
 
Abstract 

In recent years, there has been an explosion of AI 
research on counterfactual explanations as a 
solution to the problem of eXplainable AI (XAI).  
These explanations seem to offer technical, 
psychological and legal benefits over other 
explanation techniques. We survey 100 distinct 
counterfactual explanation methods reported in the 
literature. This survey addresses the extent to which 
these methods have been adequately evaluated, both 
psychologically and computationally, and quantifies 
the shortfalls occurring (e.g., only 21% of these 
methods have been user tested). Five key deficits in 
the evaluation of these methods are detailed and a 
roadmap, with standardized benchmark evaluations, 
is proposed to resolve the issues arising; issues, that 
currently block scientific progress in this field. 

1 Introduction 
In recent years, as AI systems are increasingly deployed in 
everyday life, there has been a slew of research papers on the 
problem of eXplainable AI (XAI), driven by concerns about 
whether these systems are fair, accountable and trustworthy.  
In the literature on post-hoc explanations, that aim to justify 
an AI model’s predictions after the fact, the use of 
counterfactual explanations has gained considerable traction 
based on claimed technical, psychological and legal benefits 
(see Figure 1). Counterfactual explanations provide 
information to users on what might be done to change the 
outcome of an automated decision (e.g., “if your paper had 
more novelty, it would have been accepted to this 
conference”). In this paper, we critically review the 
evaluations carried out on counterfactual explanation 
methods, focusing on psychological issues.  To put it simply, 
we assess whether there is any evidence that counterfactuals 
explanations “work” and whether the properties promulgated 
in current methods are relevant to end users.  So, this review 

is, in part, a critique on the paucity of user testing in the area, 
but it also tries to go beyond this critique to formulate a firmer 
basis for better evaluation of counterfactual methods in the 
future (henceforth, we abbreviate “counterfactual” as CF). 
     Obviously, this analysis is also relevant to the bigger 
picture for XAI, where many have pointed to its failure to 
properly address user requirements [Anjomshoae et al., 2019; 
Hoffman and Zhao, 2020].  As in other areas of XAI, CF XAI 
also suffers from an “over-reliance on intuition-based 
approaches” that, arguably, impedes scientific progress 
[Leavitt and Morcos, 2020].  Our main concern is that the 
XAI community is busily developing technical solutions that 
may be have no practical benefits to people in real-life. As 
Barocas et al. [2020] have pointed out, on CF explanations, 
there is a disconnect between the features of a model and 
actions in the real-world, that needs to be bridged for these 
explanation techniques to work successfully.   
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Figure 1: The number of surveyed papers (per annum) on 
counterfactual XAI (2016-2021) on (a) CF methods (All-Papers-
blue) (b) CF XAI user studies (All-User-Tests - orange) (c) ArXiv 
from a search of abstracts using the terms “counterfactual 
explanation” (All-ArXiv- grey)1 [n.b., only a subset is cited here1] 
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     To be positive, we do not just diagnose the problem but 
advance solutions in the form of a roadmap for future 
evaluations, one that argues for standardized, benchmark 
metrics that are psychologically grounded.  Our hope is that 
these proposals for CF explanation, will also provide a more 
general template for how XAI might approach user-
requirement issues and advance scientific progress.  
     In the remainder of this introduction, we briefly consider 
why counterfactuals have attracted so much attention in XAI, 
before summarizing the contributions of the current paper. 
Then, we review the key insights underlying current CF XAI 
research (see section 2).  In the remainder of the paper, we 
outline five key deficits in CF research that need to be 
remedied if progress is to be made, focused largely on the 
issue on the psychological validity of current proposals.  As 
we shall see, CF research like many areas of XAI, claims that 
its intuition-based computational evaluations are proxies for 
psychological evaluations when such claims are at best, 
unsubstantiated, and, at worst, just wrong. 

