in the Lipschitz condition in the dual
formulation. WGAN-GP used the l2 norm of the gradient in
the loss function which corresponds to the l2 norm used for
cost function c. Similarly, WGAN-LP implies the l1 norm
used. The underlying cost function reflects the geometry of
the space generated data lying on. The work of [Adler and
Lunz, 2018] has generalized the cost function of norms on
Euclidean space to norms on Banach spaces such as Sobolev
norms and Lp norms. These extensions allow practitioners
more ranges of the cost functions to choose from to empha-
size features they wish for generated data. The quadratic cost
function was proposed to use in [Liu et al., 2019] in which
they used two-step optimization in [Liu et al., 2018] for learn-
ing. A recent work by [Korotin et al., 2021] also used the
quadratic cost in their Wasserstein distance and used the input
convex neural networks (ICNN) [Amos et al., 2017] for ap-
proximating the distance. As Wasserstein distance is known
as an effective distance in differentiating images [Rubner et
al., 2000], it was used as a transport loss for Wasserstein GAN
models [Dukler et al., 2019]. Though three-player WGAN
[Dam et al., 2019] was developed to overcome the Lipschitz
constraint, their model is not limited to any specific transport
loss as long as it is lower semicontinuous and bounded [Vil-
lani, 2008].

2.2 Primal Formulation
Wasserstein Auto-Encoder (WAE)
[Tolstikhin et al., 2018] have introduced to use Wasserstein
distance to formulate auto-encoder instead of KL divergence
used in VAE in Sec 1.1. In the paper, they consider a de-
terministic conditional distribution pθ (x | z) via a map Gθ :
Z → X . It turns out that the Wasserstein distance of order 1
between the empirical data distribution PX and the generated
data distribution Pθ under cost function c can be represented
as W1 (PX , Pθ) = infQ: QZ=PZ E

QZ|X , PX
[c (x, Gθ (z))]

where q (z) =
´
q (z | x) p (x) dx is the marginal distribu-

tion of Z. In practical, they relax the constraint of QZ = PZ
by using Lagrangian multiplier and define the WAE objective

DWVAE , inf
ω

E
qω(z|x), p(x)

[c (x, Gθ (z))] + λDZ (q (z) , p (z)) ,

5In fact, they used Monge formulation [Villani, 2003, p.4] on la-
tent space, a strengthened version of Wasserstein distance in which
the constraint of one-to-one mapping between PX and Pθ is en-
dowed.)
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where qω (z | x) is an encoder parameterized by ω, and DZ

is an arbitrary divergence between QZ and PZ . Authors
suggested using variants of generative models such as GAN
[Goodfellow et al., 2014] or the maximum mean discrepancy
(MMD) [Gretton et al., 2012; Li et al., 2015] as divergence
DZ . Recent works have been exploring to use difference di-
vergences for Dz , for instance, [Zhang et al., 2019] approx-
imate QZ as a Gaussian and use the prior PZ as a Gaussian
distribution which leads a analytical form of Wasserstein dis-
tance between two Gaussians for Dz . [Kolouri et al., 2019b]
used sliced Wasserstein distance in Eq. (7) to approximate
the difference between QZ and PZ . Sinkhorn divergence is
also used to characterize distinction in [Patrini et al., 2020].

2.3 Relaxed and Approximated Formulation
Instead of using the original version of Wasserstein (in both
dual and primal forms), there is a line of work that ded-
icated to using variants of sliced Wasserstein distance in
Sec 1.2 for learning deep generative models These works
used the primal form of sliced Wasserstein distance as sig-
nals to update the generators. However, since data lies
on high dimensional spaces, the number of projections for
a good approximation is huge. [Deshpande et al., 2018;
2019; Kolouri et al., 2019a] have suggested to use a learn-
able function, which is learned to most discriminate two
distributions, to map data before projecting to compute the
(max/generalized) sliced Wasserstein distance. In [Wu et al.,
2019], authors used sliced Wasserstein distance in both pri-
mal and dual form to learn Wasserstein GAN and Wasserstein
Autoencoder.

As Sinkhorn divergence in Eq. 6 is computed using the
Sinkhorn algorithm which is amenable to automatic differen-
tiation framework, it was used to learn deep generative mod-
els [Frogner et al., 2015]. However, when dealing with high-
dimensional data, choosing cost function c is a critical task
owing to the curse of dimensionality. In [Genevay et al.,
2018], authors proposed to learn cost function c via a deep
neural network φ to map data from original space onto Eu-
clidean space Rd which has a similar role as critics in WGAN,
i.e. cω (x, y) = (‖φω (x)− φω (y)‖). Typically, embedding
function from data space X to lower dimension is learned
with a maximization problem in a similar fashion with MMD
models [Li et al., 2017] which leads to the optimization prob-
lem minθ maxω Sε (PX , Pθ). One of the benefits of learn-
ing deep generative models with Sinkhorn divergences is that
its natural gradient can be approximated accurately with low
complexity [Shen et al., 2020]. This will help the training
process converge faster.

