
Neural Temporal Point Processes: A Review

Oleksandr Shchur1,2 , Ali Caner Türkmen2 , Tim Januschowski2 and Stephan Günnemann1

1Technical University of Munich, Germany
2Amazon Research

{shchur,guennemann}@in.tum.de, {atturkm,tjnsch}@amazon.com,

Abstract
Temporal point processes (TPP) are probabilistic
generative models for continuous-time event se-
quences. Neural TPPs combine the fundamental
ideas from point process literature with deep learn-
ing approaches, thus enabling construction of flex-
ible and efficient models. The topic of neural TPPs
has attracted significant attention in recent years,
leading to the development of numerous new archi-
tectures and applications for this class of models.
In this review paper we aim to consolidate the ex-
isting body of knowledge on neural TPPs. Specif-
ically, we focus on important design choices and
general principles for defining neural TPP models.
Next, we provide an overview of application areas
commonly considered in the literature. We con-
clude this survey with the list of open challenges
and important directions for future work in the field
of neural TPPs.

1 Introduction
Many applications in science and industry are concerned with
collections of events with timestamps. Earthquake occur-
rences in seismology, neural spike trains in neuroscience,
trades and orders in a financial market, and user activity logs
on the web, can all be represented as sequences of discrete
(instantaneous) events observed in continuous time.

Temporal point processes (TPP) are probabilistic models
for such event data [Daley and Vere-Jones, 2007]. More
specifically, TPPs are generative models of variable-length
point sequences observed on the real half-line—here inter-
preted as arrival times of events. TPPs are built on rich theo-
retical foundations, with early work dating back to the begin-
ning of the 20th century, where they were used to model the
arrival of insurance claims and telephone traffic [Brockmeyer
et al., 1948; Cramér, 1969]. The field underwent rapid devel-
opment in the second half of the century, and TPPs were ap-
plied to a wide array of domains including seismology, neu-
roscience, and finance.

Nevertheless, TPPs entered the mainstream of machine
learning research only very recently. One of the exciting ideas
developed at the intersection of the fields of point processes

and machine learning were neural TPPs [Du et al., 2016;
Mei and Eisner, 2017]. Classical (non-neural) TPPs can only
capture relatively simple patterns in event occurrences, such
as self-excitation [Hawkes, 1971]. In contrast, neural TPPs
are able to learn complex dependencies, and are often even
computationally more efficient than their classical counter-
parts. As such, the literature on neural TPPs has witnessed
rapid growth since their introduction.

Scope and structure of the paper. The goal of this survey
is to provide an overview of neural TPPs, with focus on mod-
els (Sections 3–5) and their applications (Section 6). Due to
limited space, we do not attempt to describe every existing
approach in full detail, but rather focus on general principles
and building blocks for constructing neural TPP models.

We also discuss the main challenges that the field currently
faces and outline some future research directions (Section 7).
For other reviews of TPPs for machine learning, we refer
the reader to the tutorial by [Gomez-Rodriguez and Valera,
2018]; and two recent surveys by [Yan, 2019], who also cov-
ers non-neural approaches, and [Enguehard et al., 2020] who
experimentally compare neural TPP architectures in applica-
tions to healthcare data. Our work provides a more detailed
overview of neural TPP architectures and their applications
compared to the above papers.

2 Background and Notation

A TPP [Daley and Vere-Jones, 2007] is a probability dis-
tribution over variable-length sequences in some time inter-
val [0, T]. A realization of a marked TPP can be repre-
sented as an event sequence X = {(t1,m1), . . . , (tN ,mN)},
where N , the number of events, is itself a random variable.
Here, 0 < t1 < · · · < tN ≤ T are the arrival times of
events and mi ∈ M are the marks. Categorical marks (i.e.,
M = {1, . . . ,K}) are most commonly considered in prac-
tice, but other choices, such asM = RD, are also possible.
Sometimes, it is convenient to instead work with the inter-
event times τi = ti − ti−1, where t0 = 0 and tN+1 = T . For
a given X , we denote the history of past events at time t as
Ht = {(tj ,mj) : tj < t}.

A distribution of a TPP with K categorical marks can be
characterized byK conditional intensity functions λ∗k(t) (one

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4585

Represent events
(tj ,mj) as feature

vectors yj

Encode history
(y1, . . . ,yi−1)
as a vector hi

Obtain conditional distribution
Pi(ti,mi|Hti) = P (ti,mi|hi)

0 (t1,m1) (t2,m2) (ti−1,mi−1)· · · T time

Figure 1: Schematic representation of an autoregressive neural TPP model.

for each mark k) that are defined as

λ∗k(t) = lim
∆t↓0

Pr(event of type k in [t, t+ ∆t)|Ht)
∆t

, (1)

where the ∗ symbol is used as a shorthand for conditioning on
the history Ht. Note that the above definition also applies to
unmarked TPPs if we setK = 1. While the conditional inten-
sity is often mentioned in the literature, it is not the only way
to characterize a TPP—we will consider some alternatives in
the next section.

3 Autoregressive Neural TPPs
Neural TPPs can be defined as autoregressive models, as done
in the seminal work by [Du et al., 2016]. Such autoregressive
TPPs operate by sequentially predicting the time and mark
of the next event (ti,mi). Usually, we can decompose this
procedure into 3 steps (see Figure 1):

1. Represent each event (tj ,mj) as a feature vector yj .
2. Encode the history Hti (represented by a sequence of

feature vectors (y1, . . . ,yi−1)) into a fixed-dimensional
history embedding hi.

3. Use the history embedding hi to parametrize the condi-
tional distribution over the next event Pi(ti,mi|Hti).

We will now discuss each of these steps in more detail.

3.1 Representing Events as Feature Vectors
First, we need to represent each event (tj ,mj) as a feature
vector yj that can then be fed into an encoder neural network
(Section 3.2). We consider the features ytime

j based on the
arrival time tj (or inter-event time τj) and ymark

j based on the
mark mj . The vector yj is obtained by combining ytime

j and
ymark
j , e.g., via concatenation.