1.1 Why Counterfactuals? 
Intuitively, counterfactual explanations seem to convey a lot 
more information about a decision, prediction, or 
classification than factual explanations [Keane and Kenny, 
2021].  To re-run the classic example, a loan refusal by an 
automated AI system using a factual explanation might 
explain the decision to a customer by saying “you did not get 
the loan because your profile is similar to applicants who 
were also refused” [Kenny and Keane, 2019; Kenny et al., 
2021].  In contrast, a counterfactual explanation might 
explain the same decision by saying “if you earned $1k more, 
then you would have gotten the loan”.  Not only does this 
explanation inform end-users about key features leading to 
the decision, but it also opens the door to allowing them to 
improve their chances of success; that is, the explanation can 
identify “actionable” features that permit a remediation of the 
decision (i.e., algorithmic recourse).  Proponents of CFs 
argue for their significant technical, psychological and legal 
benefits over other explanation techniques.  
     Technically, CF techniques build on a wave of popular 
XAI work showing that feature-importance analyses of ML 
models can provide automated explanations.  Techniques – 
such as LIME and SHAP – showed that presenting 
information on the relative importance of features for a 
model’s predictions can provide acceptable automated 
explanations [Ribeiro et al., 2016; Lundberg and Lee, 2017]. 
Some CF methods carry on directly from this approach in 
selecting features to change in the CF [Pedreschi et al., 2019].  
Wacheter et al.’s, [2018] seminal work casts it as an 
optimisation problem balancing the proximity of the CF to 
the test-instance and its proximity to the decision boundary. 
These works demonstrated the technical feasibility of finding 
automated explanations that appeared to be plausible to users. 
    Psychologically, this computational work has been backed 
by a long-standing literature in Psychology [Byrne, 2007, 
2019; Mueller et al., 2019] and Philosophy [Lewis, 

1973/2013; Woodward, 2005] arguing for the centrality of 
counterfactuals in human cognition, explanation and science. 
But, it was Miller’s [2019] seminal review of this literature 
that perhaps convinced the XAI community of the 
importance of these explanations.  These works solidified the 
view that CFs could provide psychologically intuitive, 
plausible explanations; especially, if they were sparse (had 
few feature differences) and proximate (the closest possible 
world). However, as we shall see, solid evidence for many of 
these claims has not always been forthcoming. 
      Legally, the final fillip to the counterfactual program 
came from the argument that CF explanations were compliant 
with the EU’s General Data Protection Regulation (GDPR) 
[Wacheter et al., 2018]; so, CFs seemed to provide an 
explanation method that meets emerging regulatory 
requirements on AI systems.  However, note, that this claim 
rests on the assumption that people find CF explanations 
comprehensible, which remains to be proven sufficiently. 

1.2 Motivation & Novel Contributions 
In 2020, two reviews of the CF XAI literature, between them, 
surveyed 52 CF techniques [Karimi et al., 2020a; Verma et 
al., 2020].  However, given the breakneck pace of this area, 
we have uncovered a further 48 CF-method papers not 
referenced in these reviews (see Figure 1). Furthermore, these 
surveys do not focus on user studies, but rather on the 
technical features of explanatory methods. Thus, the present 
survey complements these earlier surveys, but offers a very 
different analysis of the area focusing on the key insights 
made, user studies on CF XAI, and the evaluation deficits in 
the field.   As such the key contributions of the paper are: 

• A novel, critical (updated) review of 100 CF XAI 
methods, focused on -- psychological (user studies) and 
computational (metrics) -- evaluation deficits 

• The quantification of these deficits, to show the extent 
of underperformance in the research effort, to-date  

• The proposal of a roadmap to standardize future 
evaluations and place them on a firmer psychological 
footing for scientific progress to be achieved. 

