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Abstract

Qualitative Spatial & Temporal Reasoning (QSTR)
is a major field of study in Symbolic AI that deals
with the representation and reasoning of spatio-
temporal information in an abstract, human-like
manner. We survey the current status of QSTR
from a viewpoint of reasoning approaches, and
identify certain future challenges that we think
that, once overcome, will allow the field to meet
the demands of and adapt to real-world, dynamic,
and time-critical applications of highly active areas
such as machine learning and data mining.

1 Introduction
In everyday natural language descriptions one typically uses
expressions such as outside, left of, or north of to spatially
or temporally relate one object with another object or one-
self, without resorting to providing the exact metric infor-
mation about these entities. An AI framework that aims to
capture this type of human-like representation and reasoning
pertaining to space and time is known in the research com-
munity as Qualitative Spatial and Temporal Reasoning, or
QSTR for short. Specifically, QSTR is a major field of study
in Symbolic AI, and in particular in Knowledge Represen-
tation & Reasoning, that deals with the fundamental cogni-
tive concepts of space and time in an abstract, natural man-
ner, ranging from theoretical computer science and logic to
practical algorithms and applications [Ligozat, 2011]. More
formally, QSTR restricts the vocabulary of rich mathemat-
ical theories that deal with spatial and temporal entities to
simple qualitative constraint languages, which can be used to
form interpretable spatio-temporal constraint networks of dis-
junctions of atoms [Ligozat, 2011], such as the one shown in
Figure 1. In a sense, QSTR forms a concise framework that
allows for rather inexpensive reasoning about entities located
in space and time and, hence, further boosts research and ap-
plications in a plethora of areas and domains that include
cognitive robotics [Dylla and Wallgrün, 2007], qualitative
model generation from video [Dubba et al., 2015], ambient
intelligence [Bhatt et al., 2009], visual sensemaking [Suchan
et al., 2019], data mining [Moskovitch and Shahar, 2015;
Kostakis et al., 2017], and qualitative case-based reasoning

fork plate knife

tableon on
on

right of left of

TaskA Task C

TaskB

?

precedes ∨ follows precedes

Figure 1: Left: Qualitative abstraction of a spatial configuration.
Right: A simplified temporal constraint network of 3 variables, each
representing a task; ? denotes complete uncertainty
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and learning [Homem et al., 2020]. Here, we exclusively sur-
vey reasoning tasks and methods of QSTR beyond what has
been covered in previous overviews [Renz and Nebel, 2007],
[Cohn and Renz, 2008], and [Ligozat, 2011]. A survey of
representation languages, called qualitative calculi in QSTR,
is not part of this article as it appears in [Dylla et al., 2017].

In this article we mainly use two representation languages
in our examples. The first constraint language to deal with
time in a qualitative manner was proposed by Allen in [Allen,
1983], called Interval Algebra. Allen wanted to define a
framework for reasoning about time in the context of natu-
ral language processing that would be reliable and efficient
enough for reasoning about temporal information in a qual-
itative manner. In particular, Interval Algebra uses intervals
on the timeline to represent entities corresponding to actions,
events, or tasks. Interval Algebra has become one of the most
well-known qualitative constraint languages, due to its use
for representing and reasoning about temporal information in
various applications. Specifically, notable applications of In-
terval Algebra involve planning and scheduling [Allen, 1991;
Mudrová and Hawes, 2015] natural language processing [De-
nis and Muller, 2011] workflow [Lu et al., 2006], and inten-
sive care medicine [Ibrahim et al., 2020].