Time features ytime
j . Earlier works used the inter-event time

τj or its logarithm log τj as the time-related feature [Du et
al., 2016; Omi et al., 2019]. Recently, [Zuo et al., 2020] and
[Zhang et al., 2020a] proposed to instead obtain features from
tj using trigonometric functions, which is based on positional
encodings used in transformer language models [Vaswani et
al., 2017].
Mark features ymark

j . Categorical marks are usually encoded
with an embedding layer [Du et al., 2016]. Real-valued marks

can be directly used as ymark
j . This ability to naturally handle

different mark types is one of the attractive properties of neu-
ral TPPs (compared to classical TPP models).

3.2 Encoding the History into a Vector
The core idea of autoregressive neural TPP models is that
event historyHti (a variable-sized set) can be represented as a
fixed-dimensional vector hi [Du et al., 2016]. We review the
two main families of approaches for encoding the past events
(y1, . . . ,yi−1) into a history embedding hi next.

Recurrent encoders start with an initial hidden state h1.
Then, after each event (ti,mi) they update the hidden state
as hi+1 = Update(hi,yi). The hidden states hi are then
used as the history embedding. The Update function is usu-
ally implemented based on the RNN, GRU or LSTM update
equations [Du et al., 2016; Xiao et al., 2017b].

The main advantage of recurrent models is that they al-
low us to compute the history embedding hi for all N events
in the sequence in O(N) time. This compares favorably
even to classical non-neural TPPs, such as the Hawkes pro-
cess, where the likelihood computation in general scales as
O(N2). One downside of recurrent models is their inher-
ently sequential nature. Because of this, such models are
usually trained via truncated backpropagation through time,
which only provides an approximation to the true gradients
[Sutskever, 2013].

Set aggregation encoders directly encode the feature vec-
tors (y1, . . . ,yi−1) into a history embedding hi. Unlike re-
current models, here the encoding is done independently for
each i. The encoding operation can be defined, e.g., using
self-attention [Zuo et al., 2020; Zhang et al., 2020a]. It is
postulated that such encoders are better at capturing long-
range dependencies between events compared to recurrent
encoders. However, more thorough evaluation is needed to
validate this claim (see Section 7). On the one hand, set ag-
gregation encoders can compute hi for each event in paral-
lel, unlike recurrent models. On the other hand, usually the
time of this computation scales as O(N2) with the sequence
length N , since each hi depends on all the past events (and
the model does not have a Markov property). This problem
can be mitigated by restricting the encoder to only the last L
events (yi−L, . . . ,yi−1), thus reducing the time complexity
to O(NL).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4586

3.3 Predicting the Time of the Next Event
For simplicity, we start by considering the unmarked case and
postpone the discussion of marked TPPs until the next sec-
tion. An autoregressive TPP models the distribution of the
next arrival time ti given the history Hti . This is equiva-
lent to considering the distribution of the next inter-event time
τi given Hti , which we denote as P ∗i (τi).1 The distribution
P ∗i (τi) can be represented by any of the following functions:

1. probability density function f∗i (τi)

2. cumulative distribution function F ∗i (τi) =
∫ τi

0
f∗i (u)du

3. survival function S∗i (τi) = 1− F ∗i (τi)

4. hazard function φ∗i (τi) = f∗i (τi)/S
∗
i (τi)

5. cumulative hazard function Φ∗i (τi) =
∫ τi

0
φ∗i (u)du .

In an autoregressive neural TPP, we pick a parametric form
for one of the above functions and compute its parameters
using the history embedding hi. For example, the conditional
PDF f∗i might be obtained as

f∗i (τi) = f(τi|θi), where θi = σ(Whi + b). (2)
Here f(·|θ) is some parametric density function over [0,∞)
(e.g., exponential density) and W , b are learnable parame-
ters. A nonlinear function σ(·) can be used to enforce neces-
sary constraints on the parameters, such as non-negativity.

It is important to ensure that the chosen parametrization
defines a valid probability distribution. For instance, the
PDF f∗i must be non-negative and satisfy

∫∞
0
f∗i (u)du = 1.

This corresponds to the cumulative hazard function Φ∗i being
strictly increasing, differentiable and satisfying Φ∗i (0) = 0
and limτ→∞ Φ∗i (τ) =∞.

Some parametrizations of P ∗i (τ) proposed in the liter-
ature fail to satisfy the above conditions. For example,
the hazard function φ∗i (τ) = exp(wτ + b) [Du et al.,
2016] fails to satisfy limτ→∞ Φ∗i (τ) = ∞ if the param-
eter w is negative. One more example is the cumula-
tive hazard function defined by a single-hidden-layer neu-
ral network with positive weights w,v ∈ RD+ as Φ∗i (τ) =

softplus
(∑D

d=1 vd tanh(wdτ + bd)
)

[Omi et al., 2019] that
fails to satisfy both Φ∗i (0) = 0 and limτ→∞ Φ∗i (τ) = ∞.
Since above parametric functions do not define a valid dis-
tribution over the inter-event times, sampling methods have
a non-zero probability of failing or producing invalid event
sequences. Therefore, it’s crucial to pick a valid parametriza-
tion when designing a neural TPP model.

Specifying one of the functions (1) – (5) listed above
uniquely identifies the conditional distribution P ∗i (τi), and
thus the other four functions in the list. This, however,
does not mean that choosing which function to parametrize is
unimportant. In particular, some choices of the hazard func-
tion φ∗i cannot be integrated analytically, which becomes a
problem when computing the log-likelihood (as we will see
in Section 5). In contrast, it is usually trivial to obtain φ∗i
from any parametrization of Φ∗i , since differentiation is eas-
ier than integration [Omi et al., 2019]. More generally, there
are three important aspects that one has to keep in mind when
specifying the distribution P ∗i (τi):

1We again use ∗ to denote conditioning on the historyHti .

• Flexibility: Does the given parametrization of P ∗i (τi)
allow us to approximate any distribution, e.g., a multi-
modal one?

• Closed-form likelihood: Can we compute either the
CDF F ∗i , SF S∗i or CHF Φ∗i analytically? These func-
tions are involved in the log-likelihood computation
(Section 5), and therefore should be computed in closed
form for efficient model training. Approximating these
functions with Monte Carlo or numerical quadrature is
slower and less accurate.

