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Abstract
Every model involves assumptions. While some
are standard to all models that simulate intel-
ligent decision-making (e.g., discrete/continuous,
static/dynamic), goal recognition is well known
also to involve choices about the observed agent:
is it aware of being observed? cooperative or ad-
versarial? In this paper, we examine not only these
but the many other assumptions made in the con-
text of model-based goal recognition. By exploring
their meaning, the relationships between them and
the confusions that can arise, we demonstrate their
importance, shed light on the way trends emerge in
AI, and suggest a novel means for researchers to
uncover suitable avenues for future work.

1 Introduction
Goal recognition (GR) is the problem of determining an
agent’s intent from observations of its behaviour. It falls un-
der the scope of “plan, activity and intent recognition” and
is that aspect of the problem which aims to identify top-level
or end-goals rather than steps on the way to a goal’s achieve-
ment (though identification of the steps is often part of the
solution).

GR is a fundamental problem in AI, tackled in numer-
ous ways: traditionally using plan libraries against which ob-
served actions are matched [Kautz and Allen, 1986; Charniak
and Goldman, 1993]; more recently taking a model of the do-
main as problem input, then solving that problem using plan-
ning techniques [Baker et al., 2007; Ramırez and Geffner,
2011; Pereira et al., 2019a, etc.].

Recognition, in general, is a growing area of research, in-
creasingly important as AI agents interact with humans and
other AI systems for the purposes of real-world applications
such as medical support, self-driving vehicles and social care.
The field continues to expand, now including model recog-
nition [Aineto et al., 2019] and model-free GR, which uses
machine learning and, rather than an explicit model, relies in-
stead on combinations of features that may or may not include
aspects of the domain description [Borrajo et al., 2020].

In this paper, we restrict our attention to model-based GR
whereby, instead of relying on pre-existing plans from plan
libraries, either new plans or sets of landmarks (i.e., actions

or states that must be realised for a goal to be achieved) are
generated over a model of the domain and compared with
observed behaviour on-demand.

Model-based GR has flourished in recent years, partly
thanks to its demonstrated success but also because it is con-
ceptually simple, relatively easy to implement and because
there is a wealth of alternative systems from which practition-
ers can choose and on which theorists can continue to build.

But every model is a simplification. The only reliably ac-
curate model of the world is the world itself. Thus, every
model used for model-based GR is constrained by numerous
assumptions; some standard, familiar from countless AI re-
search papers and text books [Russell and Norvig, 2010]; oth-
ers are GR-specific and relate not only to the environment but
to the point-of-view of the observed agent, the nature of the
observations and the type of goals. Even the overarching pur-
pose of the GR task may have an impact, implicitly evoking
assumptions about the notional observer and their perspective
on the observed agent and underlying domain.

For this paper, we examined research from consistent con-
tributors to the field, dating from the inception of model-
based GR (independently arrived at by Baker et al. [2009],
Ramırez and Geffner [2009] and Pattison and Long [2010]).
We identify 20 distinct assumptions that are frequently made,
sometimes explicitly, often implicitly. Where previous sur-
veys have focused on methodology [Sukthankar et al., 2014;
Chakraborti et al., 2019], our focus is on the context within
which the various models are expected to succeed. Our find-
ings are illuminating, not only with respect to GR but for what
they reveal about the dangers of implicit and imprecise as-
sumptions; and for what examination of assumptions tells us
about the way that trends emerge within an AI discipline.

There will never be one unified model of GR that rep-
resents everything it would be helpful to know because too
much about the real world is unknowable so must be guessed
or assumed [Kay and King, 2020]. In what follows, we ex-
amine assumptions commonly made in the context of model-
based GR: their meaning, the relationships between them and
the confusion that can arise when they are poorly stated or
not stated at all. By this we hope: (a) to help theorists clar-
ify the decisions they need to consider and ought to specify;
(b) to help practitioners select the GR models most useful for
their particular purpose; and (c) to help researchers identify
assumptions they might usefully relax in future work.
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2 Assumptions in Goal Recognition
GR involves observations of one or more agent/s aiming for
one or more goal/s in an environment. Decisions made about
each of these features directly impact the performance and
suitability of the GR system.