Motivated by the plentiful applications of Interval Alge-
bra, researchers searched for “something like Allen, but for
space”. The search turned out to be rather difficult, as For-
bus had previously predicted in the poverty conjecture [For-
bus et al., 1991], which questions the existence of a universal
purely qualitative representation of space. However, with the
Region Connection Calculus (RCC) [Randell et al., 1992], an
approach appeared that, in the light of its plentiful and diverse
applications, can be regarded as almost universal. RCC con-
siders relations between regions in some topological space
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that can be derived from a primitive notion of connection.
For example, the relation disconnected between two regions
x and y suggests that none of the points of region x connects
with a point of region y, and vice versa. Two fragments of
RCC, namely, RCC-8 and RCC-5 (a sublanguage of RCC-8
where no significance is attached to boundaries of regions),
have been used in several real-life applications. In particular,
Bouzy in [Bouzy, 2001] used RCC-8 in programming the Go
game, Lattner et al. in [Lattner et al., 2005] used RCC-5 to
set up assistance systems in intelligent vehicles, Heintz et al.
in [Heintz and de Leng, 2014] used RCC-8 in the domain of
autonomous unmanned aircraft systems (UAS), and Randell
et al. in [Randell et al., 2017] used a particular discrete do-
main counterpart of RCC-8 (called discrete mereotopology) to
correct segmentation errors for images of human cancer cell
line cultures. Other notable applications of RCC involve robot
navigation [Fenelon et al., 2013] computer vision [Sridhar
et al., 2011], and natural language processing [Kordjamshidi
and Moens, 2015].

The remainder of the paper is organized as follows. Sec-
tion 2 introduces preliminaries on qualitative calculi, and Sec-
tion 3 describes reasoning tasks in QSTR. Next, in Section 4
we overview the current status of QSTR and list, what we
think are, certain shortcomings in the impressive amount of
work that has been carried out over the past years. Then, in
Section 5 we describe how those challenges could be over-
come and what frameworks would need to be developed in
order to meet emerging demands in highly active areas such
as machine learning and data mining. Finally, in Section 6 we
conclude with some final pointers for the future of QSTR.

2 Background
To facilitate discussion, we first recall the formal definition
of a qualitative calculus, which is a constraint language that
is used to represent and reason about qualitative information.
Such a calculus is based on a finite set B of jointly exhaustive
and pairwise disjoint binary relations defined over an infinite
domain D (such as a topological space or the real line), called
the set of atoms [Ligozat, 2011] (in the literature, atoms are
also known as atomic or base relations). A subset of B (item
of 2B) denotes a relation encoding a disjunction of possible
atoms, only one of which may hold between two entities (e.g.,
a region can either touch or contain another region, both rela-
tions cannot hold simultaneously). Hence, 2B represents the
total set of spatial or temporal relations.

Let us revisit the well-known qualitative temporal con-
straint language of Interval Algebra [Allen, 1983]. The do-
main D of Interval Algebra is defined to be the set of intervals
on the line of rational numbers, i.e., D = {x = (x−, x+) ∈
Q×Q | x− < x+}. Each atom can be defined by appropriately
constraining the endpoints of two possible intervals, which
yields a total of 13 atoms comprising the set B = {e, p, pi,
m, mi, o, oi, s, si, d, di, f , fi}; symbols e, p, m, o, s, d, and
f correspond to the atoms equals, precedes, meets, overlaps,
starts, during, and finishes respectively, with ·i denoting the
converse of · (note that ei = e). For example, d, viz., during,
is defined as d= {(x, y) ∈ D× D | x− > y− and x+ < y+}.

Spatial or temporal information of a qualitative calculus

can be modeled as a Qualitative Constraint Network (QCN),
which is defined as a network where the vertices correspond
to spatial or temporal entities, and the edges are labelled with
qualitative spatial or temporal relations respectively. For-
mally, a QCN can be defined as follows.
Definition 1. A Qualitative Constraint Network (QCN) is a
tuple (V,C) where:

• V = {v1, . . . , vn} is a finite set of variables, each repre-
senting an entity of an infinite domain D;
• and C is a mapping C : V × V → 2B such that
C(v, v) = {Id} for all v ∈ V , where Id denotes the
identity atom [Ligozat, 2011] (typically equals), and
C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .

We proceed with a gentle example of a QCN.
Example 1. An example of a simplified QCN of Interval Al-
gebra is shown in Figure 1. For instance, formally, the rela-
tion between Tasks A and B is {p, pi}, since the converse of
precedes, viz., pi, is follows, and ? denotes the whole set of
atoms B (hence, each of the atoms in B is possible between
Tasks A and C); for simplicity, self-loops corresponding to
relation {Id} (viz., relation {e} in this case) and converse re-
lations of those appearing in the figure, are not depicted. As
another example, x ≤ y can denote a temporal QCN over Z.