• Closed-form sampling: Can we draw samples from
P ∗i (τi) analytically? In the best case, this should be done
with inversion sampling [Rasmussen, 2011], which re-
quires analytically inverting either F ∗i , S∗i or Φ∗i . Invert-
ing these functions via numerical root-finding is again
slower and less accurate. Approaches based on thinning
[Ogata, 1981] are also not ideal, since they do not bene-
fit from parallel hardware like GPUs. Moreover, closed-
form inversion sampling enables the reparametrization
trick [Mohamed et al., 2020], which allows us to train
TPPs using sampling-based losses (Section 5.2).

Existing approaches offer different trade-offs between the
above criteria. For example, a simple unimodal distribution
offers closed-form sampling and likelihood computation, but
lacks flexibility [Du et al., 2016]. One can construct more
expressive distributions by parametrizing the cumulative haz-
ard Φ∗i either with a mixture of kernels [Okawa et al., 2019;
Zhang et al., 2020b] or a neural network [Omi et al., 2019],
but this will prevent closed-form sampling. Specifying the
PDF f∗i with a mixture distribution [Shchur et al., 2020a] or
Φ∗i with invertible splines [Shchur et al., 2020b] allows to
define a flexible model where both sampling and likelihood
computation can be done analytically. Finally, parametriza-
tions that require approximating Φ∗i via Monte Carlo inte-
gration are less efficient and accurate than all of the above-
mentioned approaches [Omi et al., 2019].

As a side note, a more flexible parametrization might also
be more difficult to train or more prone to overfitting. There-
fore, the choice of the parametrization is an important mod-
eling decision that depends on the application.

Lastly, we would like to point out that the view of a TPP as
an autoregressive model naturally connects to the traditional
conditional intensity characterization (Equation 1). The con-
ditional intensity λ∗(t) can be defined by stitching together
the hazard functions φ∗i

λ∗(t) =

φ∗1(t) if 0 ≤ t ≤ t1
φ∗2(t− t1) if t1 < t ≤ t2
...
φ∗N+1(t− tN) if tN < t ≤ T

(3)

In the TPP literature, the hazard function φ∗i is often called
“intensity,” even though the two are, technically, different
mathematical objects.

3.4 Modeling the Marks
In a marked autoregressive TPP, one has to parametrize the
conditional distribution P ∗i (τi,mi) using the history embed-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4587

ding hi. We first consider categorical marks, as they are most
often used in practice.
Conditionally independent models factorize the distribution
P ∗i (τi,mi) into a product of two independent distributions
P ∗i (τi) and P ∗i (mi) that are both parametrized using hi [Du
et al., 2016; Xiao et al., 2017b]. The time distribution P ∗i (τi)
can be parametrized using any of the choices described in
Section 3.3, such as the hazard function φ∗i (τ). The mark
distribution P ∗i (mi) is a categorical distribution with proba-
bility mass function p∗i (mi = k). In this case, the conditional
intensity for mark k is computed as

λ∗k(t) = p∗i (mi = k) · φ∗i (t− ti−1), (4)
where (i−1) is the index of the most recent event before time
t. Note that if we set K = 1, we recover the definition of the
intensity function from Equation 3.

While conditionally independent models require fewer pa-
rameters to specify P ∗i (τi,mi), recent works suggest that
this simplifying assumption may hurt predictive performance
[Enguehard et al., 2020]. There are two ways to model de-
pendencies between τi and mi that we consider below.
Time conditioned on marks [Zuo et al., 2020; Enguehard
et al., 2020]. In this case, we must specify a separate dis-
tribution P ∗i (τi|mi = k) for each mark k ∈ {1, . . . ,K}.
Suppose that for each k we represent P ∗i (τi|mi = k) with a
hazard function φ∗ik(τ). Then the conditional intensity λ∗k(t)
for mark k is computed simply as

λ∗k(t) = φ∗ik(t− ti−1). (5)
It is possible to model the dependencies across marks on a
coarser grid in time, which significantly improves the scala-
bility in the number of marks [Türkmen et al., 2019b].
Marks conditioned on time. Here, the inter-event time is
distributed according to P ∗i (τi), and for each τ we need to
specify a distribution P ∗(mi|τi = τ). We again assume that
the time distribution P ∗i (τi) is described by a hazard function
φ∗i (τ), and P ∗i (mi|τi = τ) can be parametrized, e.g., using a
Gaussian process [Biloš et al., 2019]. In this case the condi-
tional intensity λ∗k(t) is computed as

λ∗k(t) = p∗i (mi = k|τi = t− ti−1) · φ∗i (t− ti−1), (6)
where we used notation analogous to Equation 4. The term
φ∗i (t− ti−1) is often referred to as “ground intensity.”
Other mark types. A conditionally independent model can
easily handle any type of marks by specifying an appropri-
ate distribution P ∗i (mi). Dependencies between continuous
marks and the inter-event time can be incorporated by mod-
eling the joint density f∗i (τi,mi) [Zhu et al., 2020].

4 Continuous-time State Evolution
Another line of research has studied neural TPPs that operate
completely in continuous time. Such models define a left-
continuous state h(t) at all times t ∈ [0, T]. The state is
initialized to some value h(0). Then, for each event i the
state is updated as

h(ti) = Evolve(h(ti−1), ti−1, ti)

lim
ε→0

h(ti + ε) = Update(h(ti),yi)
(7)

The Evolve(h(ti−1), ti−1, ti) procedure evolves the the state
continuously over the time interval (ti−1, ti] between the
events. Such state evolution can be implemented either via
exponential decay [Mei and Eisner, 2017] or, more generally,
be governed by an ordinary differential equation [Rubanova
et al., 2019; Jia and Benson, 2019]. The Update(h(ti),yi)
operation performs an instantaneous update to the state, sim-
ilarly to the recurrent encoder from last section.

While the above procedure might seem similar to a recur-
rent model from Section 3.2, the continuous-time model uses
the state h(t) differently from the autoregressive model. In
a continuous-time model, the state h(t) is used to directly
define the intensity λ∗k for each mark k as

λ∗k(t) = gk(h(t)), (8)

where gk : RH → R>0 is a non-linear function that maps
the hidden state h(t) to the value of the conditional intensity
for mark k at time t. Such function, for example, can be
implemented as gk(h(t)) = softplus(wT

k h(t)) or a multi-
layer perceptron [Chen et al., 2021b].