As we shall see, the current critique rests on identifying the 
paucity of user studies on CF XAI (see Figure 1).  This 
neglect undermines the “proxy” computational evaluations 
currently used, as they are intuition-based and not adequately 
ground-truthed.  In the next section, we summarize the main 
“insights” driving CF XAI research (section 2).  Then, with 
this analysis as a guide, we detail five main deficits in the area 
covering (i) the lack of user studies (section 3), (ii) the 
definition of plausibility (section 4), (iii) the issue of sparcity 
(section 5), (iv) the assessment of coverage (section 6) and (v) 
comparative testing (section 7). We conclude with proposals 
on how to rectify these deficits in future CF XAI work with 
a roadmap and benchmark evaluation metrics (section 8). 
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2    Counterfactual Insights 
The previous reviews of CF XAI mainly profile techniques 
in terms of their technical properties.  We offer a different 
analysis based on the high-level “insights” that have inspired 
the field. We use this discovery-based approach as it forms 
the basis for our proposed standardized evaluation metrics; 
specifically, that key evaluation metrics should address the 
key “insights” underlying the field (see section 8). Although, 
there is huge diversity in the 100 distinct CF methods 
surveyed here, there are perhaps four big ideas that have 
driven the area forward: namely, that generated CF 
explanations need to be (i) guided by proximity, (ii) feature 
focused, (iii) distributionally-faithful and, possibly, (iv) 
instance-based.   Not all methods sign-up to these insights but 
many current proposals are designed to meet them as high-
level requirements. They are summarized below. 
      CFs are proximity-guided. As we have seen, the seminal 
work on CF explanation [Wacheter et al., 2018; Mittelstadt 
et al., 2019] proposes perturbing the features of synthetic CF 
instances, under a loss function balancing proximity to the 
test-instance against proximity to the decision boundary for 
the CF class, using a scaled L1-norm distance-metric.  This 
idea has inspired follow-on work using different distance 
metrics (e.g., L2-norm) or, indeed, combinations of distance 
metrics [Dandl et al., 2020; Artelt and Hammer, 2020], with 
added constraints to deliver diverse CFs [Mothilal et al., 2020; 
Russell, 2019]. Hence, later, we will argue for the use of 
selected distance metrics to benchmark evaluations (ideally, 
ones that are psychologically grounded). 
       CFs need to focus on features.  The second major insight 
that quickly emerged in the area, was on the need to focus on 
the “right” features (actionable ones) to perturb and avoid the 
“wrong” ones (immutable ones), by using predictive 
importance [Maartens and Provost, 2014; Guidotti et al., 
2018; Pedreschi et al., 2019],  “actionablility” [Ustun et al., 
2019; Karimi et al., 2020b; Chou et al., 2021], “coherence”  
[Russell, 2019; Gomez et al., 2020] and “causality” [Karimi 
et al., 2020c; Chou et al., 2021]; while also considering 
dependencies between features [Mothilal et al., 2020; 
Kanamori et al., 2020]. In our evaluation guidelines we 
discuss some of the issues around evaluating this insight. 
      CFs need to be distributionally-faithful. It also became 
clear that the CFs need to fall within the dataset’s distribution 
to ensure plausibility, as some methods produced out-of-
distribution, invalid data-points [Wachter et al., 2018; Laugel 
et al., 2019] (see Figure 2).  Hence, methods emerged using 
generative models [Dhurandhar et al., 2018; Joshi et al., 2019; 
Liu et al., 2019; Singla et al., 2019] and/or techniques 
manipulating the latent features of models [Hendricks et al., 
2018; Van Looveren and Klaise, 2019; Akula et al., 2020; 
Kenny and Keane, 2021]. So, benchmark metrics need to 
assess the distributional properties of CFs and their coverage. 
      CFs are instance-guided: Finally, some have argued that 
the best way to generate “good” CFs is to rely on the dataset, 
either (a) directly by using Nearest Unlike Neighbours 
(NUNs) [Nugent et al., 2009] or (b) indirectly, by adapting 
instances [Goyal et al., 2019; Keane and Smyth, 2020; 

Delaney et al., 2020; Smyth and Keane, 2021]; closely 
related methods preferentially select synthetic CFs falling in 
dense regions of the dataset [Poyiadzi et al., 2020].  We 
propose a relative-distance metric to capture this. 
    In the following five sections, we critique the 
psychological and computational evaluations used in CF XAI, 
before considering how the deficits found might be rectified. 