3 Fundamental QSTR Reasoning Tasks
Given a QCN N , the literature is particularly interested in
its satisfiability problem, which is the problem of deciding
if there exists a spatial or temporal interpretation of the vari-
ables of N that satisfies its constraints, viz., a solution of N ;
for instance, one of the (infinitely many, as the domain is in-
finite) solutions of the QCN of Figure 1 is

(Task A = 0) ∧ (Task B = 1) ∧ (Task C = 2).

The satisfiability problem is NP-hard for most qualitative
calculi [Dylla et al., 2017]. Further, it lies at the heart of most
(if not all) reasoning tasks, as verifying the admissibility of
a set of spatio-temporal rules is especially important. While
QCNs alone already involve important reasoning tasks, we
would like to note that the study of QCNs itself establishes
an algorithmic basis for reasoning with more expressive rep-
resentation languages that build on qualitative primitives too.

Other fundamental reasoning problems that build upon the
satisfiability problem include the minimal labelling (or de-
ductive closure) and the redundancy problems [Renz and
Nebel, 2007]. The minimal labelling problem is the problem
of finding the strongest implied constraints of N , i.e., deter-
mining and maintaining only the atoms in each constraint that
are present in a satisfiable scenario of N (also known in the
literature as a satisfiable atomic refinement or atomic config-
uration ofN ); for instance, a satisfiable scenario of the QCN
of Figure 1 is (recall that p is precedes)

(TaskA {p}TaskB)∧(TaskB {p}TaskC)∧(TaskA {p}TaskC).

The unification of all such scenarios yields a minimal net-
work. As noted in [Gottlob, 2012], a minimal network is a
quite useful knowledge compilation, since it allows one to
answer a number of queries in polynomial time that would
otherwise be NP-hard. Indeed, in the context of QSTR, for
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instance, one could exploit minimality of a QCN to immedi-
ately deduce whether some task A should be scheduled before
another task C, or whether some object X could be placed on
top of another object Y . For the curious reader, we note that
the QCN of Figure 1 is already minimal.

The redundancy problem is the problem of deducing
whether a given constraint in N is entailed by the rest of N
(that constraint being called redundant, as its removal does
not change the solution set of the QCN); for instance, the re-
lation (A {p}C) is redundant in the aforementioned scenario,
and an equivalent set of rules is

(Task A {p} Task B) ∧ (Task B {p} Task C).

The observant reader will notice some similarity between
the problems of redundancy and minimality, and indeed in
certain cases solving the latter allows us to solve the former
in polynomial time [Li et al., 2015]. The redundancy prob-
lem is particularly important in cases where we want to have
the structure of a QCN be as concise and sparse as possible,
like in the cases of pattern discovery or search in data min-
ing [Ibrahim et al., 2020; Kostakis et al., 2017].

Naturally, the redundancy problem and the minimal la-
belling problem are polynomial-time Turing reducible to the
satisfiability problem [Golumbic and Shamir, 1993].

Finally, variants of the satisfiability problem have been
considered. One variant concerns an over-constrained QCN
where the task is to compute a spatial or temporal configu-
ration that maximizes the number of satisfied constraints in
that QCN; this problem is called the MAX-QCN problem
and was recently introduced in [Condotta et al., 2015]. The
motivation behind studying the MAX-QCN problem lies in
the fact that representing spatio-temporal information may
inevitably lead to inconsistencies due to, for example, hu-
man error or contradictory data of different sources. This
is true for various real-world temporally or spatially anno-
tated data, for which there are ongoing efforts to implement
tools for practical tasks such as verification, repair, and vi-
sualization.1,2 Another variant restricts the domain of some
variables to fixed objects, which may result in the satisfia-
bility problem becoming harder to solve [Li et al., 2013].
This variant is relevant for real-world applications that require
spatial reasoning with concrete entities [Stock et al., 2015;
Kreutzmann and Wolter, 2014]. Other reasoning problems
consider the task of computing a solution of a QCN, which
can be more difficult than merely deciding existence [Renz,
2002], and spatio-temporal reasoning tasks based on concep-
tual neighborhoods [Freksa, 1992] for qualitative simulation
or continuity constraints formulation.