In this section, we set out key assumptions we encountered
in the literature and the ways that they relate to model-based
GR. We have asterisked the default assumptions: those prop-
erties that (referring to the model definitions, experimental
domains, etc.) seem to apply when not specified in the text.
Unsurprisingly, the default assumption typically represents
the greatest simplification; it is the non-default that tends to
more closely match real world complexity and usually there-
fore represents the greater challenge.

2.1 Assumptions about the Environment
The terms we use for assumptions about the environment
largely coincide with “Properties of task environments” as
listed in [Russell and Norvig, 2010, p.41]. Although—and
perhaps because—the terms are so familiar, they still leave
room for misinterpretation: it is when we think everyone un-
derstands that we make the least effort to explain.

The primary source of confusion, here and throughout, is
that there are at least two players in a GR environment: the
GR system, for brevity the observer; and the observed agent
whose goal is to be determined, the actor. We take the view
that, unless otherwise stated, assumptions relate to the ob-
server’s model of the world that the actor inhabits (itself a
clarifying assumption perhaps worth stating in future work).

We begin with the three least problematic assumptions.
The environment may be discrete* or continuous. That is,
the observer may represent the actor’s world as a finite num-
ber of individual states (e.g., for a gridworld) or by “real”
values on a continuous spectrum (e.g., to describe a robot’s
moving parts). It may be static*, that is, unchanging (e.g., a
fixed maze) or dynamic, liable to change independently of the
actor’s behaviour (e.g., a real-world road network navigated
by an autonomous vehicle). It may be deterministic* such
that, if the observer knows the current state and the action
taken, it knows precisely which state will result or stochas-
tic with the observer only able to evaluate the probable result
(e.g., given a physics engine, the actor drops a glass: usually
the next state includes broken glass, but not always).

In a GR environment, the observer receives information as
a set or sequence of observations. These may either be avail-
able to the observer before processing begins and handled
offline* or delivered incrementally and processed online, as
they are received.1 Online processing implies a temporal se-
quence of observations, which is sometimes specified explic-
itly [Shvo et al., 2018]. In a GR context, some combinations
of environmental assumptions tend to be related. For exam-
ple, a dynamic environment tends to imply online processing:
if the environment may change, it needs to be constantly mon-
itored. Furthermore, if the environment is dynamic, it is likely
also to be stochastic: any external force adds uncertainty to
the potential outcomes of actions, which in turn suggests a
need for online processing.

1Russell and Norvig [2010] use the terms sequential/episodic.

The notions of full and partial observability can be con-
fusing in a GR context, where—with the exception of prior
knowledge—everything the observer knows is delivered via
their observations. In most AI domains, these terms describe
the environment in general (e.g., the state of a chessboard is
fully observable whereas the hands in a Texas hold-em poker
game are not). Consider this, however, from [Pereira et al.,
2019b, p.5548]: “We . . . define the sequence of observations
O to be a partially observed trajectory of states. . . ” (our em-
phasis). This is common usage in GR. It means that while
some, perhaps many, of the events that occur in the environ-
ment may be observed, others may be missing, as is typi-
cally the case. For clarity, we use the term “observability”
as an environmental assumption only, referring to the quality
of information conveyed by each individual observation. We
discuss partial sets and sequences of observations—the “par-
tially observed trajectory” of Pereira et al.—under “missing”
(see Section 2.3). We summarise this and other confusing
assumptions in Table 1.

In the case of full/partial observability, there is no default
as such. If not stated, we derive implicit assumptions from
the domain (e.g., partial in a classical task-planning domain,
where actions are observed rather than complete states, but
full in a path-planning domain).

