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Abstract

Artificial Intelligence (Al) is widely used in deci-
sion making procedures in myriads of real-world
applications across important practical areas such
as finance, healthcare, education, and safety critical
systems. Due to its ubiquitous use in safety and pri-
vacy critical domains, it is often vital to understand
the reasoning behind the Al decisions, which moti-
vates the need for explainable AI (XAI). One of the
major approaches to XAl is represented by comput-
ing so-called interpretable machine learning (ML)
models, such as decision trees (DT), decision lists
(DL) and decision sets (DS). These models build
on the use of if-then rules and are thus deemed to
be easily understandable by humans. A number of
approaches have been proposed in the recent past
to devising all kinds of interpretable ML models,
the most prominent of which involve encoding the
problem into a logic formalism, which is then tack-
led by invoking a reasoning or discrete optimiza-
tion procedure. This paper overviews the recent
advances of the reasoning and constraints based ap-
proaches to learning interpretable ML models and
discusses their advantages and limitations.

1 Introduction

The expanding reach of machine learning (ML) based sys-
tems and their complexity motivated the need for approaches
that explain complex ML models. The quest for explainabil-
ity of machine learning (ML) models has motivated in recent
years a renewed interest in so-called interpretable ML mod-
els, namely in settings that are safety critical or where fairness
and trust are required [Rudin, 2019]. Examples of ML mod-
els that are deemed interpretable include for instance deci-
sion trees [Nijssen and Fromont, 2007; Bessiere et al., 2009;
Menickelly et al., 2016; Bertsimas and Dunn, 2017; Verwer
and Zhang, 2017; Narodytska et al., 2018; Dash et al., 2018a;
Verwer and Zhang, 2019; Aghaei et al., 2019; Hu et al., 2019;
Lin et al., 2020; Avellaneda, 2020; Aglin et al., 2020a;
Janota and Morgado, 2020; Zhu et al., 2020; Aglin et al.,
2020b; Verhaeghe et al., 2020; Demirovic and Stuckey, 2020;
Demirovic et al., 20201, lists [Angelino et al., 2017a; An-
gelino et al., 2017b; Rudin and Ertekin, 2018; Yu et al.,
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2020a] and sets [Fiirnkranz et al., 2012; Lakkaraju er al.,
2016; Ignatiev et al., 2018; Yu et al., 2020b; Ignatiev et al.,
2021]. Nevertheless, there are other models that can also
be viewed as interpretable, including (reduced) ordered bi-
nary decision diagrams [Bryant, 1986; Cabodi ef al., 2021]
((R)OBDD), their well-known generalization of determinis-
tic branching programs [Wegener, 2000], but also different
knowledge representation languages [Audemard er al., 2020].

When learning interpretable models, one fundamental goal
is to make the model as interpretable as possible. As a result,
some measure of simplicity is often used, e.g. the size of the
resulting model [Narodytska et al., 2018] or the sparseness
of the model [Hu et al., 2019; Lin et al., 2020]. As a result,
recent work focuses on learning models that offer some guar-
antee of optimality, e.g. size or accuracy.

For most interpretable models, concretely for those that
are based on some sort of graph representation, the learn-
ing problem of an optimal model can be reduced to solving
an NP decision problem. Indeed, given some goal in terms
of representation size or accuracy, we just need to guess a
representation respecting the size and the intended syntax
(e.g. decision tree, list, set, etc.), and then check (in poly-
nomial time on the size of the dataset and the representation)
whether the representation matches the target goal. As a re-
sult, optimality can be achieved by iterative NP oracle calls,
and so in practice, this problem has often been reduced to
solving a sequence of instances of SAT. Moreover, the in-
terest in the learning of interpretable ML models has led to
dedicated approaches that bypass the encoding to a propo-
sitional representation [Hu et al., 2019; Aglin et al., 2020a;
Lin et al., 2020; Aglin et al., 2020b; Verhaeghe et al., 2020;
Demirovic and Stuckey, 2020; Demirovic et al., 2020].

