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Abstract

This paper surveys the recent attempts at leveraging
machine learning to solve constrained optimiza-
tion problems. It focuses on surveying the work
on integrating combinatorial solvers and optimiza-
tion methods with machine learning architectures.
These approaches hold the promise to develop new
hybrid machine learning and optimization methods
to predict fast, approximate, solutions to combina-
torial problems and to enable structural logical in-
ference. This paper presents a conceptual review of
the recent advancements in this emerging area.

1 Introduction

Constrained optimization (CO) has made a profound impact
in industrial and societal applications in numerous fields, in-
cluding transportation, supply chains, energy, scheduling, and
the allocation of critical resources. The availability of algo-
rithms to solve CO problems is highly dependent on their
form, and they range from problems that are efficiently and
reliably solvable, to problems that provably have no efficient
method for their resolution. Of particular interest in many
fields are combinatorial optimization problems, which are
characterized by discrete state spaces, and whose solutions
are often combinatorial in nature, involving the selection of
subsets, permutations, paths through a network, or other dis-
crete structures to compose a set of optimal decisions. They
are known for their difficulty, and are often NP-Hard.
Despite their complexity, many CO problems are solved
routinely and the AI and Operational Research communi-
ties have devised a wide spectrum of techniques and algo-
rithms to effectively leverage the problem structure and solve
many hard CO problems instances within a reasonable time
and with high accuracy. While this success has made possi-
ble the deployment of CO solutions in many real-world con-
texts, the complexity of these problems often prevents them to
be adopted in contexts of repeated (e.g., involving expensive
simulations, multi-year planning studies) or real-time nature,
or when they depend in nontrivial ways on empirical data.
However, in many practical cases, one is interested in solving
problem instances sharing similar patterns. Therefore, ma-
chine learning (ML) methods appear to be a natural candidate
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to aid CO decisions and have recently gained traction in the
nascent area at the intersection between CO and ML.
Current research areas in the intersection of CO and ML
can be categorized into two main directions: ML-augmented
CO and End-to-End CO learning. The former focuses on us-
ing ML to aid the decisions performed within an optimiza-
tion algorithm used to solve CO problems. The latter in-
volves the combination of ML and CO techniques to form in-
tegrated models which predict solutions to optimization prob-
lems. The survey subdivides this context to into two main ap-
plication domains: (1) the fast, approximate prediction of so-
Iutions to CO problems and (2) the integration of data-driven
inference with CO solvers for structured logical inference.
While there exists work surveying ML-augmented CO
methods [Bengio et al., 2020; Lodi and Zarpellon, 2017,
Cappart et al., 2021], the more modern end-to-end CO learn-
ing methods lack of a cohesive and critical analysis. The goal
of this survey is to address this gap and provide a focused
overview on the work to-date on end-to-end CO learning, pro-
vide a critical analysis, and pose a set of open questions.

2 Preliminaries

A constrained optimization (CO) problem poses the task of
minimizing an objective function f : R™ — R, of one or
more variables z € R”, subject to the condition that a set of
constraints C are satisfied between the variables:

O = argmin f(z) subjectto z € C. (1

An assignment of values z which satisfies C is called a feasi-
ble solution; if, additionally f(z) < f(w) for all feasible w,
it is called an optimal solution.

A well-understood class of optimization problems are con-
vex problems, those in which the constrained set C is a convex
set, and the objective f is a convex function. Convex prob-
lems have the favorable properties of being efficiently solv-
able with strong theoretical guarantees on the existence and
uniqueness of solutions [Boyd et al., 2004].

A particularly common constraint set arising in practical
problems takes the form C = {z Az < b}, where
A € R™*™ and b € R™. In this case, C is a convex set. If
the objective f is an affine function, the problem is referred to
as linear program (LP). When a linearly constrained problem
includes a quadratic objective rather than a linear one, the re-
sult is called a quadratic program (QP). If, in addition, some
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subset of a problem’s variables are required to take integer
values, it is called mixed integer program (MIP). While LP
and QP with convex objectives belong to the class of convex
problems, the introduction of integral constraints (x € N™)
results in a much more difficult problem. The feasible set in
MIP consists of distinct points in & € R™, not only noncon-
vex but also disjoint, and the resulting problem is, in general,
NP-Hard. Finally, nonlinear programs (NLPs) are optimiza-
tion problems where some of the constraints or the objective
function are nonlinear. Many NLPs are nonconvex and can
not be efficiently solved [Nocedal and Wright, 2006].