To summarize, in a continuous-time state model, the state
h(t) is defined for all t ∈ [0, T], and the intensity λ∗k(t) at
time t depends only on the current state h(t). In contrast, in
an autogressive model, the discrete-time state hi is updated
only after an event occurs.. Hence, the state hi defines the
entire conditional distribution P ∗i (τi,mi), and therefore the
intensity λ∗k(t) in the interval (ti, ti+1].
Discussion. Continuous-time models have several ad-
vantages compared to autoregressive ones. For example,
they provide a natural framework for modeling irregularly-
sampled time series, which is valuable in medical applica-
tions [Enguehard et al., 2020]. By modeling the unobserved
attributes as a function of the state h(t), it is easy to estimate
each attribute at any time t [Rubanova et al., 2019]. These
models are also well-suited for modeling spatio-temporal
point processes (i.e., with marks inM = RD) [Jia and Ben-
son, 2019; Chen et al., 2021b].

However, this flexibility comes at a cost: evaluating both
the state evolution (Equation 7) and the model likelihood
(Equation 9) requires numerically approximating intractable
integrals. This makes training in continuous-time models
slower than for autoregressive ones. Sampling similarly re-
quires numerical approximations.

5 Parameter Estimation
5.1 Maximum Likelihood Estimation
Negative log-likelihood (NLL) is the default training objec-
tive for both neural and classical TPP models. NLL for a
single sequence X with categorical marks is computed as

− log p(X) =−
N∑
i=1

K∑
k=1

1(mi = k) log λ∗k(ti)

+
K∑
k=1

(∫ T

0

λ∗k(u)du

)
.

(9)

The log-likelihood can be understood using the following
two facts. First, the quantity λ∗k(ti)dt corresponds to the

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4588

probability of observing an event of type k in the infinites-
imal interval [ti, ti + dt) conditioned on the past events Hti .
Second, we can compute the probability of not observing
any events of type k in the rest of the interval [0, T] as
exp

(
−
∫ T

0
λ∗k(u)du

)
. By taking the logarithm, summing

these expressions for all events (ti,mi) and event types k,
and finally negating, we obtain Equation 9.

Computing the NLL for TPPs can sometimes be chal-
lenging due to the presence of the integral in the second
line of Equation 9. One possible solution is to approximate
this integral using Monte Carlo integration [Mei and Eis-
ner, 2017] or numerical quadrature [Rubanova et al., 2019;
Zuo et al., 2020]. However, some autoregressive neural TPP
models allow us to compute the NLL analytically, which is
more accurate and computationally efficient. We demonstrate
this using the following example.

Suppose we model P ∗i (τi,mi) using the “time conditioned
on marks” approach from Section 3.4. That is, we specify the
distribution P ∗i (τi|mi = k) for each mark k with a cumula-
tive hazard function Φ∗ik(τ). By combining Equation 5 and
Equation 9, we can rewrite the expression for the NLL as

− log p(X) =−
N∑
i=1

K∑
k=1

1(mi = k) log φ∗ik(τi)

+
N+1∑
i=1

K∑
k=1

Φ∗ik(τi).

(10)

Assuming that our parametrization allows us to compute
Φ∗ik(τ) analytically, we are now able to compute the NLL in
closed form (without numerical integration). Remember that
the hazard function φ∗ik can be easily obtained by differenti-
ation as φ∗ik(τ) = ∂

∂τ Φ∗ik(τ). Finally, note that the NLL can
also be expressed in terms of, e.g., the conditional PDFs f∗ik
or survival functions S∗ik (Section 3.3).

Evaluating the NLL in Equation 10 can be still com-
putationally expensive when K, the number of marks, is
extremely large. Several works propose approximations
based on noise-contrastive-estimation that can be used in this
regime [Guo et al., 2018; Mei et al., 2020].

Training. Usually, we are given a training set Dtrain of se-
quences that are assumed to be sampled i.i.d. from some un-
known data-generating process. The TPP parameters (e.g.,
weights of the encoder in Section 3) are learned by minimiz-
ing the NLL of the sequences in Dtrain. This is typically done
with some variant of (stochastic) gradient descent. In prac-
tice, the NLL loss is often normalized per sequence, e.g., by
the interval length T [Enguehard et al., 2020]. Importantly,
this normalization constant cannot depend on X , so it would
be incorrect to, for example, normalize the NLL by the num-
ber of events N in each sequence. Finally, the i.i.d. assump-
tion is not appropriate for all TPP datasets; [Boyd et al., 2020]
show how to overcome this challenge by learning sequence
embeddings.

5.2 Alternatives to MLE
TPPs can be trained using objective functions other than the
NLL. Often, these objectives can be expressed as

EX∼p(X) [f(X)] . (11)

Such sampling-based losses have been used by several ap-
proaches for learning generative models from the training se-
quences. These approaches aim to maximize the similarity
between the training sequences in Dtrain and sequences X
generated by the TPP model p(X) using a scoring function
f(X). Examples include procedures based on Wasserstein
distance [Xiao et al., 2017a], adversarial losses [Yan et al.,
2018; Wu et al., 2018] and inverse reinforcement learning [Li
et al., 2018].

Sometimes, the objective function of the form (11) arises
naturally based on the application. For instance, in reinforce-
ment learning, a TPP p(X) defines a stochastic policy and
f(X) is the reward function [Upadhyay et al., 2018]. When
learning with missing data, the missing eventsX are sampled
from the TPP p(X), and f(X) corresponds to the NLL of
the observed events [Gupta et al., 2021]. Finally, in varia-
tional inference, the TPP p(X) defines an approximate poste-
rior and f(X) is the evidence lower bound (ELBO) [Shchur
et al., 2020b; Chen et al., 2021a].

In practice, the gradients of the loss (Equation 11) w.r.t. the
model parameters usually cannot be computed analytically
and therefore are estimated with Monte Carlo. Earlier works
used the score function estimator [Upadhyay et al., 2018], but
modern approaches rely on the more accurate pathwise gra-
dient estimator (also known as the “reparametrization trick”)
[Mohamed et al., 2020]. The latter relies on our ability to
sample with reparametrization from P ∗i (τi,mi), which again
highlights the importance of the chosen parametrization for
the conditional distribution, as described in Section 3.3.

On a related note, sampling-based losses for TPPs (Equa-
tion 11) can be non-differentiable, since N , the number of
events in a sequence, is a discrete random variable. This prob-
lem can be solved by deriving a differentiable relaxation to
the loss [Shchur et al., 2020b].