4 Current Status
In this section we review the current status in QSTR with
respect to how it can(not) adapt to applications and how
(in)accessible it is to the non-expert user.

4.1 Vanilla QSTR Reasoners
Let us first outline how native QSTR methods for decid-
ing satisfiability are constructed. They implement a form of

1http://www.timeml.org/timebank/timebank.html
2http://gadm.geovocab.org/

Algorithm 1 Refinement Search
1: procedure CHECK(QCN N = (V,C), sub-algebra T )
2: N ← PROPAGATE(N )
3: if ∃vi, vj ∈ V : C(vi, vj) = {} then
4: return failure . trigger backtracking/conflict analysis
5: else if ∀vi, vj ∈ V : C(vi, vj) ∈ T then
6: DECIDE(N )
7: else
8: select vi, vj ∈ V with C(vi, vj) 6∈ T . heuristic search for refinement
9: select r as refinement of C(vi, vj) with r ∈ T

10: CHECK(N updated by setting C(vi, vj) to r, T )
11: end if
12: end procedure

search as shown in Algorithm 1. At the heart of the method,
a dedicated decision method DECIDE (line 6) is used that
is capable of deciding satisfiability for a QCN that only in-
volves a certain sub-algebra, i.e., subset of relations (denoted
T in the algorithm). For several calculi, the well-known path-
consistency algorithm can be applied to decide satisfiability
for QCNs that only contain atomic relations; the method is
called algebraic closure in QSTR due to the algebraic relation
composition operation being weak for most calculi [Dylla et
al., 2017]. Identifying applicable decision procedures and the
largest sets of relations over which satisfiability of QCNs can
be decided using these procedures is an important task when
analyzing calculi. The overall algorithm then performs a re-
finement search by splitting all disjunctive relations that can-
not be handled by DECIDE into relations that can be handled,
thus refining a relation s 6∈ T into r ⊂ s, r ∈ T (lines 8–10).
Each refinement step is followed by constraint propagation
(line 2) using the algebraic closure method. Upon failure,
some form of backtracking or backjumping is performed.

4.2 Choice of Tools Requires Expert Knowledge
Real-world problems involving spatio-temporal information
are extremely diverse and do not come with a handbook of
which and how QSTR techniques should be applied. Depend-
ing on the use case, spatio-temporal information may vary in
complexity, size, and nature. As an example, certain real-
world temporally and spatially annotated data that appear on
the web today are of huge size, involving up to millions of en-
tities, but of very low complexity and density, allowing typi-
cally one or, less often, two possible relations to hold between
two entities.1,2 Such datasets can be tackled with polyno-
mial methods that exploit the sparsity of the underlying con-
straint graphs quite efficiently [Sioutis et al., 2016]. On the
other hand, in other contexts, such as industrial ones, like job
shop scheduling or planning, spatio-temporal information in-
volves fewer entities in general, as the information is natu-
rally grounded on a restricted amount of resources; however,
there is much more flexibility with regard to the possible rela-
tions that can hold between two entities [Sioutis et al., 2020].

Moreover, there is an abundance of native QSTR tech-
niques for tackling many of the problems that exist to-
day [Amaneddine et al., 2013; Sioutis et al., 2015; Long et
al., 2016; Sioutis et al., 2018; Gantner et al., 2008; Wolter
and Wallgrün, 2012], but no clear strategy of which tool ap-
plies best to which dataset. This lack of clarity is further im-
paired by alternative, non-native tools applicable to the same
problems, ranging from Boolean satisfiability (SAT) [Glo-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4596

http://www.timeml.org/timebank/timebank.html
http://gadm.geovocab.org/


rian et al., 2018; Condotta et al., 2016; Huang et al., 2013]
to Answer Set Programming (ASP) [Baryannis et al., 2020;
Janhunen and Sioutis, 2019; Walega et al., 2017].