Further confusion arises with respect to whether the actor
inhabits a single-* or multi-agent environment. In contem-
porary work, by default, GR involves the intent of a single
actor in a single-agent environment (that is, one actor, with
no other agents present). In all other situations, conditions
need to be stated more precisely. If a GR model is explic-
itly declared to be performing “multi-agent” recognition that
probably means that the system will try to determine the pur-
pose of common group behaviour or will take into account the
behaviour of multiple agents and try to determine the inten-
tions of them all. It is, however, entirely feasible for a system
to perform GR with respect to a single agent, which itself
happens to be operating in a multi-agent environment. More-
over, it is reasonable to regard the very act of GR as implying
a second observing agent which, particularly in the context of
human-aware computing, seems to place traditional, single-
agent recognition in an apparently multi-agent environment.
Though highly relevant to many real-world GR problems, we
have found that this assumption is rarely made explicitly.

In the [Russell and Norvig, 2010] list, a domain model may
be known* or unknown. We had not intended to include this
as an assumption since, although we are aware of model-
free GR emerging from the machine learning community,
it seemed self-evident that, in model-based GR, the model
must be known. Recent work from Pereira et al. [2019a;
2019b] challenges our preconception, however, since it deals
with models that are partially known. We felt it important,
therefore, to include reference to this property as a clear re-
cent example of the way that identification of assumptions not
previously relaxed can open opportunities for valuable future
research (as further discussed in Section 3).

2.2 Assumptions about the Goals
It seems obvious that goal recognition must be all about
recognising goals. However, it falls within the broader scope
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ASSUMPTION THIS? OR THIS?
partial observability partially-observed state partial observation sequence

equal priors equal priors throughout equal priors at first timestep
multi-agent multiple actors single-actor in multi-agent environment

noise false observations (didn’t occur) suboptimal behaviour (did occur)
rational agent cost-efficient intentionally suboptimal

full observability fully observed, all remembered unimpeded but may be forgotten
goal recognition also known as plan recognition may involve plan recognition

purpose of GR determine the goal determine observer’s belief

Table 1: Confused/Confusing Assumptions.

of “plan, activity and intent recognition” [Sukthankar et al.,
2014]. Moreover, model-based GR uses planning tech-
niques to solve the GR problem. This causes some con-
fusion as to exactly what is being recognised. The semi-
nal “Plan Recognition as Planning” [Ramırez and Geffner,
2009] concerns goal recognition whereas “Plan Recogni-
tion as Planning Revisited” [Sohrabi et al., 2016] explic-
itly aims to identify plans and goals. Several papers explic-
itly state that they use the terms plan recognition and goal
recognition* interchangeably [Masters and Sardina, 2017a;
Keren et al., 2015]. Arguably, GR can be compiled into plan
recognition (if you have identified the plan, you have identi-
fied the goal [Demolombe and Hamon, 2002]), but as Masters
and Sardina [2017a] show in relation to path-planning, the re-
verse is not always the case. We argue, therefore, that for the
sake of clarity and for the benefit of potential users, these dis-
tinctions should be maintained and the terms only declared
interchangeable if both tasks are demonstrably supported.

Many approaches to GR give, as a solution to the prob-
lem, a probability distribution across the goals, indicating
which is the most likely. All such papers that we exam-
ined used Bayesian*-type reasoning, making it clearly the de-
fault. Some early practitioners, however, favoured Dempster-
Shafer’s possibilistic approach [Carberry, 1996]. Despite the
lack of recent representation, we mention the assumption,
since it is one that might usefully be re-explored.

When probabilities are used, authors often make the “sim-
plifying” assumption “without loss of generality” that the
prior probability distribution across goals is uniform. The
implication is that, although equal priors* are explicitly as-
sumed and have been used experimentally or for the pur-
pose of examples, unequal priors are also supported. In this
case, despite an explicitly stated assumption, the approach re-
mains ambiguous since it is not always clear whether priors
are (a) always equal and can therefore be ignored, (b) un-
equal and must therefore be incorporated, moreover whether
they should be (c) updated following each new observation
or (d) frozen throughout the process which, as Baker et al.
[2011] point out, may produce a different result. This topic is
thoroughly covered in [Masters et al., 2021].