This paper surveys the rapidly advancing area of learn-
ing optimal interpretable models, aiming at giving an accu-
rate perspective of past work. The paper covers recent work
on learning decision trees, sets and lists, but it also briefly
overviews work on learning other models that can be deemed
as interpretable [Audemard et al., 2020; Cabodi et al., 2021].

The paper is organized as follows. Section 2 introduces
the definition and notation used in the rest of the paper, and
overviews interpretable ML models. Section 3 overviews
reasoning-based approaches. Afterwards, Section 4 discusses
a number of additional trade-offs when learning optimal in-
terpretable models. The paper concludes in Section 5.
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2 Preliminaries & Models Overview

Classification problem. We start by defining the classifi-
cation problem. An instance is a pair I = (fv, class), where
fv € R is a feature vector (f1,..., f,) and class is a class
label, class € K, where K is the set of possible class la-
bels. Often we consider a binary classification problem, i.e.
K = {©,®}. We denote the feature vector and class of an
instance I as fv(I) and class(I), respectively. A dataset D
is a set of instances: D = Uke;ch, where the dataset DF
is the set of instances that belong to the kth class. In case
of the binary classifier, we use datasets D® and D€ to de-
note the sets of positive and negative instances. A classifier
is a mapping f : fv — K. Given a dataset D and a clas-
sifier f, an instance I with class k = class(I) is misclas-
sified if the classifier f incorrectly classifies instance I, i.e.
f(Ev(I)) = K/, k' # k. Learning a classifier corresponds to
selecting a function f from a family of functions aiming to
maximise a given metric that we describe below. Next, we
consider three classes of classifiers.

Decision tree (DT). Decision trees are binary trees, where
each node is either a predicate node, which is assigned a pred-
icate, or a classification node (leaf node), which is assigned
to a class. A classification tree classifies an instance accord-
ing to the following recursive procedure starting at the root
node: if the node is a classification node, return the class as-
signed to the node, otherwise recurse on the left or right child
node depending on the result of applying the instance to the
node predicate. A common predicate choice is to evaluate
whether a particular feature of the instances exceeds a thresh-
old. The depth of a tree is the maximum number of predicates
from the root node to any leaf node. The size of a tree is the
number of nodes (predicate + classification) in the tree.

Example 1. Figure I shows an example of a DT for the Ti-
tanic dataset. Here, the DT is a binary classifier, i.e. all leaves
are labeled with “No” or “Yes”. A predicate node branches
on whether a feature equals a certain value, e.g. whether the
“Sex” feature of an individual is “Female” or “Male”. [

Decision set (DS). A decision set R is an unordered set of
if-then rules of the from © = k, where 7 is a predicate and
k is a class label, £k € K. Given an instance I and a rule
m = k, if the instance satisfies the predicate 7, i.e. 7(I) =
1, then the rule predicts that I belong to class k. As rules
in DSs are unordered, some rules may overlap, i.e. multiple
rules’ predicates may agree with an instance of the feature
space. As such, one can either have a tie-break rule to pick the
class [Lakkaraju ef al., 2016] or declare an overlap [Ignatiev
et al., 2018]. It may also happen that none of the rules of a
DS apply to some instances. In this case, one can apply the
default rule [Lakkaraju et al., 2016; Yu et al., 2020b].

Example 2. Figure 4a shows an example of a decision set
for the Titanic dataset. Each rule consists of a predicate that
constitutes a conjunction of constraints on features. For in-
stance, the second rule is a conjunction of two unary con-
straints on features “Age” and “Sex”. Namely, m := (Age =
Adult) N (Sex # Female), The class label is “No” for this
rule. If we have an instance (Age = Adult, Sex = Male, . . .)
then the predicate T holds and we output class “No”. 0

Decision list (DL). A decision list £ = (r1,...,7p,70) of
length P > Ois a (P + 1)-tuple consisting of P distinct rules
m; = ki, v = 1,..., P, followed by a default rule ry. As
above, a rule m; = k; corresponds to a conditional statement
“if the predicate 7; holds for a given instance then the class
label is k;”. The final default rule ry of the DL can be seen as
a special rule, where Ty = T so the predicate always holds.

