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Abstract

Existing approaches for generating human-aware
agent behaviors have considered different mea-
sures of interpretability in isolation. Further,
these measures have been studied under differing
assumptions, thus precluding the possibility of
designing a single framework that captures these
measures under the same assumptions. In this
paper, we present a unifying Bayesian framework
that models a human observer’s evolving beliefs
about an agent and thereby define the problem
of Generalized Human-Aware Planning. We will
show that the definitions of interpretability mea-
sures like explicability, legibility and predictability
from the prior literature fall out as special cases of
our general framework. Through this framework,
we also bring a previously ignored fact to light
that the human-robot interactions are in effect
open-world problems, with respect to the human’s
beliefs about the agent. The human may hold
beliefs unknown to the agent and may also form
new hypotheses about the agent when presented
with novel or unexpected behaviors.

1 Introduction

A crucial aspect of the design of human-aware Al systems
is the synthesis of interpretable behavior [Gunning and Aha,
2019; Langley et al., 2017]. Existing works in this direction
[Chakraborti er al., 2019a] explore behaviors that instigate a
desired change in the human’s mental state or conform with
her current mental state so as to not require explicit commu-
nication. Three distinct notions of interpretability can be seen
in prior work: legibility — the agent signaling its objectives
through behavior (c.f. [Dragan et al., 2013; Dragan, 2017;
Kulkarni et al., 2019a; 2019b; MacNally er al., 2018;
Dragan and Srinivasa, 2013; Miura and Zilberstein, 2020]);
explicability — agent behavior that conforms with the human’s
expectation (c.f. [Zhang et al., 2017; Kulkarni et al., 2019c¢;
2020; Chakraborti et al., 2019b]); and predictability — agent
behavior that is easier to anticipate (c.f. [Fisac er al., 2020;
Dragan, 2017; Dragan et al., 2015; 2013]). These notions
of interpretability can each improve human-Al collabora-
tions along different dimensions. If you know your agent’s
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objectives (legibility) and can anticipate its future behavior
(predictability), you can plan around it or even exploit it;
while in conforming to your expectations (explicability), the
agent can avoid surprising you, which would adversely affect
the fluency of collaboration.

In our earlier work, Chakraborti et al. [2019a], we focused
on providing an overarching taxonomy and establishing
equivalences between works done in this space. On the
other hand, in this paper, we will introduce a single unifying
reasoning framework that can account for all these measures.
Two major roadblocks to such a unification are: 1) the
measures are defined under competing assumptions and 2)
different frameworks are used to reason about the human’s
beliefs (which is central to defining these measures). In
this work, we present a single Bayesian framework that
captures the human’s reasoning over a distribution of models
she ascribes to the agent. We use it to define the General-
ized Human-Aware Planning problem. We will show how
measures studied in prior literature can be seen as special
cases of our unifying framework. Furthermore, our Bayesian
formulation of explicability reveals an important dimension
of the human-aware planning problem that to the best of our
knowledge has not been explicitly studied before — relation-
ship between explicability and open-world beliefs. That is, by
identifying inexplicable behavior, the human identifies that
her belief about the agent was incorrect and that the agent’s
behavior is stemming from an unknown model. Our unifying
framework accommodates this by considering an additional
hypothesis that the human’s belief about the agent may be
wrong. The summary of our contributions is as follows:

1. We formulate a Bayesian framework to capture a human
observer’s reasoning about the agent in terms of a distri-
bution over models and within it define the Generalized
Human-Aware Planning Problem.

2. We show that this single unifying framework can be spe-
cialized to existing interpretability measures under the
original assumptions made by those works.

- The ability to model an “unknown” model is critical
to the unification of these competing measures.

- The unification further generalizes these measures.
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2 Background

In this paper, we will be agnostic to specific planning formu-
lations or representations when discussing the agent’s model.
Instead, we will use the term “model” in a general sense to
not only include information about agent actions and transi-
tion functions, but also their reward/cost function, goals and
initial state. We will assume that the model can be parameter-
ized and use 6;(M) to characterize the value of a parameter
0; for the model M.