Other assumptions with respect to goals seem somewhat
under-researched. By default the actor is expected to pursue
a single goal*. It may, however, be pursuing multiple (un-
ordered) goals, which arguably could be compiled into one, or
an ordered sequence of sub-goals, which could not. We have
found that there exists an overlap between the notion of sub-

goals and the use of landmarks. Just as Sohrabi et al. [2016],
for example, identify the most probable plan on the way to
determining the most probable goal, so Pattison and Long
[2010] (amongst others) identify landmarks—effectively sub-
goals—on the way to identifying the final, top-level goal.
Lastly, there is an implicit assumption that the actor’s goals
remain unchanging* throughout the process. Relaxation of
this assumption was a key motivation for Baker et al., who
first explored the notion of dynamic goals in 2005, but that
line of research does not appear to have gained traction.

2.3 Assumptions about the Observations
Observations are fundamental to GR. Directly or indirectly,
they convey the actor’s behaviour, making it possible for the
observer to formulate a hypothesis. We have already men-
tioned in online/offline and full/partial observability, environ-
mental assumptions that apply to observations. We now con-
sider three further conditions, specific to GR, which can be
confusing if omitted or applied without clarification.

First, we need to know whether the observations are com-
plete in the sense that all relevant behaviour was observed or
if, as is usually the case, some observations may be missing*
in that some significant actions or events went unobserved.
As discussed, this property is sometimes described as—and
can be confused with—partial observability (see quotation
from [Pereira et al., 2019b] above).

Secondly, does the observer expect its observations to be
accurate* (i.e., to conform to real events) or does it accom-
modate noisy observations, which are essentially errors that,
although registered as observations, did not actually occur?
In the literature, we find “noise” used in two subtly differ-
ent ways: to mean errors, as defined above, but also to de-
scribe suboptimality: observed behaviour that occurred and
intended, but failed, to achieve a fully optimal plan [Ramırez
and Geffner, 2010, p.1121]. Although the distinction may be
apparent from the context, we take the view that misappli-
cation of the term can lead researchers to believe that they
have accommodated both properties when they have only ac-
commodated one. Here we use—and recommend the use
of—“noise” to describe behaviour that did not occur, caused
perhaps by faulty recording equipment [Masters and Sardina,
2019b, 2021]; and reserve “suboptimality” to convey a prop-
erty of the actor which reflects non-optimal behaviour that
actually happened (see rationality, Section 2.4).

Thirdly, what is the nature of an observation? Model-based
GR having arisen out of classical planning, the default ob-
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servation is an action* but we also see fluents [Sohrabi et
al., 2016], full states [Masters and Sardina, 2017a] and ac-
tion/state pairs [Shvo and McIlraith, 2020]. This assump-
tion is critical to implementation. If a domain is stochastic,
for example, and we observe fluents or states but not actions,
we have no way of knowing whether the observed effect was
caused deliberately. We may not even know what action the
agent performed. This assumption is usually explicitly made
by the modelers and largely depends on the empirical domain
through which the approach is to be tested. Nevertheless, con-
fusion does arise in connection with a popular technique in-
troduced by Sohrabi et al. [2016] who showed that, while
their model was extended to observe fluents (on the basis that
the effects of an action are more likely to be observed than the
action itself) it can be made apparently to observe actions by
assigning a unique fluent per action that may be added only
by that action. This can give the impression that the options
are so closely linked that the distinction barely matters. That
is not the case, however. The mechanism is introduced at the
compilation stage and can only work post-hoc on an existing
model that initially considers the observation of actions.

2.4 Assumptions about the Agents
GR can be regarded as involving at least two agents: the actor,
whose goal is being recognized, and the observer, represented
by the GR system itself, which formulates the hypothesis.

Key elements in the relationship between the two are cap-
tured by the traditional classification of GR into three types:
keyhole*, where the actor is unaware of, or unaffected by, be-
ing observed; intended, where the actor is cooperative, aware
of its observer and trying to make its intentions clear; or de-
ceptive, attempting to obscure its intentions or implying one
goal while striving for another [Carberry, 2001]. Recall that
these types are all referenced from the point-of-view of the
observer. Thus, a default observer that always believes itself
to be performing keyhole recognition is regarded as naı̈ve:
a commonly cited simplifying assumption in deceptive plan-
ning [Masters and Sardina, 2017b, p.4374].