Example 3. Figure 3a shows an example of a DL of length
two for the Titanic dataset. Given an instance, the first rule’s
predicate checks whether features “Age” and “Sex” satisfy
unary constraints. If so, the output label is “No”. Otherwise,
the second rule’s predicate checks the “Category” feature of
the instance. If Category # 3rd class then we output “Yes”.
Otherwise, we apply the default rule and output “No”. O

Binarization. The language or predicates available to de-
fine decision trees, lists and sets is a crucial parameter of the
methods. Most of the optimal methods we examine assume
the features are binarized (one-hot encoding of categorical
features, and binary representation of numerical features) and
the predicates are simply the Boolean features themselves.
We will point out where this assumption does not hold.

Optimization criteria. As mentioned above, learning a
classifier is guided by an optimization function (or metric)
specified by a user. For example, the user might prioritize the
accuracy of the model over the its size or might want to con-
sider a weighted combination of these criteria. Here we recall
a few natural optimization metrics.

One metric to consider is the accuracy of the model. Ac-
curacy is the ratio between the number of correctly classi-
fied instances and the number of all instances in the data.
(Accuracy maximization can also be approached by mini-
mizing the number of misclassifications.) The model is said
to be perfect if it achieves highest possible accuracy on the
training set. Note that the training data may contain con-
flicting instances Iy and I, such that fv(I;) = fv(I;) and
class(I1) # class(Iz). One option is to pre-process data
and resolve conflicts using data statistics. Alternately, if we
cannot resolve conflicts, we can keep these instances and let
the classifier learn the best model. If the training data has no
conflicting instances, a perfect model must classify all train-
ing data correctly, thus, yielding an accuracy of 100%; other-
wise, the accuracy must be lower than 100%. Another impor-
tant metric is model sparsity. For example, our optimization
function can minimize the number of leaves in a tree or the
depth of the tree. Figure 2 shows a sparse DT computed for
the Titanic dataset. In case of DSs or DLs, we might want
to optimize the number of rules or the number of constraints
in predicates. Figures 4b and 3b show examples of a sparse
DS and a sparse DL, respectively, for the same dataset. Note
that the Titanic dataset has conflicting data instances with
78.25% of the data being non-conflicting. Thus, a perfect
model achieves training accuracy of 78.25% on this dataset
while sparse models’ accuracy is guaranteed to be lower.

3 Reasoning-Based Approaches

3.1 Learning Decision Trees

Decision trees are one of the early influential approaches to
ML. Original methods for creating decision trees were based
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Category = 3rd class

[Age = Adull] [Survived = No]
AN
[Survived = Yes] [Sex e Female]
no €S

[Survived = No] [Survived E Yes]

Figure 1: An example smallest size perfect decision tree learned
by [Narodytska et al., 2018] for the Titanic dataset, with training
accuracy 78.25%.

[Survived = No] [Survived = Yes]

Figure 2: An example sparse decision tree learned by [Hu et al.,
2019] for the Titanic dataset, with training accuracy 33.05%.

on heuristics: CART [Breiman et al., 1984], ID3 [Quinlan,
1986] and C4.5 [Quinlan, 1993] — all build the tree itera-
tively by expanding a leaf node to improve some metric such
as Gini impurity [Breiman, 1996] or information gain. Be-
cause these methods have a tendency to overfit, often some
form of post-processing pruning is applied to reduce this [Bo-
hanec and Bratko, 1994; Hastie et al., 2001].

The first approach we are aware of for building optimal
misclassification decision trees, where the aim is to minimize
the number of misclassified training instances is due to [Ni-
jssen and Fromont, 2007]. Their DL8 algorithm is a dynamic
programming approach to build optimal DTs, under various
constraints, e.g. max depth. They restrict themselves, as does
much of the work discussed in this section, to cases where
features are all binary (by encoding if required). The dy-
namic programming nature of the problem arises because the
optimal solution of the left subtree of a node and the right
subtree are independent, once the split feature is determined.
They make use of pattern mining methods to only examine
branches that correspond to frequent itemsets.