Of particular interest are the mixed integer linear pro-
grams (MILPs), linear programs in which a subset of vari-
ables required to take integral values. This survey is primarily
concerned with optimization problems involving linear con-
straints, linear or quadratic objective, and either continuous
or integral variables, or a combination thereof.

Optimization Solving Methods

A well-developed theory exists for solving convex problems.
Methods for solving LP problems include simplex meth-
ods [Dantzig, 19511, interior point methods [Boyd et al.,
2004] and Augmented Lagrangian methods [Hestenes, 1969;
Powell, 1969]. Each of these methods has a variant that ap-
plies when the objective function is convex. Convex problems
[Boyd er al., 2004] are in the class of P, and can be assumed
to be reliably and efficiently solvable in most contexts. For
a review on convex optimization and Lagrangian duality, the
interested reader is referred to [Boyd er al., 2004].

MILPs require a fundamentally different approach, as their
integrality constraints put them in the class of NP-Hard prob-
lems. Branch and bound is a framework combining optimiza-
tion and search, representable by a search tree in which a LP
relaxation of the MILP is formed at each node by dropping
integrality constraints, and solved using solution methods for
linear programming.

Finally, Constraint Programming [Rossi et al., 2006] is
an additional effective paradigm adopted to solve industrial-
sized MI(L)P and discrete combinatorial programs.

Summary of Deep Learning for CO

Supervised deep learning can be viewed as the task of approx-
imating a complex non-linear mapping from targeted data.
Deep Neural Networks (DNNs) are deep learning architec-
tures composed of a sequence of layers, each typically taking
as inputs the results of the previous layer [LeCun et al., 2015].
Feed-forward neural networks are basic DNNs where the lay-
ers are fully connected and the function connecting the layer
is given by o = 7(Wx + b), where « € R™ and is the in-
put vector, o€ R™ the output vector, W € R"*™ a matrix of
weights, and be R™ a bias vector. The function 7 () is often
non-linear (e.g., a rectified linear unit (ReLU)).

Supervised learning consider datasets x = {z;, y;}}; con-
sisting of N data points with x; € X being a feature vector
and y; € ) the associated targets. The goal is to learn a model
My : X — Y, where 0 is a vector of real-valued parameters,
and whose quality is measured in terms of a nonnegative, and
assumed differentiable, loss function L : Y x Y — R,. The

4476

learning task minimizes the empirical risk function (ERM):
. 1 ¢
min J(Mo,x) = 5 2, L Mo(@). ). @)

Most of the techniques surveyed in this work use (variants
of) DNNs whose training conforms to the objective above.
Other notable classes of deep learning methods used to solve
CO problems are Graph Neural Networks (GNNs), which ex-
ploit architectures designed to perform inference on data de-
scribed by graphs, and Reinforcement Learning (RL), which
differs from supervised learning in not requiring labeled in-
put/output pairs and concerns with learning a policy that max-
imizes some expected reward function. We refer the reader to
[Wu et al., 2020] and [Sutton and Barto, 2018] for an exten-
sive overview of GNNs and RL, respectively.

3 Overview of ML and CO

Current research areas in the synthesis of constrained opti-
mization and machine learning can be categorized into two
main directions: ML-augmented CO, which focuses on us-
ing ML to aid the performance of CO problem solvers, and
End-to-End CO learning (E2E-COL), which focuses on in-
tegrating combinatorial solvers or optimization methods into
deep learning architectures. A diagram illustrating the main
research branches within this area is provided in Figure 1.

The area related with End-to-End CO learning is the focus
of this survey and is concerned with the data-driven predic-
tion of solutions to CO problems. This paper divides this area
into: (1) approaches that develop ML architectures to predict
fast, approximate solutions to predefined CO problems, fur-
ther categorized into learning with constraints and learning
on graphs, and (2) approaches that exploit CO solvers as neu-
ral network layers for the purpose of structured logical infer-
ence, referred to here as the Predict-and-Optimize paradigm.