6 Applications
The literature on neural TPPs mostly considers their applica-
tions in web-related domains, e.g., for modeling user activity
on social media. Most existing applications of neural TPPs
fall into one of two categories:

• Prediction tasks, where the goal is to predict the time
and / or type of future events;

• Structure discovery, where the tasks is to learn depen-
dencies between different event types.

We now discuss these in more detail.

6.1 Prediction
Prediction is among the key tasks associated with tempo-
ral models. In case of a TPP, the goal is usually to predict
the times and marks of future events given the history of
past events. Such queries can be answered using the con-
ditional distribution P ∗i (τi,mi) defined by the neural TPP

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4589

model. Nearly all papers mentioned in previous sections fea-
ture numerical experiments on such prediction tasks. Some
works combine elements of neural TPP models (Section 3)
with other neural network architectures to solve specific real-
world prediction tasks related to event data. We give some
examples below.

Recommender systems are a recent application area for
TPPs. Here, the goal is to predict the next most likely pur-
chase event, in terms of both the time of purchase and the type
(i.e., item), given a sequence of customer interactions or pur-
chases in the past. Neural TPPs are especially well-suited for
this task, as they can learn embeddings for large item sets us-
ing neural networks, similar to other neural recommendation
models. Moreover, representing the temporal dimension of
purchase behavior enables time-sensitive recommendations,
e.g., used to time promotions. For example, [Kumar et al.,
2019] address the next item prediction problem by embed-
ding the event history to a vector, but are concerned only with
predicting the next item type (mark). This approach is ex-
tended to a full model of times and events, with a hierarchical
RNN model for intra- and inter-session activity represented
on different levels, in [Vassøy et al., 2019].

Another common application of event sequence prediction
is within the human mobility domain. Here, events are spatio-
temporal, featuring coordinates in both time and space, po-
tentially along with other marks. Examples include predict-
ing taxi trajectories in a city (e.g., the ECML/PKDD 2015
challenge2), or user check-ins on location-based social media.
[Yang et al., 2018] address this task with a full neural TPP, on
four different mobility data sets. This extends the approach
in DeepMove [Feng et al., 2018], where the authors simi-
larly use an RNNs to compute embeddings of timestamped
sequences, but limit the predictions to the next location alone.

Other applications include clinical event prediction [En-
guehard et al., 2020], predicting timestamped sequences of
interactions of patients with the health system; human activity
prediction for assisted living [Shen et al., 2018], and demand
forecasting in sparse time series [Türkmen et al., 2019a].

6.2 Structure Discovery & Modeling Networks
In prediction tasks we are interested in the conditional distri-
butions learned by the model. In contrast, in structure discov-
ery tasks the parameters learned by the model are of interest.

For example, in latent network discovery applications we
observe event activity generated byK users, each represented
by a categorical mark. The goal is to infer an influence matrix
A ∈ RK×K that encodes the dependencies between different
marks [Linderman and Adams, 2014]. Here, the entries of
A can be interpreted as edge weights in the network. His-
torically, this task has been addressed using non-neural mod-
els such as the Hawkes process [Hawkes, 1971]. The main
advantage of network discovery approaches based on neural
TPPs [Zhang et al., 2021] is their ability to handle more gen-
eral interaction types.

Learning Granger causality is another task that is closely
related to the network discovery problem. [Eichler et al.,

2http://www.geolink.pt/ecmlpkdd2015-challenge/

2017] and [Achab et al., 2017] have shown that the influ-
ence matrix A of a Hawkes process completely captures the
notion of Granger causality in multivariate event sequences.
Recently, [Zhang et al., 2020b] generalized this understand-
ing to neural TPP models, where they used the method of
integrated gradients to estimate dependencies between event
types, with applications to information diffusion on the web.

Neural TPPs have also been used to model information dif-
fusion and network evolution in social networks [Trivedi et
al., 2019]. The DyRep approach by Trivedi et al. general-
izes an earlier non-neural framework, COEVOLVE, by [Fara-
jtabar et al., 2017]. Similarly, Know-Evolve [Trivedi et al.,
2017] models dynamically evolving knowledge graphs with a
neural TPP. A related method, DeepHawkes, was developed
specifically for modeling item popularity in information cas-
cades [Cao et al., 2017].

Other applications. Neural TPPs have been featured in
works in other research fields and application domains. For
instance, [Huang et al., 2019] proposed an RNN-based Pois-
son process model for speech recognition. [Sharma et al.,
2018] developed a latent-variable neural TPP method for
modeling the behavior of larval zebrafish. Performing infer-
ence in the model allowed the authors to detect distinct be-
havioral patterns in zebrafish activity. Lastly, [Upadhyay et
al., 2018] showed how to automatically choose timing for in-
terventions in an interactive environment by combining a TPP
model with the framework of reinforcement learning.

7 Open Challenges
We conclude with a discussion of what, in our opinion, are the
main challenges that the field of neural TPPs currently faces.

7.1 Experimental Setup
Lack of standardized experimental setups and high-quality
benchmark datasets makes a fair comparison of different neu-
ral TPP architectures problematic.

Each neural TPP model consists of multiple components,
such as the history encoder and the parametrization of the
conditional distributions (Sections 3 and 4). New architec-
tures often change all these components at once, which makes
it hard to pinpoint the source of empirical gains. Carefully-
designed ablation studies are necessary to identify the impor-
tant design choices and guide the search for better models.

On a related note, the choice of baselines varies greatly
across papers. For example, papers proposing autoregres-
sive models (Section 3) rarely compare to continuous-time
state models (Section 4), and vice versa. Considering a wider
range of baselines is necessary to fairly assess the strengths
and weaknesses of different families of approaches.

Finally, it is not clear whether the datasets commonly used
in TPP literature actually allow us to find models that will
perform better on real-world prediction tasks. In particular,
Enguehard et al. point out that two popular datasets (MIMIC-
II and StackOverflow) can be “solved” by a simple history-
independent baseline. Also, common implicit assumptions,
such as treating the training sequences as i.i.d. (Section 5),
might not be appropriate for existing datasets.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4590

http://www.geolink.pt/ecmlpkdd2015-challenge/

To conclude, open-sourcing libraries with reference imple-
mentations of various baseline methods and collecting large
high-quality benchmark datasets are both critical next steps
for neural TPP researchers. A recently released library with
implementations of some autoregressive models by [Engue-
hard et al., 2020] takes a step in this direction, but, for in-
stance, doesn’t include continuous-time state models.