[Bessiere et al., 2009] gave the first approach for DTs
based on encoding to a discrete optimisation formalism, de-
scribing both a Boolean Satisfiability (SAT) and Constraint
Programming (CP) model for building minimal size perfect
decision trees which classify the training data perfectly. The
CP model scaled much better then the SAT model although
the authors apply subsampling of the data to increase scala-
bility. They show the resulting decision trees are smaller than
heuristic methods though not necessarily more accurate, and
usually among the best methods in terms of accuracy.

[Bertsimas and Dunn, 2017] mapped the problem of build-
ing an optimal misclassification decision tree, restricted to
complete trees of a given depth, to a Mixed Integer Program
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(MIP). In this work the predicates f; > d are used for split-
ting where d is part of the decisions. The resulting DTs were
shown to be more (out-of-sample) accurate than those created
by heuristic methods. The smaller the training set the better
the accuracy over heuristic methods. The main limitation of
the approach was scalability, it was able to handle problems
with a few thousands training instances. While theoretically
it could determine optimal DTs, in practice this only occurred
for the smallest data sets or small depth limits.

Similar MIP approaches to the optimal classification DTs
as well as optimal regression trees were developed by [Ver-
wer and Zhang, 2017]. Improvements on these techniques
were achieved [Verwer and Zhang, 2019] by essentially bi-
narizing the training data, and restricting decisions to using
these binary features. BinOct [Verwer and Zhang, 2019] was
able to compute solutions much faster than the previous MIP
methods, with increased accuracy (since it can more often
find better solutions). A recent MIP approach [Zhu et al.,
2020] improves on earlier MIP methods by using an SVM
style objective to maximize the number of correctly classified
instances, and introduces an LP based sample procedure to
scale the approach to larger data sets, by selecting the most
important instances to build the MIP model from. It selects
the split predicates as part of the decisions.

A new SAT approach to computing smallest size perfect
DTs was developed by [Narodytska er al., 2018], improving
the encoding of [Bessiere et al., 2009] by simultaneously de-
ciding the tree topology and feature decisions, and thus not
only considering complete trees of some depth. The result-
ing SAT encodings were orders of magnitude smaller. The
method is restricted by the number of training instances it can
handle, and thus uses subsampling to handle large datasets.
[Janota and Morgado, 2020] define an improved SAT model
for perfect DTs, by explicitly encoding paths, rather than
nodes in the tree. They add constraints to ensure the selected
set of paths form a DT. Orthogonally [Avellaneda, 2020]
gives a SAT approach that can minimize the size of the DT
in terms of nodes, and shows how to use active learning to
improve the training time. [Hu er al., 2020] extend the SAT
model of [Narodytska er al., 2018] in a MaxSAT solution to
directly optimise for size of a perfect DT. They also show how
to use MaxSAT to reduce overfitting by optimal boosting.

[Verhaeghe et al., 2020] developed a CP approach to con-
structing an optimal misclassification DT of bounded depth,
by combining global constraints developed for itemset min-
ing with a form of AND/OR tree search and caching to define
a flexible approach to DT construction similar in broad details
to a dynamic programming approach. They show that the CP
approach is superior in construction time to previous methods
DL8 and BinOCT that can answer the same question.

This CP approach was improved in the DL8.5 sys-
tem [Aglin et al., 2020a] by replacing the CP solver with
a bespoke branch and bound caching AND/OR tree search,
essentially a dynamic programming solution. The approach
combines pruning based on depth, minimum support, purity
(all remaining examples are in one class) and pruning the
right child using the answers from the left. It outperformed
previous methods by an order of magnitude, and was further
improved by using sparse bit vectors [Aglin et al., 2020b].
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Further improvements to the branch and bound dy-
namic programming approach were given in [Demirovic and
Stuckey, 2020]. They noticed that the optimal depth 2 trees
can be computed in O(m?|D|) rather than O(n?|D|) where
m is the maximal number of positive features appearing in
any instance, thus improving the base case for the dynamic
program. This together with extensions to directly bound
the size (rather than only depth) and use nearby cached solu-
tions to compute lower bounds improved runtime compared
to DL8.5 [Aglin et al., 2020b] by orders of magnitude.