Before reviewing the E2E-COL research area, the paper
provides a brief overview of ML-augmented CO.

4 ML-augmented CO

ML-augmented CO involves the augmentation of already
highly-optimized CO solvers with ML inference models.
Techniques in this area draw on both supervised and RL
frameworks to develop more efficient approaches to various
aspects of CO solving for both continuous and discrete com-
binatorial problems.

In the context of combinatorial optimization, these are
broadly categorized into methods that learn to guide the
search decisions in branch and bound solvers, and methods
that guide the application of primal heuristics within branch
and bound. The former include low-cost emulation of expen-
sive branching rules in mixed integer programming [Khalil
et al., 2016; Gasse et al., 2019; Gupta et al., 20201, pre-
diction of optimal combinations of low-cost variable scor-
ing rules to derive more powerful ones [Balcan et al., 2018],
and learning to cut [Tang et al., 2020] in cutting plane meth-
ods within MILP solvers. The latter include prediction of
the most effective nodes at which to apply primal heuris-
tics [Khalil et al., 2017b], and specification of primal heuris-
tics such as the optimal choice of variable partitions in large
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Figure 1: Machine Learning and Constrained Optimization.

neighborhood search [Song er al., 2020]. The reader is re-
ferred to the excellent surveys [Lodi and Zarpellon, 2017,
Bengio er al., 2020] for a thorough account of techniques de-
veloped within ML-augmented combinatorial optimization.

Techniques in this area have also used ML to improve deci-
sions in continuous CO problems and include learning restart
strategies [Gagliolo and Schmidhuber, 20071, learn rules to
ignore some optimization variables leveraging the expected
sparsity of the solutions and consequently leading to faster
solvers, [Ndiaye et al., 2017], and learning active constraints
[Ng et al., 2018; Prat and Chatzivasileiadis, 2020] to reduce
the size of the problem to be fed into a CO solver .

5 E2E-COL: Predicting CO Solutions

A diverse body of work within the end-to-end CO learning
literature has focused on developing ML architectures to pre-
dict fast, approximate solutions to predefined CO problems
end-to-end without the use of CO solvers at the time of in-
ference, by observing a set of solved instances or execution
traces. These approaches contrasts with those that use ML
to augment search-based CO solvers and configure their sub-
routines to direct the solver to find solutions efficiently. This
survey categorizes the literature on predicting CO solutions
into (1) methods that incorporate constraints into end-to-end
learning, for the prediction of feasible or near-feasible solu-
tions to both continuous and discrete constrained optimiza-
tion problems, and (2) methods that learn combinatorial solu-
tions on graphs, with the goal of producing outputs as com-
binatorial structures from variable-sized inputs. These two
categories, referred to as learning with constraints and learn-
ing CO solutions, respectively, are reviewed next.

5.1 Learning with Constraints

The methods below consider datasets x = {z;, y;}}; whose
inputs x; describe some problem instance specification, such
as matrix A and vector b describing linear constraints in
MILPs, and the labels y; describe complete solutions to prob-
lem O with input x;. Notably, each sample may specify a
different problem instance (with different objective function
coefficients and constraints).

An early approach to the use of ML for predicting
CO problem solutions was presented by Hopfield and

Tank [1985], which used Hopfield Networks ([Hopfield,
1982]) with modified energy functions to emulate the ob-
jective of a traveling salesman problem (TSP), and applied
Lagrange multipliers to enforce feasibility to the problem’s
constraints. It was shown in Wilson and Pawley [1988] how-
ever, that this approach suffers from several weaknesses, no-
tably sensitivity to parameter initialization and hyperparame-
ters. As noted by Bello et al. [2017], similar approaches have
largely fallen out of favor with the introduction of practically
superior methods.

Frameworks that exploit Lagrangian duality to guide the
prediction of approximate solutions to satisfy the problem’s
constraints have found success in the context of continuous
NLPs including energy optimization [Fioretto et al., 2020b;
Velloso and Van Hentenryck, 2020] as well as constrained
prediction on tasks such as transprecision computing and fair
classification [Fioretto et al., 2020a; Tran et al., 2021].