7.2 Evaluation Metrics
Many of the metrics commonly used to evaluate TPP mod-
els are not well suited for quantifying their predictive perfor-
mance and have subtle failure modes.

For instance, consider the NLL score (Section 5), one of
the most popular metrics for quantifying predictive perfor-
mance in TPPs. As mentioned in Section 3.4, the NLL con-
sists of a continuous component for the time ti and a discrete
component for the mark mi. Therefore, reporting a single
NLL score obscures information regarding the model’s per-
formance on predicting marks and times separately. For ex-
ample, the NLL score is affected disproportionately by errors
in marks as the number of marks increase. Moreover, the
NLL can be “fooled” on datasets where the arrival times ti
are measured in discrete units, such as seconds—a flexible
model can produce an arbitrarily low NLL by placing narrow
density “spikes” on these discrete values [Uria et al., 2013].

More importantly, the NLL is mostly irrelevant as a mea-
sure of error in real-world applications—it yields very lit-
tle insight into model performance from a domain expert’s
viewpoint. However, other metrics, such as accuracy for the
mark prediction, and mean absolute error (MAE) or mean
squared error (MSE) for inter-event time prediction are even
less suited for evaluating neural TPPs. These metrics measure
the quality of a single future event prediction, and MAE/MSE
only take a point estimate of τi into account. One doesn’t
need to model the entire distribution over τi (as done by a
TPP) to perform well w.r.t. such metrics. If only single-event
predictions are of interest, one could instead use a simple
baseline that only models P ∗i (mi) or produces a point esti-
mate τ pred

i . This baseline can be trained by directly minimiz-
ing absolute or squared error for inter-event times or cross-
entropy for marks. TPPs are, in contrast, probabilistic mod-
els trained with the NLL loss; so comparing them to point-
estimate baselines using above metrics is unfair.

The main advantage of neural TPPs compared to simple
“point-estimate” methods is their ability to sample entire tra-
jectories of future events. Such probabilistic forecasts capture
uncertainty in predictions and are able to answer more com-
plex prediction queries (e.g., “How many events of type k1

will happen immediately after an event of type k2?”). Prob-
abilistic forecasts are universally preferred to point estimates
in the neighboring field of time series modeling [Gneiting and
Katzfuss, 2014; Alexandrov et al., 2020]. A variety of met-
rics for evaluating the quality of such probabilistic forecasts
for (regularly-spaced) time series have been proposed [Gneit-
ing et al., 2008], but they haven’t been generalized to marked
continuous-time event sequences. Developing metrics that
are based on entire sampled event sequences can help us un-
lock the full potential of neural TPPs and allow us to better
compare different models. More generally, we should take

advantage of the fact that TPP models learn an entire dis-
tribution over trajectories and rethink how these models are
applied to prediction tasks.

7.3 Applications
While most recent works have focused on developing new ar-
chitectures for better prediction and structure discovery, other
applications of neural TPPs remain largely understudied.

Applications of classical TPPs go beyond the above two
tasks. For example, latent-variable TPP models have been
used for event clustering [Mavroforakis et al., 2017; Xu
and Zha, 2017] and change point detection [Altieri et al.,
2015]. Other applications include anomaly detection [Li et
al., 2017], optimal control [Zarezade et al., 2017; Tabibian
et al., 2019] and fighting the spread of misinformation online
[Kim et al., 2018].

Moreover, most papers on neural TPPs consider datasets
originating from the web and related domains, such as rec-
ommender systems and knowledge graphs. Meanwhile, tra-
ditional application areas for TPPs, like neuroscience, seis-
mology and finance, have not received as much attention.
Adapting neural TPPs to these traditional domains requires
answering exciting research questions. To name a few, spike
trains in neuroscience [Aljadeff et al., 2016] are characterized
by both high numbers of marks (i.e., neurons that are being
modeled) and high rates of event occurrence (i.e., firing rates),
which requires efficient and scalable models. Applications
in seismology usually require interpretable models [Bray and
Schoenberg, 2013], and financial datasets often contain de-
pendencies between various types of assets that are far more
complex than self-excitation, commonly encountered in so-
cial networks [Bacry et al., 2015].

To summarize, considering new tasks and new application
domains for neural TPP models is an important and fruitful
direction for future work.

References
[Achab et al., 2017] Massil Achab, Emmanuel Bacry,

Stéphane Gaıffas, Iacopo Mastromatteo, and Jean-
François Muzy. Uncovering causality from multivariate
Hawkes integrated cumulants. In ICML, 2017.

[Alexandrov et al., 2020] Alexander Alexandrov, Kon-
stantinos Benidis, Michael Bohlke-Schneider, Valentin
Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C.
Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang
Wang. GluonTS: Probabilistic and neural time series
modeling in Python. JMLR, 21(116), 2020.

[Aljadeff et al., 2016] Johnatan Aljadeff, Benjamin J Lans-
dell, Adrienne L Fairhall, and David Kleinfeld. Analysis
of neuronal spike trains, deconstructed. Neuron, 91(2),
2016.

[Altieri et al., 2015] Linda Altieri, E Marian Scott, Daniela
Cocchi, and Janine B Illian. A changepoint analysis of
spatio-temporal point processes. Spatial Statistics, 2015.

[Bacry et al., 2015] Emmanuel Bacry, Iacopo Mastromatteo,
and Jean-François Muzy. Hawkes processes in finance.
Market Microstructure and Liquidity, 1, 2015.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4591

[Biloš et al., 2019] Marin Biloš, Bertrand Charpentier, and
Stephan Günnemann. Uncertainty on asynchronous time
event prediction. NeurIPS, 2019.

[Boyd et al., 2020] Alex Boyd, Robert Bamler, Stephan
Mandt, and Padhraic Smyth. User-dependent neural se-
quence models for continuous-time event data. NeurIPS,
2020.

[Bray and Schoenberg, 2013] Andrew Bray and Fred-
eric Paik Schoenberg. Assessment of point process
models for earthquake forecasting. Statistical science,
2013.