In a slightly different direction [Hu er al., 2019] presented a
branch and bound dynamic programming approach for com-
puting optimal sparse DTs, where each node in the tree is
considered as equal to some number of misclassifications.
This approach avoids the need for a depth bound assumed
in other methods, bounding the size of the tree using the spar-
sity objective. The resulting trees report very high accuracy,
since sparsity acts as a strong regularizer.

Overall building optimal DTs using bespoke branch and
bound approaches is reasonably scalable, since the methods
are linear in the training data. The bottlenecks arise from the
number of features and the maximum size or depth of the tree.

3.2 Learning Decision Lists

Decision lists were introduced by Rivest (1987) and heuristic
methods for decision lists also date back to the late 80s, e.g.
CN2 [Clark and Niblett, 1989; Clark and Boswell, 1991].

One recent approach [Angelino er al., 2017a; Rudin and
Ertekin, 2018] provides DLs that have some optimality guar-
antee. Given a fixed set of decision rules, it chooses a
minimum-size ordered subset of these rules; the order essen-
tially terminates when a default rule is chosen. The authors
model the problems as an integer program (IP) and solve it
with a mixed integer programming (MIP) solver. The ob-
jective is a combination of training accuracy and sparsity,
minimizing misclassifications where every used rule incurs a
“cost” of C misclassifications, and every used literal costs C
misclassifications. The method exhibits scalability issues and
it is somewhat restricted by the time required to generate all
potential possible rules as input. They consider data sets with
up to 3000 examples and 60 features, but cannot prove opti-
mality of their solutions on the data tested. One advantage of
the approach is that it is easy to customize, e.g. favoring the
use of certain features, or extending to cost-sensitive learning.

To the best of our knowledge, the first method to gener-
ate optimal decision lists extends the approach of [Rudin and
Ertekin, 2018] using the same idea of ordering a fixed set
of decision rules, but using a bespoke branch-and-bound al-
gorithm [Angelino et al., 2017b]. The method makes use
of bounding methods and symmetry elimination techniques.
They minimize regularized misclassification, where each rule
costs AM misclassification errors where M is the number of
training examples. The approach relies on the sparsification
parameter ) to limit the set of rules it needs to consider. It can
find and prove optimal solutions to large problems (hundreds
of thousands of examples), the main limitation is on the num-
ber of features, since the number of possible decision rules
grows exponentially in the number of features.

A novel SAT- and MaxSAT-based approach to learning
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perfect and sparse DLs was proposed in [Yu et al., 2020al.
It builds on the prior work on training perfect and sparse
DSs [Ignatiev et al., 2018; Yu et al., 2020b], targets mini-
mization of the total number of literals in use and is shown
to scale similarly to [Yu et al., 2020b]. The approach is com-
pared against optimal perfect and sparse DSs as well as the
earlier DL inference approach CORELS of [Angelino et al.,
2017a; Angelino et al., 2017b]. Tt is able to produce DLs
that are guaranteed to be optimal with respect to the metric
in use. Note that sparse DLs are computed using the constant
regularization parameter A that indicates how much misclas-
sifications a given literal costs if added to the DL model.

3.3 Learning Decision Sets

Decision sets are a rule-based predictive model that can be
traced at least to the work on heuristic algorithms CN2 [Clark
and Niblett, 1989; Clark and Boswell, 1991] and RIP-
PER [Cohen, 1995]. To the best of our knowledge, decision
sets first appear as an unordered variant of DLs [Rivest, 1987;
Clark and Niblett, 1989] in [Clark and Boswell, 1991].

The use of logic and optimization for synthesizing a dis-
junction of rules matching a given training dataset was first
proposed in [Kamath et al., 1992]. This work targets solely
binary classification problems and focuses on computing an
explicit formula representing one class (either ¢ or &). Each
rule is assumed to be a conjunction of feature literals, i.e. the
classifier is computed in the form of disjunctive normal form
(DNF) (similar reasoning can be applied for inferring CNF
representations). Concretely, they propose a CNF encoding
for computing such a target formula representation, which is
then tackled with the use of the interior point method.