Currently, and to the best of our knowledge, there has not
been a complete answer to the question of how the various
native and non-native tools should be chosen and could be
combined to tackle QSTR problems.

4.3 Self-adaptive QSTR Techniques Are Missing
So far, the tuning of all previously referenced tools relies
upon expert knowledge, as they are not adaptive to the par-
ticulars of a given problem instance, which inhibits off-the-
shelf application to challenging tasks such as online verifica-
tion of neural methods [Alirezaie et al., 2019] or data mining
[Kostakis et al., 2017]. Every one of the aforementioned tools
makes its own assumptions regarding the complexity, size,
and nature of the spatio-temporal information involved;3 this
may not only affect performance when a tool is to be used in
a generic setting, but may even lead to the reasoning process
being unsound if its prerequisites are not met.

In the above context, to the best of our knowledge there
does not exist any current work that is sufficiently self-
adaptive and/or that composes different reasoning techniques
in an intelligent manner. One notable exception could be the
work of [Glorian et al., 2018], where a CNF encoding is com-
bined with a native QSTR algorithm in a lazy setting for satis-
fiability checking of spatial networks; however, the domain of
spatial regions in that work is assumed to only consist of rect-
angles, which impacts the overall soundness of the approach
if applied to tasks involving arbitrarily shaped regions.

With respect to collaborative frameworks, Sioutis and Jan-
hunen have recently provided a short roadmap in terms
of identifying certain structural characteristics in qualita-
tive spatio-temporal constraint networks, viz., backdoors and
backbones [Sioutis and Janhunen, 2019] (cf. [Williams et al.,
2003]), which could be used to define combined approaches
among SAT, ASP, and native tools and lead to the develop-
ment of adaptive tools with a better insight into the specifics
of real-world and industrial datasets than what is possible to-
day [Sioutis and Janhunen, 2019, Section 4].

5 Future Challenges
Based on the critical discussion in Section 4, we describe
here, what we think are, some viable contributions to QSTR
that would allow the field to become more accessible to the
non-expert user and better connected to highly active areas
such as machine learning and data mining.

5.1 Self-adaptive Techniques for QSTR
In this section, we argue for enhancing existing QSTR tech-
niques with self-adaptive capabilities, and working towards
novel self-adaptive approaches based on statistical learning.
To this end, we identify the following challenges.

3This is to be expected to some extent for such specialized tech-
niques, and should not negatively reflect the authors’ work.
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Figure 2: Two different ways to triangulate a simplified temporal
constraint network of 4 variables and 4 constraints (forming a cycle
of length > 3); adding a chord as in (a) allows us to infer a single
possibility between Tasks A and C, whereas in (b) all possibilities
are maintained between Tasks B and D (p. is short for precedes)

Relation-aware triangulation Over the past decade, the
use of chordal graphs has become prevalent when dealing
with sparse QCNs, typical of man-made data [Huang et al.,
2013; Sioutis et al., 2016; Sioutis et al., 2016; Condotta et al.,
2016; Amaneddine et al., 2013; Sioutis et al., 2015]. In short,
a graph is chordal if every cycle of length > 3 has a chord,
which is an edge that is not part of the cycle but connects
two vertices of the cycle. Triangulating the underlying (con-
straint) graph of a QCN instead of completing it allows us to
reduce the search space. However, to date, the used triangu-
lation procedures in QSTR do not take at all into account the
spatio-temporal relations that label the edges. Let us consider
Figure 2 as an example; we can optimally4 triangulate the de-
picted temporal constraint network in two ways, but only one
of them is best in terms of reducing the amount of possibil-
ities in the resulting chordal constraint graph. Figuring out
the best (or simply a good) triangulation for a QCN becomes
even more complicated when taking into account the fact that
a resulting triangulation directly affects the pruning capacity
of a propagator pertaining to some local consistency; in gen-
eral, the sparser the triangulation, the weaker the local prop-
agation (i.e., fewer unfeasible atoms are removed) [Sioutis
et al., 2016, Section 3.3], though there are certain restricted
classes of instances for which the pruning capacity is not af-
fected [Long and Li, 2015]. Therefore, within this context we
raise the following questions:
• How much time should we invest in triangulating a given
QCN in a relation-aware manner?
• Should we adjust the strength of local propagation as a

given QCN is being tackled?
• What lazy strategies of the above could work in practice