3 Deficit #1: Neglecting Users 
The neglect of user studies is the “original sin” of XAI 
research.  In an XAI-wide survey, Adadi and Berrada [2018] 
reported that only 5% of papers evaluated interpretability. In 
the CF XAI papers surveyed here, only 31% of papers 
perform user studies (36 out of 117) and fewer (21%) directly 
user-test a specific CF method (i.e., many are non-model 
tests).  Indeed, as the area expands exponentially, the relative 
proportion of user studies is decreasing (see Figure 1).  
Furthermore, many of these studies are methodologically 
questionable (e.g., use low Ns, poor or inappropriate statistics, 
unreproducible designs).  Many user studies test the use of 
CFs as explanations relative to no-explanation controls, 
rather than specifically testing a given method.  So, to use a 
blunt metaphor, we may be fine-tuning AI methods with 
elaborate bells and whistles that no human-ear can hear.  
      To be more positive, most studies reporting these tests do 
show CFs to be useful and sometimes preferred by end users 
(e.g., [Lim et al., 2009; Dodge et al., 2019]).  Lim et al. [2009] 
tested the use of What-if, Why-Not, How-to and Why 
explanations and found that they all improved performance 
relative to no-explanation controls. Dodge et al. [2019] 
assessed four different explanation strategies (e.g., case based, 
counterfactual, factual) on biased/unbiased classifiers and 
found counterfactual explanations to be the most impactful. 
However, it should also be said, that some studies show that 
CF explanations often require greater cognitive effort and do 
not always outperform other methods [Lim et al., 2009; Lage 
et al., 2019; van der Waa et al., 2021]. 
      Notably, however, few of these studies directly test a 
particular CF method. We have found that only 25 papers (out 
of 100 method papers) perform user studies on the proposed 
CF method (e.g., [Goyal et al., 2019; Singla et al., 2019; 
Lucic et al., 2020]). These studies typically show some 
improvement in people’s performance on or judgement of an 
AI system, relative to no-explanation controls.  Finally, even 
fewer of these studies pit one method against another in a 
comparative user study (only 7 out of 100 method-papers; 
e.g., [Akula, et al., 2020; Förster et al., 2020a, 2020b]).  
     In summary, this means that from 100 distinct CF 
algorithms in the literature, only 7% report user studies that 
specifically address the detailed properties of their methods.  
This state-of-affairs has knock-on effects for other aspects of 
CF evaluation. Basically, we do not know whether one 
method is better than another on (i) plausibility (section 4), 
(ii) sparsity (section 5), or (iii) coverage of representative 
problems (section 6).  In the following sections, we detail 
these deficits in the evaluation of CF techniques.  
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4 Deficit #2: What’s Plausible? 
All counterfactual explanation methods make the core claim 
that their method delivers plausible or relevant or feasible or 
helpful or good explanations to human users, explanations 
that meet user/stakeholder goals in diverse AI systems.   
Different techniques define plausibility in different ways, 
depending on the insights they promote (see section 2): so 
“plausible” CFs are (i) close to the test instances and the 
decision boundary, (ii) use the “right” features (e.g., mutable, 
actional, causal), (iii) faithful to the distribution, and/or (iv) 
from the training data. For the most part, these claims are not 
supported by user tests but are declared on intuitive grounds. 
Support for these claims is provided by “proxy” 
computational evaluations that often directly parallel the 
theoretical claim (e.g., a generative technique is plausible 
because it produces within-distribution CFs)1. However, all 
of these claims need to be grounded psychologically.  Here, 
we briefly consider what this means for the plausibility-as-
proximity and plausibility-as-good-features claims. 
       Plausibility-As-Proximity2. Many techniques argue that 
the instances in the CF need to be close [Wachter et al., 2018]. 
But, aligning similarity with plausibility is problematic. First, 
there is no concrete evidence – as in human ratings studies -- 

 
1 For now, we will set aside the circularity of this sort of 

evaluation, but let’s note that it is an issue to be addressed. 
2 Note, the concept of plausibility is not well understood in 

Psychology; though, there is agreement that it tends to depend 

showing that plausible CFs are more similar. Second, 
reporting that the counterfactuals generated involve highly-
similar pairs invites the question: “how close do they have to 
be, to be plausible?”.  A CF with a low distance-score could 
well be incomprehensible if it violates common-sense (e.g., a 
house with 2.312 rooms might be very close to the target 
house of 2 rooms but meaningless; see also Figure 2).  Third, 
in computational evaluations a wide range of different 
distance metrics are used, which raises the question as to 
which one is the right one (is it L1, L2 or some other variant)?  
So, though papers report distance metrics for computational 
evaluations because these metrics are not grounded 
psychologically, they do not tell us whether people will find 
them acceptable.  We know of no user studies that confirm 
which distance metric is a good proxy for the psychological 
distance of CF explanations (e.g., something akin to Wang et 
al.’s, [2004] structural similarity index (SSIM) for images).  
If similarity is to be used as a proxy for plausibility, the 
chosen metric needs to be psychologically grounded (and 
explicitly, linked to people’s assessments of plausibility). 
     Plausibility As More-Good-Features. Others argue for the 
importance of “good” features for plausibility.  But, aligning 
the plausibility of CFs with the appropriate use of “more good 
features” is also problematic.  First, as with similarity, we 
have no direct evidence on the link between plausibility and 

heavily on user’s knowledge of a domain, rather than on similarity 
per se [Connell and Keane, 2007]. 