Recently, [Ignatiev et al., 2018] proposed a few problem
formulations for computing smallest size perfect DSs with an
explicit representation of each of the multiple classes. They
vary in terms of how rule overlap is handled, which leads
to the varying problem complexity for the proposed variants.
The work also proposes a novel SAT encoding for minimizing
the number of rules in the target DS using a sequence of SAT
oracle calls. Each such oracle call decides whether or not a
DS of a given size exists. The approach of [Ignatiev ef al.,
2018] is shown to significantly outperform the smooth local
search approach, proposed earlier in [Lakkaraju er al., 2016].

Although the number of rules is a valid metric for mea-
suring DS size, in practice a user may get a DS with a small
number of rules such that each rule has a large size. This
makes it hard for a user to interpret the predictions made by
the model. As a result, [Ignatiev et al., 2018] extends the
SAT-based approach to rule minimization with an additional
step to minimize the total number of literals used in the DS,
which results in a lexicographic approach to minimization.

In contrast, [Yu er al., 2020b] builds on the approach of [Ig-
natiev et al., 2018] but instead for the first time proposes to
directly minimize the total number of literals in the target DS.
Unsurprisingly, they confirm that minimizing the number of
rules is more scalable for solving the perfect DS problem
since the optimization measure, i.e. the number of rules, is
more coarse-grained. However, minimizing the total number
of literals is shown to produce significantly smaller and, thus,
more interpretable DSs. They also extend the approach to
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THEN Survived = No
THEN Survived = Yes
ELSE Survived = No

IF Age = Adult A Sex # Female
ELSE IF Category # 3rd class

(a) An example smallest size perfect decision list learned
by [Yu et al., 2020al, with training accuracy 78.25%.

THEN Survived = Yes
ELSE Survived = No

IF Category = lIst class

(b) An example sparse decision list learned by [Angelino et
al., 2017al, with training accuracy 70.69%.

Figure 3: Example decision lists for the well-known Titanic dataset.

THEN Survived = No
THEN Survived = No
THEN Survived = Yes
THEN Survived = Yes

IF Category = 3rd class

IF Age = Adult A Sex # Female

IF Category # 3rd class A Age # Adult
IF Category # 3rd class A Sex = Female

(a) An example smallest size perfect decision set learned
by [Ignatiev et al., 2021], with training accuracy 78.25%.

THEN Survived = No
THEN Survived = No
THEN Survived = Yes

IF Category = 3rd class
IF Sex # Female
IF Category # 3rd class A Sex = Female

(b) An example sparse decision set learned by [Yu et al.,
2020b], with training accuracy 77.57%.

Figure 4: Example decision sets for the well-known Titanic dataset. Both decision sets are computed by minimizing the number of literals.

sparse DSs (minimizing either of the metrics) provide a user
with yet another way to produce a succinct classifier represen-
tation, by trading off its accuracy for smaller size (an example
sparse DS computed by the method of [Yu ez al., 2020b] for
the Titanic dataset is shown in Figure 4b).

Sparse DSs are also considered in [Malioutov and Meel,
2018; Ghosh and Meel, 2019] where the authors propose a
MaxSAT model for representing one target class of the train-
ing data, and the size of the model is measured as the total
number of literals across all rules. As such, rather than build-
ing a perfect DS classifier, they consider a model representing
a single class that minimizes a linear combination of size and
Hamming loss, to control the trade-off between accuracy and
size. Note that this approach assumes the number of rules
to be constant and to be provided by a user, i.e. they do not
guarantee to produce an optimal DS with respect to the to-
tal size of the DS. Scalability of this approach is improved in
[Ghosh and Meel, 2019], which proposes to learn rules itera-
tively on partitions of the training set. Note that they do not
create a decision set as defined in [Clark and Boswell, 1991;
Lakkaraju et al., 2016; Ignatiev ef al., 2018], but rather a sin-
gle formula that defines one of the classes, e.g. ®. (Observe
that the © instances are specified by default as the instances
not captured by the @ formula.) This limits the approach
of [Malioutov and Meel, 2018; Ghosh and Meel, 2019] to bi-
nary classification, and also makes the representation smaller.
The lack of explicit representation for one of the two target
classes also means that explainability is reduced for the data
instances of the “unrepresented” class, since a user has to use
the (negation of the) entire formula for the “represented” class
to explain the classification. This line of work is further ex-
tended in [Ghosh er al., 2020] where the concept of a rule in
relaxed form is introduced based on relaxed definitions of the
standard {A, V} operations. This work argues that the classi-
fiers based on the relaxed rules are more succinct and accurate
than the standard DNF- and CNF-based models.