(triangulating/propagating as needed)?
We think that answering these questions would require the
implementation of heuristics and consequent development of
intelligent techniques that would address the shortcomings of
current tools, viz., their inability to self-adapt and the need of
expert knowledge for selecting and tuning them.
Novel techniques based on statistical learning When try-
ing to obtain a satisfiable refinement of a given QCN (e.g.,
choosing follows over precedes in the network of Figure 1),
it may be beneficial to prefer relations in a given constraint

4Obtaining an optimal triangulation is NP-hard [Tarjan and Yan-
nakakis, 1984] in general, but there exist many methods, linear to
polynomial in the size of the graph, that yield good approximations.
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that individually appear in many local satisfiable atomic con-
figurations, and then use those collectively to construct a
complete valid configuration. This leads to a counting-based
scheme that forms the basis for a dynamic heuristic. During
reasoning, the heuristic would self-adapt to the structure of a
network instance based on the counts of local models at hand.
A first attempt has been taken in [Sioutis and Wolter, 2020],
which shows promising results that motivate further research
in statistical methods for QSTR. Specifically, we argue for
employing statistical learning via encoding vectors pertaining
to statistical regularities of qualitative constraints; these vec-
tors could then be used to guide search or even decide parts of
a network in reasoning tasks pertaining to satisfiability check-
ing for example. In the context of the aforementioned work,
such a vector would currently comprise only the number of
local models, in the way it was explained earlier, but ideally
one would want to capture more features of a given constraint,
such as the cardinality of its assigned relation, the frequency
of repetition of that relation in adjacent constraints, the den-
sity of the neighbourhood of the constraint, its splitting fac-
tor, i.e., whether its assigned relation belongs to a tractable
set of relations or it should be split into two or more subrela-
tions, its proximity to a Horn formula, and its potential search
space coverage (e.g., relation {>} provides more coverage
than {=} in qualitative point-based reasoning, as the latter
restricts two points to being equal and, hence, focuses on a
single point), among others. Certain dynamic features may
also be explored and recorded, by running some propagators
for a limited amount of time on a given instance.

5.2 Self-adaptive Ensemble Solvers for QSTR
In this section, we argue for synthesizing standalone self-
adaptive techniques (see previous section) into collaborative
and generic ensemble solvers that can self-adapt, by use of
satisfiability modulo theories (SMT) and portfolio solving.
To this end, we identify the following challenges.
Abstraction-based satisfiability modulo theories Model-
ing certain QSTR reasoning tasks as Boolean satisfiability
(SAT) problems can lead to very efficient implementations in
general for relatively small-sized instances, which however
do not scale well [Huang et al., 2013; Westphal and Wölfl,
2009]. Some efforts towards resolving the scalability issue
have been made by means of abstracting a QCN instance into
a SAT instance where a lot of the required encodings (for
soundness and completeness) are initially missing and are
only added incrementally upon need [Glorian et al., 2018],
without fully addressing the blow-up issue though in the
generic case (in fact, [Glorian et al., 2018] is only sound when
the domain of spatial regions is assumed to only consist of
rectangles). On the other hand, native QSTR tools can scale
much better in general [Sioutis et al., 2018; Sioutis et al.,
2016], but may not be able to keep up with SAT tools for solv-
ing some very hard and dense problems [Glorian et al., 2018;
Huang et al., 2013; Westphal and Wölfl, 2009]. We think
that it is possible to get the best of both worlds via a simple
technique where a hard part of a QCN instance will be solved
by SAT solving, then the resulting (partial) solution will be
checked in combination with the rest of the instance by na-
tive qualitative spatio-temporal reasoning (a theory-specific