[Brockmeyer et al., 1948] E Brockmeyer, HL Halstrøm, and
A Jensen. The life and works of AK Erlang. Transactions
of the Danish Academy of Technical Sciences, 2, 1948.

[Cao et al., 2017] Qi Cao, Huawei Shen, Keting Cen, Wen-
tao Ouyang, and Xueqi Cheng. Deephawkes: Bridging the
gap between prediction and understanding of information
cascades. In CIKM, 2017.

[Chen et al., 2021a] Ricky TQ Chen, Brandon Amos, and
Maximilian Nickel. Learning neural event functions for
ordinary differential equations. ICLR, 2021.

[Chen et al., 2021b] Ricky TQ Chen, Brandon Amos, and
Maximilian Nickel. Neural spatio-temporal point pro-
cesses. ICLR, 2021.

[Cramér, 1969] Harald Cramér. Historical review of Filip
Lundberg’s works on risk theory. Scandinavian Actuarial
Journal, 1969(sup3), 1969.

[Daley and Vere-Jones, 2007] Daryl J Daley and David
Vere-Jones. An introduction to the theory of point pro-
cesses: Volume II: general theory and structure. 2007.

[Du et al., 2016] Nan Du, Hanjun Dai, Rakshit Trivedi,
Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: Em-
bedding event history to vector. In KDD, 2016.

[Eichler et al., 2017] Michael Eichler, Rainer Dahlhaus, and
Johannes Dueck. Graphical modeling for multivariate
hawkes processes with nonparametric link functions. Jour-
nal of Time Series Analysis, 38(2):225–242, 2017.

[Enguehard et al., 2020] Joseph Enguehard, Dan Busbridge,
Adam Bozson, Claire Woodcock, and Nils Hammerla.
Neural temporal point processes for modelling electronic
health records. In Machine Learning for Health, 2020.

[Farajtabar et al., 2017] Mehrdad Farajtabar, Yichen Wang,
Manuel Gomez-Rodriguez, Shuang Li, Hongyuan Zha,
and Le Song. COEVOLVE: A joint point process model
for information diffusion and network evolution. JMLR,
18(1), 2017.

[Feng et al., 2018] Jie Feng, Yong Li, Chao Zhang, Funing
Sun, Fanchao Meng, Ang Guo, and Depeng Jin. Deep-
move: Predicting human mobility with attentional recur-
rent networks. In WWW, 2018.

[Gneiting and Katzfuss, 2014] Tilmann Gneiting and
Matthias Katzfuss. Probabilistic forecasting. Annual
Review of Statistics and Its Application, 2014.

[Gneiting et al., 2008] Tilmann Gneiting, Larissa I Stan-
berry, Eric P Grimit, Leonhard Held, and Nicholas A
Johnson. Assessing probabilistic forecasts of multivariate
quantities, with an application to ensemble predictions of
surface winds. 2008.

[Gomez-Rodriguez and Valera, 2018] Manuel Gomez-
Rodriguez and Isabel Valera. Learning with temporal
point processes. Tutorial at ICML, 2018.

[Guo et al., 2018] Ruocheng Guo, Jundong Li, and Huan
Liu. INITIATOR: Noise-contrastive estimation for marked
temporal point process. In IJCAI, 2018.

[Gupta et al., 2021] Vinayak Gupta, Srikanta Bedathur,
Sourangshu Bhattacharya, and Abir De. Learning tem-
poral point processes with intermittent observations. In
AISTATS, 2021.

[Hawkes, 1971] Alan G Hawkes. Point spectra of some mu-
tually exciting point processes. Journal of the Royal Sta-
tistical Society: Series B, 33(3), 1971.

[Huang et al., 2019] Hengguan Huang, Hao Wang, and
Brian Mak. Recurrent Poisson process unit for speech
recognition. In AAAI, 2019.

[Jia and Benson, 2019] Junteng Jia and Austin R Benson.
Neural jump stochastic differential equations. NeurIPS,
2019.

[Kim et al., 2018] Jooyeon Kim, Behzad Tabibian, Alice
Oh, Bernhard Schölkopf, and Manuel Gomez-Rodriguez.
Leveraging the crowd to detect and reduce the spread of
fake news and misinformation. In WSDM, 2018.

[Kumar et al., 2019] Srijan Kumar, Xikun Zhang, and Jure
Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In KDD, 2019.

[Li et al., 2017] Shuang Li, Yao Xie, Mehrdad Farajtabar,
Apurv Verma, and Le Song. Detecting changes in dynamic
events over networks. IEEE Transactions on Signal and
Information Processing over Networks, 3(2), 2017.

[Li et al., 2018] Shuang Li, Shuai Xiao, Shixiang Zhu, Nan
Du, Yao Xie, and Le Song. Learning temporal point pro-
cesses via reinforcement learning. NeurIPS, 2018.

[Linderman and Adams, 2014] Scott Linderman and Ryan
Adams. Discovering latent network structure in point pro-
cess data. In ICML, 2014.

[Mavroforakis et al., 2017] Charalampos Mavroforakis, Is-
abel Valera, and Manuel Gomez-Rodriguez. Modeling the
dynamics of learning activity on the web. In WWW, 2017.

[Mei and Eisner, 2017] Hongyuan Mei and Jason Eisner.
The neural Hawkes process: A neurally self-modulating
multivariate point process. NeurIPS, 2017.

[Mei et al., 2020] Hongyuan Mei, Tom Wan, and Jason Eis-
ner. Noise-contrastive estimation for multivariate point
processes. NeurIPS, 2020.

[Mohamed et al., 2020] Shakir Mohamed, Mihaela Rosca,
Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. JMLR, 21(132), 2020.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4592

[Ogata, 1981] Yosihiko Ogata. On Lewis’ simulation
method for point processes. Transactions on Information
Theory, 27(1), 1981.

[Okawa et al., 2019] Maya Okawa, Tomoharu Iwata,
Takeshi Kurashima, Yusuke Tanaka, Hiroyuki Toda,
and Naonori Ueda. Deep mixture point processes:
Spatio-temporal event prediction with rich contextual
information. In KDD, 2019.

[Omi et al., 2019] Takahiro Omi, Naonori Ueda, and
Kazuyuki Aihara. Fully neural network based model for
general temporal point processes. NeurIPS, 2019.