Integer Programming (IP) has also been used to create op-
timal DS models that only have positive rules. [Dash et al.,
2018b] proposes an IP model for binary classification, where
an example is classified as @ if and only if it satisfies at least
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one clause of the model. The IP model minimizes a varia-
tion on the Hamming loss, which is the number of incorrectly
classified & examples, plus, for each incorrectly classified ©
example, the number of clauses incorrectly classifying it. The
complexity of the model is controlled by a bound on the size
of each clause. The IP model has one binary variable for each
possible clause and the authors use column generation [Barn-
hart ez al., 1998]. Even so, as the pricing problem can be too
expensive, it is solved heuristically for large datasets.

The perfect DSs of [Ignatiev ef al., 2018] and sparse DSs
of [Malioutov and Meel, 2018; Ghosh and Meel, 2019] are
compared in [Yu et al., 2020b] in terms of runtime perfor-
mance but also in terms of model and explanation size. One
of their main conclusions is that perfect DSs are (in some
cases significantly) larger than sparse DSs, which in turn de-
teriorates the performance of the perfect models due to en-
coding size. Model size also affects interpretability of perfect
DSs as the smaller the model is the easier it is to compre-
hend for a human decision maker. ([Yu et al., 2020b] also
argues that best model size and so best model interpretabil-
ity is achieved by the models targeting minimization of the
total number of literals [Yu et al., 2020b] rather than mini-
mization of the number of rules [Ignatiev er al., 2018]; in this
sense, the lexicographic approach of [Ignatiev er al., 2018] is
also shown to perform reasonably well.) On the other hand,
perfect DSs of [Ignatiev er al., 2018; Yu er al., 2020b] outper-
form their sparse counterparts wrt. training accuracy, which
is not surprising given that perfect models aim at complying
with the largest portion of the training data. (This conclusion
on the better accuracy achieved by perfect models is later ex-
tended to the test accuracy in [Yu er al., 2020al.)

Finally, one of the latests reasoning-based approaches to
training perfect DSs is proposed in [Ignatiev et al., 2021],
where the training process is split into two separate phases:
(1) enumerating individual rules exhaustively with the use of
incremental MaxSAT followed by (2) solving the set cover
problem with a MIP solver, to select an optimal subset of col-
lected rules that match the training data. The approach is also
strengthened by applying effective symmetry breaking used
to reduce the number of rules enumerated in phase 1. An
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advantage of this approach is that a user can apply it to mini-
mize either the number of rules or the number of literals, sim-
ply by selecting the objective function in phase 2 of the ap-
proach. Also, the two-phase approach is shown to outperform
all the state-of-the-art competitors in perfect DS learning by
a few orders of magnitude, including prior works [Ignatiev
et al., 2018; Yu et al., 2020b]. However, this approach suf-
fers from the lack of support for sparse DSs — adapting it to
the sparse setting may result in a highly efficient method of
training sparse DSs but it is yet to be investigated.

4 Additional Remarks

This section summarizes the discussion of the previous sec-
tions and makes a few more observations regarding the
reasoning-based approaches to interpretable ML models.

Comparing to Heuristic Methods. The methods discussed
here demonstrate that the resulting models (including DTs,
DLs, and DSs) typically have much higher out-of-sample ac-
curacy than heuristic approaches, even than more expressive
methods such as random forests. The training times are typi-
cally higher than heuristic approaches, but over the evolution
of the methods the difference has drastically narrowed.

Other Interpretable Models. [Cabodi er al., 2021] inves-
tigated two approaches for learning OBDDs [Bryant, 1986].
One approach is based on encoding the learning problem into
SAT. (This is outlined in Section 1 for most ML models that
are based on a directed acyclic graph representation, e.g. de-
terministic branching programs [Wegener, 2000] or any of
their restrictions, including decision trees, BDDs, etc.) An-
other approach taps on the large body of work on reasoning
about BDDs [Bryant, 1986; Wegener, 20001, and proposes a
heuristic approach for learning an OBDD from a dataset.