Figure 2: Two counterfactual comparisons for a time-series EEG signal (A) a “native CF” (a NUN from the dataset) that is distant 
from the test instance but within distribution (L1-norm = 38.29) and (B) a synthetic CF generated by a proximity method [Wachter 
et al., 2018] which is much closer to the test instance (L1-norm = 3.88) and offers a sparser solution but is out-of-
distribution according to the OCSVM metric (given the spike).  Neither of these counterfactuals are likely to be plausible to end-
users (from [Delaney et al., 2020]). 
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the feature-characteristics of CFs.  Though, intuitively, we 
may agree that immutable features should not occur in 
plausible CFs, we do not know how different features-types 
– actionable, mutable, feasible or causal -- impact people’s 
perception of explanations; for example, how many “good” 
features are required for a plausible CF or how does the 
acceptability of explanations change with variations in a 
user’s causal model of the domain and so on. Note, that 
[Lakkaraju and Bastani , 2020] recently found that people can 
be misled into trusting a model more if the factual 
explanations used avoid “sensitive” features (such as gender 
and race). So, without thorough user studies, the plausibility 
of CFs with more-good-features remains an open question.   

5 Deficit #3: The Shape of Sparsity 
It is generally agreed that “good” CF explanations will be 
sparse (aka have few feature differences).  This sparcity 
claim is made on intuition, sometimes with a hand-wave to 
psychological research on working memory limitations, 
visual memory, or limits on human category learning. An 
automated explanation for a house-price prediction saying “if 
it had 2 more rooms and a bigger garden, it would be double 
the price” is intuitively viewed as being better than one 
saying “if it had 2 more rooms, a bigger garden, a larger 
bathroom, a wider entrance-hall and a two-car garage, it 
would be double the price”.  But, how sparse should sparse 
be?  Most researchers do not commit to an optimal sparcity 
level for “good” CFs.  The few papers that do commit, vary 
widely in their positions, from 1-2 feature-differences 
[Schleich et al., 2021; Keane and Smyth, 2020] to 8-30 
feature-differences [Martens and Provost, 2014].  Choosing a 
number seems to be important as it looks like many popular 
methods do not find low-sparcity CFs [Schleich et al., 2021]. 
However, until recently, there was little hard evidence on 
what sparcity level might be psychologically optimal.  
    All the user studies that show some the general effect of 
CFs in XAI [Dodge et al., 2019; Lim et al., 2020] use single-
feature-difference CFs, so they are silent on the impact of >1 
feature-differences on people’s responses. The first direct 
tests of sparcity come from a single group in the University 
of Ulm [Förster et al., 2020a, 2020b]. Over a series of studies, 
assessing CF methods, they systematically varied the median 
feature-differences in CF explanations shown to users.  
Interestingly, they found that people do not prefer 1-
difference CFs but do find CF explanations with 2-3 feature-
differences to be much better. 
    The point of this discussion is not all about what the 
optimal psychological sparcity-level might be, but is rather 
again to underscore the importance of using evaluation 
metrics that are backed by user studies.   Clearly, the precise 
optimal sparcity level for people is likely to vary (e.g., in 
tabular versus text/image data, especially when chunking is 
taken into account)3; however, it is probably wise to settle on 

 
3 Note, what counts as a feature will not always be an input-

feature (as in tabular data); we may be dealing with latent or 

a low-end score, if only to set a high bar for distinguishing 
between different methods. 