One frequently stated assumption is that the actor is ra-
tional. That is, the GR system/observer assumes that the
actor is attempting to maximise some “performance mea-
sure” [Russell and Norvig, 2010, p.37]. Ostensibly straight-
forward, the term is confusing (a) because it is sometimes
used to mean fully optimal [Ramırez and Geffner, 2009;
Shvo and McIlraith, 2020], at others suboptimal but cost-
sensitive* [Vered et al., 2016] (the definition we prefer) and
(b) because the actor’s optimality is usually evaluated with re-
spect to the observer’s cost model rather than its own. Yet, as
we clearly see in the context of deception, an actor that is op-
timal/ rational with respect to its own cost model may appear
suboptimal [Keren et al., 2015] or downright irrational from
the point-of-view of the observer.

As suggested by the above, for the most part, there is an as-
sumption that actor and observer share the same model*, not
only in terms of costs but in its entirety [Vered and Kaminka,
2017; Vered et al., 2018a]. The assumption has implications
for implementation. If observer and actor share identical rea-
soning capabilities and knowledge of the domain then GR
can be achieved self-referentially by asking, “If I were per-

forming those actions, what would I be trying to achieve?”
If, on the other hand, the actor is assumed to have a differ-
ent model from the observer—if, for example, a human is
observed by a machine or vice versa—then the system must
generate an independent model of the actor’s assumed inter-
nal beliefs [Baker et al., 2009; Baker et al., 2011].

The final assumption in this section relates to the nature of
the observer rather than the actor. Recent work, particularly
that which explores human-robot interaction, points up the
distinction between a GR system that aims to determine the
goal of the actor and one which aims to determine how the
observed behaviour is most likely to be interpreted [Zhang et
al., 2017; Masters et al., 2021]. Many of the papers grouped
under “Extended GR” in Table 2 fall into this category. A
key distinction is that, whereas GR is concerned with deter-
mining the ground truth (what is the agent’s goal?) extended
GR is concerned with a hypothetical third party observer’s
most likely belief (what would an observer believe to be the
agent’s goal?)—which may be wrong. By default, the ob-
server is assumed competent*, that is, not wrong: fully aware
of the observations it has registered and capable of process-
ing them at least as efficiently as the actor it is observing.
Whether human, human-like or robotic, however, the hypo-
thetical observer may be known by the system to be fallible.
That is, the observer may make mistakes—cognitive or pro-
cessing errors—which an extended GR system can, if cooper-
ative, accommodate or may, if adversarial, exploit [Kulkarni
et al., 2019].

3 Discussion
The list of assumptions examined in this survey is by no
means exhaustive. The majority have been explicitly refer-
enced by one or other of the consistent recent contributors
to the field of model-based GR. Others—notably, possibilis-
tic versus probabilistic reasoning and dynamic versus static
goals—flag directions for research once keenly championed
by prominent members of the plan recognition community.

In Section 2, we asterisked the default assumptions. In Ta-
ble 2, we next highlight contributions by classifying papers
according to the more challenging properties that are accom-
modated when the associated assumptions are relaxed. By
this, we aim to provide a visual summary of the contribu-
tions and constraints of each approach, to assist practitioners
in identifying which models best suit their needs and to help
theorists identify gaps in the research.

The columns are organised according to assumptions made
about the environment, observations, agents (both actor and
observer) and goals; the rows represent distinct contributions.
Wherever the paper accommodates (or claims to accommo-
date) a property, there is a tick; where it does not (or claims
not), there is a cross. We write N/A to address cases where the
assumption is irrelevant, such as non-equal priors when prob-
abilistic reasoning is not involved. In classifying the papers,
we considered assumptions which were addressed either ex-
plicitly in the text or implicitly via the empirical evaluation,
framework definition, implication of the associated domain,
and so on. Where an assumption has been explicitly refer-
enced, we highlight the tick or cross with a circle.
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The field of model-based GR is largely built on indepen-
dent contributions from Baker et al. [2007], Ramırez and
Geffner [2009] and Pattison and Long [2010]. All three
recognised the potential relationship between plan recogni-
tion (of which goal recognition is a sub-problem) and plan-
ning, which had previously seemed to be a separate branch
of AI. Their approaches are quite different, however, and we
have categorised them separately in the table. Baker et al.
took inspiration from cognitive science and, using POMDPs,
developed the idea of “Bayesian Theory-of-Mind”, Ramırez
and Geffner focused on classical planning transformations,
while Pattison and Long responded to the need for domain-
independence by developing, in a PDDL environment, per-
haps the first GR approach to involve the use of landmarks.