Perfect vs Sparse Models. Many approaches have been
proposed in the recent past to all the major rule-based mod-
els, including DTs, DLs, and DSs. More importantly, for all
them there are methods that aim at perfectly accurate clas-
sification but also approaches that focus on various sparsity
criteria instead. In general, sparse models are deemed to be
easier to compute due to their smaller size (and thus smaller
formal encoding). They are shown to generalize well on un-
seen data and provide a user with a reasonably good test ac-
curacy. Additionally, smaller model size overall implies that
explanation size on average is smaller for sparse models. On
the other hand, perfect models provide the highest possible
training accuracy, which may in some settings be crucial.

Model Expressivity and Size. When learning interpretable
models, some initial results are known [Rivest, 1987]. Con-
cretely, DLs are more succint than DTs, and DLs are more
succint than DNFs, i.e. a very special case of a DS. To the best
of our knowledge, there are also a number of open problems.
It is unclear how to categorize DSs. The relation between
DTs and OBDDs is also unclear [Zantema and Bodlaender,
2002]. No results are known comparing DLs with OBDDs.
Although we are unaware of any practical works compar-
ing DTs against DLs or DSs, [Yu ef al., 2020a] reports initial
empirical results confirming that DLs are in general more suc-

cinct than DSs if trained on the same datasets. Note that this
was reported to hold both for perfect and sparse models.

Interpretability. Despite the lack of work comparing DTs,
DLs, and DSs from the perspective of model interpretability,
[Yu er al., 2020a] provides initial considerations on compar-
ative interpretability of DLs and DSs. The authors propose
a few metrics for measuring an explanation for DL and DS
models. Their findings suggest although perfect DLs are typ-
ically more succinct than perfect DSs, the explanations for
perfect DLs are on average longer than those for perfect DSs.
On the contrary, sparse DLs are shown to outdo sparse DSs
in terms of average explanation size. Also, [Yu er al., 2020a]
compares with the explanation size for optimal sparse DLs
of [Angelino et al., 2017a; Rudin and Ertekin, 2018] and in-
dicate the that optimality measure exploited by [Yu er al.,
2020a] enables one to train more interpretable models.

[Tzza et al., 2020] is devoted to computing minimal con-
junctive (PI-)explanations [Shih et al., 2018; Ignatiev ef al.,
2019] to DT predictions. Conventionally, an explanation for
a prediction in a DT can be associated with a path executed in
the tree for a data instance to be classified. The authors argue
that although decision trees are deemed to be one of the most
interpretable models, in practice PI-explanations may be arbi-
trarily smaller than “default” explanations computed as paths
firing the prediction, even if the target DTs are guaranteed to
be of minimum size. It is yet unclear whether or not similar
observations can be made for DLs and DSs.

Fairness and Other Constraints. One of the principle ad-
vantages of using reasoning for building ML models is that
additional constraints may be added to enforce some property
of the resulting ML model. [Aghaei er al., 2019] defined a
MIP formulation for optimal DTs that included fairness met-
rics, thus guaranteeing the resulting decision tree met some
measure of fairness. They do require high computation time
compared to specialised heuristic methods for the same prob-
lem, e.g. [Kamiran et al., 2010]. Other interpretable models
have also been used in the context of fairness. For example,
[Ignatiev et al., 2020] showed how to learn fair decision sets,
starting from either biased or unbiased datasets. In both cases,
the key insight is that one can trade off accuracy for fairness.

5 Conclusions

With the growing awareness of the importance of explainabil-
ity of ML models, there has been renewed interest in learning
interpretable models, including decision trees, lists and sets,
among others. Moreover, such interest focused on learning
optimal ML models, using different definitions of optimality,
which offer stronger guarantees in terms of interpretability.
This paper surveys the main results in reasoning-based learn-
ing optimal interpretable models, covering work since the late
80s, but also highlighting the most recent advances. Given
the importance of the topic, one should expect additional im-
provements and results in the near future.
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