6 Deficit #4: Covering Coverage  
Any adequate counterfactual method needs to guarantee that, 
on the whole, it will produce “good” counterfactual 
explanations and avoid “bad” ones over some set of 
representative problems. If a method generates implausible 
explanations, even some of the time, given people’s tendency 
towards “algorithmic aversion” it will fail [Burton et al., 
2019].  Laugel et al. [2019] showed that one type of “bad” 
CF (i.e., out-of-distribution items) can be as high as 36% for 
some CF methods and Delaney et al. [2020] have shown that 
even close, low-sparcity CFs can be out-of-distribution (see 
Figure 2).   In the 100 systems reviewed here, we found that 
only 22% report “coverage results”, though the definitions of 
the concept differ [Keane and Smyth, 2020; Schleich et al., 
2021; Dandl et al, 2020].   
      What we are calling coverage can be measured in a 
number of different ways. Some have used out-of-
distribution (OOD) measures to track the numbers of invalid 
CFs being produced by models: including, using IM1 and 
IM2 [Van Looveren  and Klaise, 2019], Local Outlier Factor 
(LOF) [Breunig et al., 2000] and One-Class-SVM (OCSVM) 
[Schölkopf et al., 1999]. Obviously, generative CF methods 
place a strong emphasis on staying within the distribution and, 
as such, have championed OOD evaluations [Joshi et al., 
2019; Liu et al., 2019; Singla et al., 2019].  However, these 
measures tell us more about “bad” CF explanations than they 
do about “good” ones.  If we assume OOD-CFs are 
implausible (and this needs to be verified psychologically) 
then the remaining in-distribution CFs only “may” be 
plausible; being in-distribution is not in itself a guarantee of 
plausibility (see Figure 2).  We need to know which of these 
in-distribution CFs that are plausible. 
     Keane and Smyth [2020] have proposed the idea of 
explanatory competence (by analogy to predictive 
competence [Juarez et al., 2018]) using a definition of 
explanatory coverage (XP_Coverage). Assume we have a 
function that captures psychologically-acceptable CF 
explanations -- explains(c, c’) -- where, c, is the test instance 
and c’ the CF-instance.  Then, the explanatory competence of 
a dataset, C, can be represented by a coverage set (Eq. 1) and 
degree of explanatory competence is the size of the coverage 
set as a fraction of the dataset (Eq. 2): 

 
This evaluation metric is critical as it estimates the likelihood 
that users will encounter a good explanation when using a 
given method.  However, an issue for this measure is how to 

“semantic” features of the model, which may be superpixels for 
image data or motifs in time-series, and so on. 

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4470



define the explains function. Keane and Smyth [2020] 
adopted the simple expedient of defining it as any CF with ≤2 
feature-differences; but, more complex, psychologically-
backed definitions need to be defined.  We argue this measure 
needs to be part of any standard, benchmark evaluation.   

7 Deficit #5: Comparative Testing 
The final deficit to be noted about the CF literature is the lack 
of comparative testing in CF papers.  We found only 40% (40 
of 100 method papers) reported any form of comparative 
testing4. While the community has clearly moved beyond 
John McCarthy’s “Look Ma, no hands !” phase, given the 
sheer number of different methods now in the literature, more 
comparative testing is clearly needed.   Fortunately, more 
papers recently tend to report such tests and many groups are 
making their code publicly available.  We believe that with 
an agreed set of evaluation measures that are grounded in user 
tests, this field is poised to deliver solid scientific advances. 

8 Roadmapping & Benchmarking 
The human aspect of XAI research places a whole new set of 
constraints on the AI methods being developed to ensure 
fairness, accountability and trustworthiness.  In this survey, 
we reviewed the evaluative shortcomings of XAI research on 
counterfactual explanations, mainly with an eye to providing 
a better psychological grounding for the area.  To cement real 
progress in this area, we recommend a roadmap for future 
work and set of evaluative benchmarks to be adopted.  

8.1 Roadmap for Psychological Grounding 
We have argued that the core deficit facing CF XAI is the gap 
in user testing and the proper psychological grounding of 
computational evaluations. As such, our research roadmap 
recommends a program of general and specific testing of 
counterfactual explanations.    
     Broad user-testing needs to be carried across a range of 
diverse domains (e.g., decision making systems using 
datasets in different enterprise domains).   For these general 
tests, we recommend the studies by [Dodge et al., 2019] and 
[Lage et al., 2020] as excellent experimental designs.  
     Specific user testing is also required to backstop the 
benchmark computational metrics to be used for comparative 
evaluations of methods.  These studies will need to determine 
(i) the relationship between proximity and “good” CF 
explanations as determined by human-users and the most 
suitable distance metric to approximate this (whether it be L1, 
L2, or some other metric), (ii) the bounds on sparcity (to 
determine the optimal frequencies in feature-differences for 
comprehensibility, in different domains), (iii) how different 
classes of feature-differences are cognitively appraised (e.g., 
mutable/non-mutable, causal, actionable) and how this 
interacts with expertise in a domain, (iv) whether people can 
spot out-of-distribution CFs, how they appraise  them and the 

 
4 Note, this number overestimates comparative tests as it 

includes papers that solely test variants of their own algorithm. 

cognitive factors affecting these appraisals. For these specific 
tests, we recommend [Förster, et al., 2020a, 2020b] and [van 
der Waa et al, 2021] for the best experimental designs.    