Of the three approaches, the table shows Ramırez and
Geffner’s Plan Recognition as Planning (PRP) approach, in
particular, has been extended by many subsequent authors.
This can undoubtedly be attributed partly to the accessibil-
ity of the underlying framework—and to that of their prob-
abilistic model which soon followed [Ramırez and Geffner,
2010]—but partly also to the visibility of their work to the
broader AI community via IJCAI and AAAI.

Many conclusions can be drawn from this method of tabu-
lation. First, it appears that, when a paper’s contribution is the
invention of a novel approach, researchers tend to experiment
with a model close to the default. As the approach gains trac-
tion, the same or subsequent researchers look for non-default
directions into which the new ideas can be extended.

This clear progression is readily seen in the PRP stream
of work. In the first of those papers [Ramırez and Geffner,
2009], almost every column shows a cross. That is, almost
every assumption, explicit or non-explicit, was a default as-
sumption.2 In the second paper, we again see primarily de-
faults, but now suboptimality is addressed with the introduc-
tion of probabilistic reasoning (implied by consideration of
priors). In subsequent papers, we see the relaxing of first one
assumption, then another, as authors explore distinct aspects
of the problem. Sohrabi et al. [2016], for example, are the
first to look at noise in this context and incorporate fluents
into their definition of the observations. Vered et al. [2016]
continue what becomes a trend of using fluents over actions
(later in addition to actions), and is the first to focus on con-
tinuous, online domains; in the most-recently listed paper un-
der PRP, Shvo and McIlraith [2020] begin to look at dynamic
environments.

The progressive effect is magnified when limitations that
have not been addressed—which show up in our table as
crosses—are explicitly mentioned by a researcher. When this
occurs, the issue becomes more likely to be handled in fu-
ture work. Consider, for example, how Baker et al. [2009]
explicitly reference partial observability, missing and noisy
observations, then address precisely these issues in [Baker
et al., 2011]. Similarly, Keren et al. repeatedly assert re-
liance on a deterministic (non-stochastic) domain for their
work on GR design until the issue is apparently registered

2Ticks only appear against partial observability and missing: the
more challenging properties (and therefore those shown in the table)
but the defaults for GR in a task-planning environment.

and addressed [Wayllace et al., 2016; Wayllace et al., 2017].
Table 2 thus illustrates the power and importance of explicit
assumptions—including the seemingly negative assumption
of default properties—to drive research.

The usefulness of GR in general, combined with the acces-
sibility of the model-based approach, has led to its incorpo-
ration into related areas of AI as a means of accessing what
would otherwise be the internal workings (i.e., goals and in-
tentions) of agents operating in known domains. The papers
listed under “Extended GR” in the lower part of Table 2 fall
into this category. They all incorporate model-based GR, not
to determine an agent’s goal per se but in order to perform
some other task. In the context of human-aware planning,
Zhang et al. [2017] describe the relationship between GR
and this “meta” approach like this: “In human-aware plan-
ning, the challenge is to obtain the human model which cap-
tures human capabilities, intents and etc. The modeling in
this work is one level deeper: it is about the interpretation of
the agent model from the human’s perspective...” [p.1314]

The extended GR contributions touch on the key-
hole/intentional/adversarial assumption, since the relation-
ship between observer and actor is paramount. The ap-
proach here, however, is from the point-of-view of the ac-
tor. Extended GR models use GR to assess the impact of
their plans on a hypothetical observer. Thus, those that deal
with intentional recognition [Zhang et al., 2017; Kulkarni et
al., 2019], flip the “non-keyhole” assumption, since the ac-
tor and observer both expect intended recognition to occur.
But those attempting deception [Masters and Sardina, 2017b;
Masters et al., 2021] assume a naı̈ve observer—that is, an
unsuspecting observer, performing keyhole recognition in the
usual way—so the default for that property stands. We are
unaware of any GR-based deceptive framework involving a
non-naı̈ve observer. Kulkarni et al. [2018] offer such an ap-
proach, but it explicitly avoids the use of model-based GR.