3 Challenges and Discussions
Since optimal transport in machine learning is a fast-
developing and promising area, there are potential open ques-
tions and challenges in applying optimal transport for deep
generative models particularly. In this section we would like
to highlight a number of open challenges for future research
of using optimal transport for learning deep generative mod-
els research in both practical and theoretical aspects.

Cost function. Wasserstein distance has the benefit of tak-
ing into account the geometry of data space of distributions
which is reflected through the cost function c. Therefore
choosing the appropriate cost function for each data type is
one of the key factors in designing successful learning mod-
els. As described in Sec 2, the popular cost functions used in
major classes of models are lp (p = 1, 2) norms which imply
that data lie on Euclidean spaces. Some others used norms
on Banach spaces or Wasserstein distance. However, which
cost function is suitable for use with a given data type/dataset
is still an open question. Some works do not specify the
cost function but design deep neural network to learn to map
from data spaces to Euclidean spaces and use norms on them.
These methodologies are merely heuristic and do not possess
any theoretical guarantee.

Approximation formulation comparison. There are dif-
ferent forms to approximate Wasserstein distance however
it is not clear which approximation is tighter than the oth-
ers. For instance, all formulations are approximated using the
mini-batch approximation of intractable expectation compu-
tation. The approximation in the dual formulation of WGAN
also comes from deep neural network approximation of the
critic, and soft constraint of 1-Lipschitz condition for the crit-
ics. From the experimental perspective, it is imperative to
have benchmarks on real-world datasets for comparison be-
tween variants of Wasserstein distance. From the theoretical
perspective, there are bound between Wasserstein distances
and sliced variants [Bonneel et al., 2015] but how good a
mini-batch approximation of these formulations in terms of
asymptotic and gradient properties is raised as potential chal-
lenges.

Better Wasserstein approximation and extensions. Be-
yond four approximated formulations which have presented
in Sec 1.2, the community is actively proposing some other
approximation methods which are probably amenable for
learning with deep generative models. For instance, re-
cent work on minibatch Wasserstein [Fatras et al., 2020;
Nguyen et al., 2021b] with the theoretical bound on the
approximation of intractable Wasserstein distance has been
proposed. Applying these new approximations for learning
deep generative models is a fruitful direction. There are
several extensions of optimal transport to more general set-
tings: multiple measures called multi-marginal OT, unnor-
malized ones called unbalanced OT [Chizat et al., 2018].
Investigations on these extensions are still an open direc-
tion with few recently published works [Balaji et al., 2020;
Cao et al., 2019].

Beyond Euclidean data generation. Many data in real-
world applications have an underlying structure beyond Eu-
clidean data such as social networks, molecular graph (graph
data), financial data, sentences (sequence data). Most of
the existing works of deep generative models focused and
demonstrated on synthetic and image data. Data generation
using deep neural networks on graph or sequence data is an
open problem with few works published [Yoon et al., 2019;
Golany et al., 2020; De Cao and Kipf, 2018; Jin et al., 2018;
Liao et al., 2019]. Optimal transport based deep generative
models can provide a flexible framework for learning these
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complex structured data. If one can define a suitable cost
function c for a corresponding data type, models in Sec 2
can be used to generate the desired data with some consid-
erations. For instance, we can use (soft) dynamic time wrap-
ping (DWT) [Staib et al., 2017; Blondel et al., 2020] for real-
valued time series, and Gromov-Wasserstein distance in Eq.
(9) for graphs. When the dual form models such as WGAN
are used, the challenge is to enforce the Lipschitz constraint
under the new cost function6. Gradient penalty or Lipschitz
penalty in WGAN is not valid as they have been defined on lp
norms. If we use primal form models such as WAE, the new
cost function can be applied directly. However, the challenge
may come from the complexity of computing these metrics
which can be a burden when training with a large mini-batch
or dataset.

4 Conclusion
Our work provides a systematic review of using optimal
transport for deep generative models. We present a taxon-
omy of deep generative models based on variants of opti-
mal transport distance including primal, dual, relaxed, and
approximated formulations, followed by a detailed introduc-
tion, comparison, and discussion connections and differences
of them. We also discuss the current challenges of the current
models in terms of cost function awareness and comparison
of different approximations of optimal transport distance. We
finally describe visions and directions of data generation with
non-Euclidean data.
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