8.2 Benchmaking Evaluative Methods 
As part of this roadmap we also need a standardized set of 
“proxy” computational evaluation metrics to help us decide 
between the 100-odd methods in the literature. We propose 
four benchmarking metrics that are selected to address the 
key insights guiding CF XAI research: including, benchmark 
metrics for proximity, sparcity, coverage and relative 
distance. We do not list benchmark datasets as there is 
already good agreement across papers on the key ones to use. 
     Proximity. Distance metrics are a rough, but reasonable, 
proxy for the overall performance of a CF method, though 
they can hide a lot; by convention, the literature has 
commonly used L1- and L2-norms.  To enable retrospective 
comparisons the L1-norm probably has to be used, alongside 
the L2-norm, until it is clear which one is the more 
psychologically-valid measure.  Karimi et al. [2020b] 
provide a good example of this sort of evaluation. 
     Sparcity. We have seen that sparcity is a critical index of 
the psychological acceptability of CF explanations.  As 
distance metrics report averages, tests need to be broken out 
by sparcity levels showing the frequency of CFs generated; 
the range from 1-5 feature-differences seems critical, as it 
may well discriminate models (e.g., a model producing most 
of its CFs with >4 differences on tabular data may be 
suspect,).   Schleich et al. [2021] give a good example of such 
reporting. 
     Coverage. Armed with a definition of “good 
counterfactuals” (even a rough one based on low-sparcity), a 
coverage metric capturing the proportion of good CFs for 
test-sets will provide a global estimate of the adequacy of 
methods; showing how likely they are to generate 
unacceptable CFs.  Smyth and Keane [2021] provide a good 
example of this sort of reporting. Allied to this, we also need 
a measure of “bad” CFs being generated, using an OOD 
measure; we recommend the Local Outlier Factor (LOF) 
metric, for now, used in some papers [Breunig et al., 2000]. 
     Relative Distance. Finally, we propose a relative-distance 
measure (with the most psychologically-valid distance metric) 
comparing the mean distance of CF-pairs (between the test 
and CF instance) over the mean distance of “native 
counterfactuals” (NUNs). This metric is included to assess 
the instance-guided insight, as it shows whether the CFs 
generated by a method are closer than “natural” CFs in the 
dataset, on the assumption (to be tested) that this makes them 
better (see [Smyth and Keane, 2021] for an example). 

8.3 Caveats & Conclusions 
We should conclude with three caveats about these proposals 
that are important.  First, we recognize that there are wider 
issues about the use and assessment of CF algorithms that are 
not considered here; namely, issues around the fidelity of 
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explanations to a model’s predictions, the robustness of 
methods, the speed/complexity of the algorithm, ethical and 
stakeholder issues and so on (see [Sokol and Flach, 2020], for 
a long list of requirements).  Here, we have focused on, what 
we see as, core issues about the psychological and 
computational evaluation of these methods.  All of these 
other requirements are also important.   
     Second, we are conscious that we have not proposed a 
benchmark metric for featural aspects of CF explanations; for 
example, whether the CFs generated by a method observe 
mutability, actionability and causal constraints. This aspect 
of CF methods also needs to be evaluated in a standardized 
way but there is less agreement in the literature on how this 
might be done. Furthermore, any broadly-applicable metric 
will require a dataset-by-dataset agreement on lists of 
immutable/mutable features, actionable features and also, 
possibly, causal models.   While it is not impossible to do this, 
it does require greater community agreement to work. For 
potential candidates for such evaluations see [Ustun et al., 
2019; Karimi et al., 2020b; Schleich et al., 2021].  
      Third and finally, we do not underestimate how difficult 
it will be to rectify the deficits identified here and how much 
work will be required by inter-disciplinary teams to address 
these issues.  However, if XAI does not address these sorts of 
issues then the emerging impediments to the widespread 
deployment of AI systems will, simply, not be overcome.  
And, perhaps, more fundamentally, we will not see sufficient 
scientific progress in these parts of the AI firmament. 
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