[Rasmussen, 2011] Jakob Gulddahl Rasmussen. Temporal
point processes. Lecture Notes, 2011.

[Rubanova et al., 2019] Yulia Rubanova, Ricky TQ Chen,
and David Duvenaud. Latent ordinary differential equa-
tions for irregularly-sampled time series. NeurIPS, 2019.

[Sharma et al., 2018] Anuj Sharma, Robert Johnson, Florian
Engert, and Scott Linderman. Point process latent variable
models of larval zebrafish behavior. NeurIPS, 2018.

[Shchur et al., 2020a] Oleksandr Shchur, Marin Biloš, and
Stephan Günnemann. Intensity-free learning of temporal
point processes. ICLR, 2020.

[Shchur et al., 2020b] Oleksandr Shchur, Nicholas Gao,
Marin Biloš, and Stephan Günnemann. Fast and flexible
temporal point processes with triangular maps. NeurIPS,
2020.

[Shen et al., 2018] Yang Shen, Bingbing Ni, Zefan Li, and
Ning Zhuang. Egocentric activity prediction via event
modulated attention. In ECCV, 2018.

[Sutskever, 2013] Ilya Sutskever. Training recurrent neural
networks. PhD thesis, University of Toronto, 2013.

[Tabibian et al., 2019] Behzad Tabibian, Utkarsh Upadhyay,
Abir De, Ali Zarezade, Bernhard Schölkopf, and Manuel
Gomez-Rodriguez. Enhancing human learning via spaced
repetition optimization. PNAS, 116(10), 2019.

[Trivedi et al., 2017] Rakshit Trivedi, Hanjun Dai, Yichen
Wang, and Le Song. Know-Evolve: Deep temporal rea-
soning for dynamic knowledge graphs. In ICML, 2017.

[Trivedi et al., 2019] Rakshit Trivedi, Mehrdad Farajtabar,
Prasenjeet Biswal, and Hongyuan Zha. DyRep: Learning
representations over dynamic graphs. In ICLR, 2019.

[Türkmen et al., 2019a] Ali Caner Türkmen, Yuyang Wang,
and Tim Januschowski. Intermittent demand forecasting
with deep renewal processes. TPP @ NeurIPS, 2019.

[Türkmen et al., 2019b] Ali Caner Türkmen, Yuyang Wang,
and Alexander J Smola. FastPoint: Scalable deep point
processes. In ECML PKDD, 2019.

[Upadhyay et al., 2018] Utkarsh Upadhyay, Abir De, and
Manuel Gomez-Rodriguez. Deep reinforcement learning
of marked temporal point processes. NeurIPS, 2018.

[Uria et al., 2013] Benigno Uria, Iain Murray, and Hugo
Larochelle. Rnade: The real-valued neural autoregressive
density-estimator. NeurIPS, 2013.

[Vassøy et al., 2019] Bjørnar Vassøy, Massimiliano Ruocco,
Eliezer de Souza da Silva, and Erlend Aune. Time is of the
essence: a joint hierarchical rnn and point process model
for time and item predictions. In WSDM, 2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. NeurIPS, 2017.

[Wu et al., 2018] Qitian Wu, Chaoqi Yang, Hengrui Zhang,
Xiaofeng Gao, Paul Weng, and Guihai Chen. Adversarial
training model unifying feature driven and point process
perspectives for event popularity prediction. In CIKM,
2018.

[Xiao et al., 2017a] Shuai Xiao, Mehrdad Farajtabar, Xiao-
jing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasser-
stein learning of deep generative point process models.
NeurIPS, 2017.

[Xiao et al., 2017b] Shuai Xiao, Junchi Yan, Xiaokang
Yang, Hongyuan Zha, and Stephen Chu. Modeling the
intensity function of point process via recurrent neural net-
works. In AAAI, 2017.

[Xu and Zha, 2017] Hongteng Xu and Hongyuan Zha. A
Dirichlet mixture model of Hawkes processes for event se-
quence clustering. NeurIPS, 2017.

[Yan et al., 2018] Junchi Yan, Xin Liu, Liangliang Shi,
Changsheng Li, and Hongyuan Zha. Improving maxi-
mum likelihood estimation of temporal point process via
discriminative and adversarial learning. In IJCAI, 2018.

[Yan, 2019] Junchi Yan. Recent advance in temporal point
process: from machine learning perspective. SJTU Tech-
nical Report, 2019.

[Yang et al., 2018] Guolei Yang, Ying Cai, and Chandan K
Reddy. Recurrent spatio-temporal point process for check-
in time prediction. In CIKM, 2018.

[Zarezade et al., 2017] Ali Zarezade, Abir De, Utkarsh
Upadhyay, Hamid R Rabiee, and Manuel Gomez-
Rodriguez. Steering social activity: A stochastic optimal
control point of view. JMLR, 18, 2017.

[Zhang et al., 2020a] Qiang Zhang, Aldo Lipani, Omer Kir-
nap, and Emine Yilmaz. Self-attentive Hawkes process. In
ICML, 2020.

[Zhang et al., 2020b] Wei Zhang, Thomas Panum, Somesh
Jha, Prasad Chalasani, and David Page. CAUSE: Learning
granger causality from event sequences using attribution
methods. In ICML, 2020.

[Zhang et al., 2021] Qiang Zhang, Aldo Lipani, and Em-
ine Yilmaz. Learning neural point processes with latent
graphs. In WWW, 2021.

[Zhu et al., 2020] Shixiang Zhu, Henry Shaowu Yuchi, and
Yao Xie. Adversarial anomaly detection for marked
spatio-temporal streaming data. In ICASSP, 2020.

[Zuo et al., 2020] Simiao Zuo, Haoming Jiang, Zichong Li,
Tuo Zhao, and Hongyuan Zha. Transformer Hawkes pro-
cess. In ICML, 2020.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4593

	Introduction
	Background and Notation
	Autoregressive Neural TPPs
	Representing Events as Feature Vectors
	Encoding the History into a Vector
	Predicting the Time of the Next Event
	Modeling the Marks

	Continuous-time State Evolution
	Parameter Estimation
	Maximum Likelihood Estimation
	Alternatives to MLE

	Applications
	Prediction
	Structure Discovery & Modeling Networks

	Open Challenges
	Experimental Setup
	Evaluation Metrics
	Applications