QCN N ψ ← backdoor(N )

solve(ψ)UNSAT check(λ ∧ N ) SAT

ψ ← refine(ψ)

unsat
sat,λ yes

no

Figure 3: The backdoor (a hard part) of a QCN instance is solved
by SAT solving, then the resulting (partial) solution is checked in
combination with the rest of the instance by native qualitative spatio-
temporal reasoning, and the procedure repeats iteratively until it con-
verges to a point where a solution is obtained or unsatisfiability is
detected; method refine suggests that more explicit information is
added to counteract a failure in the checking phase (such informa-
tion would typically involve parts of the QCN not considered before)

solver), and the process will be repeated until it converges,
as is typical in lazy SMT approaches; see Figure 3 for de-
tails (see also [Sioutis and Janhunen, 2019, Section 4] in this
regard). In contrast to SAT or traditional constraint program-
ming, a hard part of a QCN instance may be easily recognized
due to the domain specific nature of the calculus involved
(a finite number of known and well-defined atoms is used).
Specifically, Sioutis and Janhunen in [Sioutis and Janhunen,
2019] have introduced a notion of backdoors and backbones
in the context of QCNs that are tied to the use of local consis-
tencies that can be enforced in polynomial time; a backdoor,
i.e., a subset of constraints of a given QCN instance, consti-
tutes a hard part of that instance, as deciding its satisfiability
allows one to decide the satisfiability of the whole instance.
In our experience, and as supported by the literature [Renz
and Nebel, 2001, Section 5], such hard parts in QCNs tend to
form locally and hence are of relatively small size. Thus, we
expect this approach to yield good results and allow further
future directions to be defined. Due to the hard-part parame-
terization and lazy SMT setting, we think that this approach
would be more capable of adapting to the particulars of real-
world and industrial datasets than the tools available today.

Hierarchical portfolio of solvers The prevalence of multi-
core architectures has led a substantial amount of research ef-
fort to the development of portfolio solvers, i.e., meta-solvers
that run n > 1 constituent solvers (which can be instances
of a single solver with different settings or several different
solvers of the same type) on the same problem in parallel.
Such solvers have been extensively used in the SAT commu-
nity to great success [Balyo et al., 2015; Hamadi et al., 2009;
Xu et al., 2008], and in the traditional constraint program-
ming (CP) community to a lesser extent but with good re-
sults nevertheless [Amadini et al., 2016]. To the best of our
knowledge, there does not exist any similar approach in the
field of QSTR. This is unfortunate, because QCNs can be en-
coded and tackled in different ways, viz., as Boolean satis-
fiability (SAT) or even traditional (finite-domain) constraint
satisfaction problem (CSP) instances [Westphal and Wölfl,
2009], and as Answer Set Programming (ASP) instances
too [Baryannis et al., 2020; Janhunen and Sioutis, 2019;
Walega et al., 2017], and there should be some intelligent way
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of figuring out what the best approach would be for a given
task; it is most often the case that “one reasoning tool does not
fit all”. To this end, we argue for developing a novel hierarchi-
cal portfolio-based approach for tackling QCNs that will not
solely rely on native QSTR methods, but will choose among
native QSTR, SAT, CSP, and/or ASP techniques and encod-
ing(s) to be used (e.g., there are various QSTR encodings in
SAT and ASP in particular). Such approaches that make a se-
ries of decisions are referred to as hierarchical models [Hur-
ley et al., 2014]. To make the required decisions, various
classification and clustering algorithms could be evaluated on
standard CSP and SAT features as described in [Hurley et al.,
2014], standard ASP features as presented in [Hoos et al.,
2014], and the native QCN features for which we argued in
the previous section.

5.3 Facilitating AI/ML with Self-adaptive QSTR
In this section, we argue for reaching out to the fields of
data mining and machine learning in terms of facilitating
pattern recognition algorithms and enabling abductive learn-
ing [Zhou, 2019] respectively; abductive learning corre-
sponds to a bidirectional feedback loop between the symbolic
framework and the machine learning model [Zhou, 2019, Fig-
ure 1]. To this end, we identify the following challenges.