Other end-to-end learning approaches have demonstrated
success on the prediction of solutions to constrained prob-
lems by injecting information about constraints from targeted
feasible solutions. Recently, Detassis et al. [2020] presented
an iterative process of using an external solver for discrete or
continuous optimization to adjust targeted solutions to more
closely match model predictions while maintaining feasibil-
ity, reducing the degree of constraint violation in the model
predictions in subsequent iterations.

5.2 Learning Solutions on Graphs

By contrast to approaches learning solutions to unstructured
CO problems, a variety of methods learn to solve CO cast
on graphs. The development of deep learning architectures
such as sequence models and attention mechanisms, as well
as GNNs, has provided a natural toolset for these tasks and
led to substantial improvements in the state of the art.
Vinyals et al. [2015] introduced the pointer network,
in which a sequence-to-sequence model uses an encoder-
decoder architecture paired with an attention mechanism to
produce permutations over inputs of variable size. The re-
sulting model was used to learn solutions to the TSP and
the Delaunay triangulation problems from previously solved
instances in a supervised manner, and demonstrated some
ability to generalize over variable-sized problem instances.
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Figure 2: Predict-and-optimize framework; gradients of a solver out-
put (solution) must be computed with respect to its input (problem
parameters) in order to maximize empirical model performance.

This pointer network architecture was also adopted by Bello
et al. [2017] but developed an improved model for learning
the TSP by training it with RL, using tour length as the re-
ward signal. The move from supervised to RL was motivated
partly by the difficulties associated with obtaining target solu-
tions that are optimal, and the existence of nonunique optimal
solutions. Kool et al. [2019] applied an attention-based RL
model to the TSP as well as variants of the vehicle routing
problem, but with a graph attention network [Velickovic et
al., 2018] inspired by the Transformer architecture [Vaswani
et al., 2017]. This neural network design introduces invari-
ance to permutations of the input nodes, improving learning
efficiency.

Dai et al. [2017a] adopted a different RL approach based
on a greedy heuristic framework which determines approx-
imate solutions by the sequential selection of graph nodes.
The selection policy is learned by reinforcement learning, us-
ing a graph neural network (GNN) to predict actions given
a graph embedding representation of the current solution’s
state. Despite the trend toward RL-oriented frameworks,
Nowak et al. [2018] discusses a purely supervised learning
method for the general quadratic assignment problem based
on the use of GNN’s trained on representations of individ-
ual problem instances and their targeted solutions. Inferences
from the model take the form of permutations, which are con-
verted into feasible solutions by a beam search.

These and more approaches are covered in detail in Cap-
part et al. [2021], which provides a thorough survey on CO
and reasoning with GNNGs.

6 E2E-COL: Predict-and-Optimize

A burgeoning topic in the intersection of ML and CO is
the fusion of prediction (ML) and decision (CO) models, in
which decision models are represented by partially defined
optimization problems, whose specification is completed by
parameters that are predicted from data. The resulting com-
posite models employ constrained optimization as a neural
network layer and are trained end-fo-end, based on the op-
timality of their decisions. This setting is altogether differ-
ent in motivation to those previously discussed, in which the

The goal here is to use supervised learning to predict g the un-
specified parameters from empirical data. The learning task
is performed so that the optimal solution O(y) best matches
a targeted optimal solution O(y), relative to some appropri-
ately chosen loss function. The empirical data in this set-
ting is defined abstractly as belonging to a dataset x, and can
represent any empirical observations correlating with targeted
solutions to (3) for some y. See Figure 2 for an illustration.

This framework aims to improve on simpler two-stage ap-
proaches, in which a conventional loss function (e.g. MSE) is
used to target labeled parameter vectors y that are provided in
advance, before solving the associated CO problem to obtain
a decision. Such approaches are suboptimal in the sense that
predictions of y do not take into account the accuracy of the
resulting solution O(y) during training.