We have included Goal Recognition Design (GRD) under
the umbrella of Extended GR (the first four papers in that cat-
egory), while recognising that it approaches the problem from
a different, unique angle. GRD asks, how can we modify the
domain so that an agent acting within it reveals its objective
as early as possible? Papers on this theme again demonstrate
the way research progresses by relaxing assumption after as-
sumption. Where the topic was first introduced [Keren et al.,
2014], the table shows a predominance of crosses, indicating
that challenges were minimised in order to focus on the nov-
elty of the approach itself. Subsequent papers relax different
assumptions: [Keren et al., 2015] relaxes the optimality as-
sumption; [Keren et al., 2016] relaxes the need for complete
observations; [Wayllace et al., 2016] restores the optimality
assumption but addresses GRD in a stochastic environment.

Close examination of the table reveals the strengths and
limitations of numerous contemporary approaches to model-
based GR. We see that Sohrabi et al. [2016] and Shvo and
McIlraith [2020] are highly focused on aspects of GR associ-
ated with observations. Zhang et al. [2017] dominates with
respect to their treatment of observer-agent interaction. Baker
et al. [2009; 2011] remains the only practitioner that we
encountered whose model explicitly handles dynamic goals.
Shvo and McIlraith [2020] and Pozanco et al. [2018] are
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alone in considering dynamic environments; and it is tanta-
lising to consider how their work might be combined: the
one on active goal recognition, whereby the observer can in-
tervene directly in the actor’s world; the other on counter-
planning, which uses GR to anticipate which landmarks the
actor will need to achieve, in order to block or (potentially)
facilitate their progress.

Relaxation of the known environment assumption, dis-
cussed in Section 2.1, is omitted from the table since it is
largely the province of model-free machine learning tech-
niques. As noted, however, recent work by Pereira et al.
[2019a; 2019b] addresses the possibility of a partially known
domain, where the couplings between state variables, actions
and perturbations were not represented explicitly. They were
able to address it by incorporating deep learning methods. We
note that Zhang et al. [2017] also uses learning to label sub-
goals. Indeed, this is a strength of machine learning and we
are likely to see a lot more crossover between model-free and
model-based approaches to GR in the future.

For the benefit of those inclined to adopt our approach
to identify avenues for future work in GR or other AI dis-
ciplines, we suggest three ways to proceed: (1) generate a
table based on recent contributions to the field, such as Ta-
ble 2, and check for a predominance of crosses in any given
column; (2) add columns for assumptions not currently tack-
led by reference to assumptions that arise in related disci-
plines (in our case, for example, machine learning or network
security); (3) consider the key elements being modelled (in
our case goals, observations, actor/observer and the environ-
ment), identify what it is about that element that makes real-
world scenarios more challenging than those seen in contem-
porary models and add further columns to represent those
properties. As an example of (2), consider assumptions in the
machine-learning domain with respect to independent versus
non-independent data [Mountrakis et al., 2011]. In GR, data
is conveyed to the system via observations. To date (to our
knowledge) no GR model has explicitly considered indepen-
dent observations. It is the sort of assumption that might drive
a new line of research sparking insights into methods for deal-
ing with missing observations or deciding when to repeat an
online GR process. As an example of (3), consider, in the
context of GR, an actor that changes its mind; or a goal that
is not one of a known set but instead has to be inferred.

Finally—whilst we acknowledge that many of the papers
we have discussed are conference papers with a limited page
count—we suggest that assumptions are just as important to a
paper’s technical quality as its formulae and theorems. Every
model involves assumptions; but they are of no use or interest
if they are not stated, not clear or not correct.
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