Boosting spatio-temporal pattern recognition algorithms
Temporal intervals naturally appear in medical (and other-
wise) data in the form of sequences of labeled events; multi-
ple events may be concurrent, and, in general, any event may
start or end independently of another [Kostakis and Papa-
petrou, 2017]. Abstracting such intervals to qualitative infor-
mation, e.g., using Interval Algebra [Allen, 1983] or similar
calculi, can provide advantages in pattern recognition tasks.
For instance, employing an interval sequence-based tempo-
ral abstraction on multi-variate time series representing the
medical history of patients, leads to substantial improvement
in terms of predictive performance against traditional classi-
fiers on real datasets [Moskovitch and Shahar, 2015]. Simi-
lar temporal abstractions have been employed for the explo-
ration and classification of renal-damage risk factors in pa-
tients with diabetes type II [Klimov et al., 2015], and sepsis
prediction, and explanation thereof, using intensive care unit
data [Ibrahim et al., 2020]. As another example, when mon-
itoring heart failure patients, one is interested in identifying
particular diagnoses/treatment patterns in their medical his-
tory, such as whether the standard treatment procedures for
heart failure have been applied in the proper order [Asker et
al., 2016]. However, despite the important use of (qualitative)
temporal intervals in the medical domain, the QSTR commu-
nity has not been interested much in facilitating physicians
and medical researchers by looking into the particulars of the
temporal QCNs forming in medical data and providing the re-
quired reasoning tools. Specifically, we argue for optimizing
such QCNs by removing redundancy and simplifying them,
i.e., sparsifying the related temporal constraint graphs. Intu-
itively, it should then be easier to identify patterns in a sparse,
unbiased with respect to implicit facts, graph.

Enabling adaptive learning In [Alirezaie et al., 2019],
QSTR acts as a model-based referee upon the output of a

classifier to improve performance of semantic segmentation
for satellite imagery data by rejecting impossible interpre-
tations. Drawing inspiration from that work, we argue for
working towards a generic neuro-symbolic framework that
will integrate QSTR and neural methods from a probabilis-
tic perspective. Such an integration is currently identified as
an open challenge in the AI community [Raedt et al., 2020,
Section 9], yet it is not clear what current and novel QSTR
techniques are needed to empower handling spatio-temporal
information. Our first take on it is as follows. We think that
qualitative spatial and temporal variables could be annotated
with the probability-infused output of a classifier, and spatial
and temporal relations themselves would carry a probability
too. A simplified example of such a neuro-symbolic formula
would look as follows (%s denote confidence):
X(95% yolk) is contained in(45% true) or overlaps(55% true) Y (90% egg).

In that sense, QSTR would become neurally-enhanced, and
probabilities would be used to encode a bidirectional feed-
back loop between the symbolic framework and the machine
learning model, known as abductive learning [Zhou, 2019,
Figure 1]. In a sense, we argue here for using logic to com-
pose concepts learned by machine learning methods, and also
allowing learned concepts by machine learning methods to in-
fluence that logical composition. To this end, we identify the
need for establishing probabilistic QSTR frameworks, as well
as dynamic and adaptive algorithms for runtime verification
of neural network-based components.

Following up on the last point of integrating QSTR with
machine learning, we also point to Knowledge Graph Embed-
dings (KGEs) as a means to realize the integration [Schock-
aert and Li, 2018]. KGEs are often inspired by conceptual
spaces, which are abstract spatial domains to which QSTR
techniques could be applied, yet they may differ from Eu-
clidean spaces previously considered in QSTR and thus re-
quire future research. As research strives for learning logic
structures richer than relational statements, the aforemen-
tioned generalizations of QSTR formulae also call for a better
understanding of spatial logics based on QSTR concepts.

6 Conclusion
Qualitative Spatial and Temporal Reasoning is a field of re-
search that is relevant to a wide range of research and appli-
cation areas—virtually to all tasks that involve processing of
spatial or temporal information. As of today, a great variety
of representations exist and reasoning methods are sophisti-
cated enough to handle even large problem instances in the
light of NP-hard reasoning tasks. Nevertheless, like many
mature fields in AI, selection and tuning of tools requires
expert knowledge. We have critically surveyed current ap-
proaches for solving the fundamental satisfiability problem,
and we have discussed future research directions in the field
that we think are important to make QSTR serve as an engine
that powers even more contemporary AI applications.
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