We note that there are two ways to view the predictions
that result from these integrated models. If y is viewed as the
prediction, then the calculation of O(g) is absorbed into the
loss function £(g,y), which targets the provided parameter
vectors. Otherwise, the loss function £(O(g), O(y)) is con-
sidered separately from the decision model and aims to match
computed optimal solutions to targeted ones. One advantage
sought in either case is the opportunity to minimize during
training the ultimate error in the computed optimal objective
values fy(O(g)), relative to those of the target data. This
notion of training loss is known as regret:

regret(y,y) = f3(O(9)) — fy(O(y)).

Otherwise the optimal solution O(y) is targeted and one
can use regret(O(y), O(y)), regardless of whether the corre-
sponding y is available. Depending on the techniques used,
it may be possible to minimize the regret without access to
ground-truth solutions, as in Wilder et al. [2019], since the
targeted solutions O(y) contribute only a constant term to the
overall loss. It is worth mentioning that because the optimiza-
tion problem in (3) is viewed as a function, the existence of
nonunique optimal solutions is typically not considered. The
implication then is that O(y) is directly determined by y.

Training these end-to-end models involves the introduction
of external CO solvers into the training loop of a ML model,
often a DNN. Note that combinatorial problems with discrete
state spaces do not offer useful gradients; viewed as a func-
tion, the argmin of a discrete problem is piecewise constant.
The challenge of forming useful approximations to % is cen-
tral in this context and must be addressed in order to per-
form backpropagation. It may be approximated directly, but

a more prevalent strategy is to model ag;y) and % sepa-
rately, in which case the challenge is to compute the former
term by differentiation through argmin. Figure 2 shows the

role of this gradient calculation in context.
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6.1 Quadratic Programming

One catalyst for the development of this topic was the intro-
duction of differentiable optimization layers, beginning with
Amos et al. [2017] which introduced a GPU-ready QP solver
that offers exact gradients for backpropagation by differenti-
ating the KKT optimality conditions of a quadratic program
at the time of solving, and utilizing information from the for-
ward pass to solve a linear system for incoming gradients,
once the outgoing gradients are known. Subsequently, Donti
et al. [2017] proposed a predict-and-optimize model in which
QPs with stochastic constraints were integrated in-the-loop to
provide accurate solutions to inventory and power generator
scheduling problems specified by empirical data.

6.2 Linear Programming

Concurrent with Donti et al. [2017], an alternative method-
ology for end-to-end learning with decision models, called
smart predict-and-optimize (SPO), was introduced by El-
machtoub and Grigas [2021], which focused on prediction
with optimization of constrained problems with linear objec-
tives, in which the cost vector is predicted from data and the
feasible region C is invariant to the parameter y:

O(y) = argminy” 2z subjectto z € C. 4)

The target data in this work are the true cost vectors y, and an
inexact subgradient calculation is used for the backpropaga-
tion of regret loss £(,y) = 47 (O(9) — O(y)) on the deci-
sion task, by first defining a convex surrogate upper bound
on regret called the SPO+loss, for which it is shown that
O(y) — O(2g — y) is a useful subgradient. Since this work is
limited to the development of surrogate loss functions on re-
gret from the optimization task, it does not apply to learning
tasks in which the full solution to an optimization problem
is targeted. The paper includes a discussion justifying the
method’s use on problems with discrete constraints in C, as in
combinatorial optimization, but experimental results are not
provided on that topic. It is, however, demonstrated that the
approach succeeds in a case where C is convex but nonlinear.

Wilder et al. [2019] introduced an alternative framework to
predict-and-optimize linear programming problems, based on
exact differentiation of a smoothed surrogate model. While
LPs are special cases of QPs, the gradient calculation of
Amos et al. [2017] does not directly apply due to singularity
of the KKT conditions when the objective function is purely
linear. This is addressed by introducing a small quadratic reg-
ularization term to the LP objective f,(z) = y” 2 so that the
problem in (3) becomes

O(y) = argminy” z + ¢|z||> subjectto Az <b. (5)

The resulting problems approximate the desired LP, but have
unique solutions that vary smoothly as a function of their pa-
rameters, allowing for accurate backpropagation of the result.
The integrated model is trained to minimize the expected op-
timal objective value across all training samples, which is
equivalent to minimizing the regret loss but without the need
for a target dataset. This work demonstrated success on prob-
lems such as the knapsack (using LP relaxation) and bipar-
tite matching problems where a cost vector is predicted from

empirical data (e.g., historical cost data for knapsack items),
and is shown to outperform two-stage models which lack in-
tegration of the LP problem. We note that although the dif-
ferentiable QP solving framework of Amos et al. [2017] is
capable of handling differentiation with respect to any ob-
jective or constraint coefficient, this work only report results
on tasks in which the cost vector is parameterized within the
learning architecture, and constraints are held constant across
each sample. This limitation is common to all of the works
described below, as well.

Next, Mandi et al. [2020] introduced an altogether different
approach to obtaining approximate gradients for the argmin
of a linear program. An interior point method is used to com-
pute the solution of a homogeneous self-dual embedding with
early stopping, and the method’s log-barrier term is recov-
ered and used to solve for gradients in the backward pass.
Equivalently, this can be viewed as the introduction of a log-
barrier regularization term, by analogy to the QP-based ap-
proach Wilder et al. [2019]:

O(y) = argminy” z + X (2 ln(zi)> subjectto Az < b.

3

Further, the method’s performance on end-to-end learning
tasks is evaluated against the QP approach of Wilder et
al. [2019] on LP-based predict-and-optimize tasks, citing
stronger accuracy results on energy scheduling and knapsack
problems with costs predicted from data.

Berthet et al. [2020] detailed an approach based on stochas-
tic perturbation to differentiate the output of linear programs
with respect to their cost vectors. The output space of the
LP problem is smoothed by adding low-amplitude random
noise to the cost vector and computing the expectation of the
resulting solution in each forward pass. This can be done
in Monte Carlo fashion and in parallel across the noise sam-
ples. The gradient calculation views the solver as a black box
in this approach, and does not require the explicit solving of
LP for operations that can be formulated as LP, but are sim-
ple to perform (e.g., sorting and ranking). Results include
a replication of the shortest path experiments presented in
Pogancic et al. [2020], in which a model integrated with con-
volutional neural networks is used to approximate the shortest
path through stages in a computer game, solely from images.

6.3 Combinatorial Optimization

Ferber et al. [2020] extended the approach of Wilder et
al. [2019] to integrate MILP within the end-to-end training
loop, with the aim of utilizing more expressive NP-Hard
combinatorial problems with parameters predicted from data.
This is done by reducing the MILP with integer constraints to
a LP by a method of cutting planes. In the ideal case, the LP
that results from the addition of cutting planes has the same
optimal solution as its mixed-integer parent. Exact gradients
can then be computed for its regularized QP approximation
as in Wilder et al. [2019]. Although the LP approximation to
MILP improves with solving time, practical concerns arise
when the MILP problem cannot be solved to completion.
Each instance of the NP-Hard problem must be solved in each
forward pass of the training loop, which poses clear runtime
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issues. A disadvantage of the approach is that cutting-plane
methods are generally considered to be inferior in efficiency
to staple methods like branch and bound. Improved results
were obtained on portfolio optimization and diverse bipartite
matching problems, when compared to LP-relaxation models
following the approach of Wilder et al. [2019].

Mandi et al. [2020] investigates the application of the same
SPO approach to NP-Hard combinatorial problems. Primary
among the challenges faced in this context is, as in Ferber
et al. [2020], the computational cost of solving hard prob-
lems within every iteration of the training. The authors found
that continuous relaxations of common MILP problems (e.g.
knapsack) often offer subgradients of comparable quality to
the full mixed-integer problem with respect to the SPO loss,
so that training end-to-end systems with hard CO problems
can be simplified in such cases by replacing the full problem
with an efficiently solvable relaxation, an approach termed
SPO-relax. The authors put continuous relaxations into the
broader category of “weaker oracles” for the CO solver,
which also includes approximation algorithms (e.g. greedy
approximation for knapsack). The main results showed that
SPO-relax achieves accuracy competitive with the full SPO
approach but with shorter training times on a handful of dis-
crete problems. The SPO-relax approach was compared also
against the formulation of Wilder et al. [2019] on equivalent
relaxations, but no clear winner was determined.

Pogancic et al. [2020] introduced a new idea for approxi-
mating gradients over discrete optimization problems for end-
to-end training, which relies on viewing a discrete optimiza-
tion problem as a function of its defining parameters (in this
context coming from previous layers), whose range is piece-
wise constant. The only requirement is that the objective be
linear. The gradient calculation combines the outputs of two
calls to an optimization solver; one in the forward pass on ini-
tial parameters y, and one in the backward pass on perturbed
parameters y. The results are used to construct a piecewise
linear function which approximates the original solver’s out-
put space, but has readily available gradients. Because the
gradient calculation is agnostic to the implementation of the
solver, it is termed “black-box differentiation”. As such, in-
put parameters to the solver do not correspond explicitly to
coefficients in the underlying optimization problem. Results
on end-to-end learning for the shortest path problem, TSP and
min-cost perfect matching are shown. In each case, the dis-
crete problem’s specification is implicitly defined in terms of
images, which are used to predict parameters of the appro-
priate discrete problem through deep networks. The optimal
solutions coming from blackbox solvers are expressed as bi-
nary indicator matrices in each case and matched to targeted
optimal solutions using a Hamming distance loss function.

Finally, Wang et al. [2019] presented a differentiable solver
for the MAXSAT problem, another problem form capable of
representing NP-Hard combinatorial problems. Approximate
gradients are formed by first approximating the MAXSAT
problem as a related semidefinite program (SPD), then dif-
ferentiating its solution analytically during a specialized co-
ordinate descent method [Wang er al., 2018] which solves the
SDP. The successful integration of MAXSAT into deep learn-
ing is demonstrated with a model trained to solve sudoku puz-
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zles represented only by handwritten images.

7 Challenges and Research Directions

The current state of the art in integrating combinatorial op-
timization with end-to-end machine learning shows promise
on challenging tasks for which there was previously no viable
approach. Further, it has been demonstrated that a variety of
non-overlapping approaches can be effective. Despite these
encouraging results, a number of challenges remain that must
be addressed to allow an integration that lives up to its full po-
tential. (1) Despite the variety of approaches, the success of
the predict-and-optimize paradigm has been demonstrated on
a relatively limited set of optimization problems and a major-
ity of reported experimental results focus on linear program-
ming formulations. Challenges posed by the parametrization
of constraints stand in the way of broader applications, but
have not been yet been addressed. (2) Issues associated with
the runtime of combinatorial solvers in-the-loop still make
some potential applications impractical. (3) Additionally, de-
spite being possible in theory, the role of the CO model in-
the-loop has not been generalized successfully beyond being
applied as the final layer of a deep model. The use of addi-
tional layers beyond the solver, or even compositions of CO
solving layers, could potentially lead to new applications if
the practical challenges were to be overcome. (4) In predict-
ing solutions to CO problems, the current methods cannot re-
liably guarantee the problem constraints to be satisfied. This
critical shortcoming may be addressed by integrating ML ap-
proaches with methods from the robust optimization litera-
ture or by developing ad-hoc layers to project the predictions
onto the feasible space. (5) While it has been observed in
limited contexts [Demirovié et al., 2019] that predict-and-
optimize frameworks based on optimization layers are com-
petitive only when the underlying constrained problem is con-
vex, this area still lacks theoretical results providing guaran-
tees on their viability or performance. Finally, (6) the need for
uniform benchmark experiments and systematic comparisons
between each predict-and-optimization framework is appar-
ent. Demirovi¢ et al. [2019] provided a study comparing
the approaches of Wilder et al. [2019] and Elmachtoub and
Grigas [2021], along with problem-specific approaches, on
knapsack problems but did not conclude strongly as to which
method should be preferred. Further, Mandi et al. [2020] re-
ports that for knapsack problems, SPO performs comparably
on the knapsack problem whether the LP relaxation or the full
problem is used, but does not show that this effect generalizes
to other NP-Hard problems. This signals a need for studies
that test performance on a variety of hard CO problems.

Although the approaches surveyed are still in an early stage
of their development, and have been adopted mainly for aca-
demic purposes, we strongly believe that the integration be-
tween combinatorial optimization and machine learning is a
promising direction for the development of new, transforma-
tive, tools in combinatorial optimization and learning.
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