Since we are interested in cases where a human is observ-
ing an agent acting in the world, we will mainly focus on
agent behavioral traces (instead of plans or policies). A be-
havior trace 7 in this context will consist of a sequence of
state, action pairs. The likelihood of the sequence given a
model will take the form Py : M xT — [0, 1], where M is the
space of possible models and 7T is the set of behavioral traces
that the agent can generate. While we will try to be agnostic to
likelihood functions, a fairly common approach [Fisac et al.,
2018; Baker et al., 2007] is a noisy rational model based on
the Boltzmann distribution: P;(M,7) o e #*¢("), Where
C(r) is the cost of the behavior and 3 € RT is a parame-
ter that reflects level of perceived determinism in the agent’s
choice of plans [Baker ef al., 2009]. Note that in our case, a
likelihood function captures both the human’s expectations
about the agent’s computational capabilities and their own
cognitive limitations. Thus noisy-rational models like the one
mentioned above are particularly useful in our scenario. For
example, by setting a low /3 value we could possibly capture
the fact that the observer may not be able to correctly differ-
entiate between strategies of relatively similar costs.

For the human-aware scenario, we are dealing with two
different models [Dragan, 2017; Chakraborti, 2018; Reddy et
al., 2018]: the model that is driving the agent behavior (de-
noted M%) and the human’s belief M about it. We make
no assumptions about whether these two models are repre-
sented using equivalent representational schemes or use the
same likelihood functions. This setup assumes that while the
human may have expectations about the agent’s model, she
may have no expectation about its ability to model her. Thus
she isn’t actively expecting the agent to mold its behavior to
what she thinks the agent knows about her, thereby avoiding
additional nesting of beliefs.

3 Running Example

In our running example, we will consider a robotic office as-
sistant (Figure 1), that can perform various repetitive tasks
in the office, including picking up and delivering various ob-
jects to employees, emptying trash cans, and so on. Further,
we will assume it can only move in three directions: down,
left and right; and that it can not revisit a cell. These restric-
tions allow us to control the set of possible completions of a
given plan prefix. You, as the floor manager, are tasked with
observing the agent and making sure it is working properly.
Given your previous experience, you have come to form ex-
pectations about its capabilities and its tasks: e.g. you may
think that the goal of the agent is to either deliver coffee or to
deliver mail to a room (represented by the door), though you
know that there may be other possible goals that you have
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Figure 1: An illustration to show different interpretable be-
haviors. Here the agent only moves in three directions: down,
left and right; and it does not revisit a cell.

not considered. Unbeknownst to you, the agent is trying to
deliver coffee and it needs to do this while keeping in mind
your beliefs about it. This scenario is particularly designed to
accommodate the considerations made by prior works on in-
terpretable behaviors. Throughout this paper, we will revisit
this example to show different behaviors.

4 A Unified Framework

The ability to anticipate and shape a human’s beliefs about
the agent, is a central requirement for any successful human-
aware agent. So we start with a framework to capture the
human’s reasoning about their beliefs about the agent. In
particular, we will adopt a Bayesian model of the human’s
reasoning process (Figure 2). This is motivated by both the
popularity of such models in previous works in observer mod-
eling and existing evidence to suggest that people do engage
in Bayesian reasoning [L Griffiths er al., 2008]. The node
MP represents possible models the human thinks the agent
can have, 7. corresponds to the behavior prefix that they
observed (in this paper we will assume full observability),
and 7,5 corresponds to possible completions of the prefix.!

In addition to explicit models that the human thinks are
possible for the agent, we also allow for the possibility that
the human may realize that she in fact doesn’t know the ex-
act agent model. That is, her previously held beliefs about the
agent may not be sufficient to explain or justify the observed
behavior. We incorporate this assumption by adding a special
model M? to the set of models in Mf, that corresponds to
the hypothesis that the agent model is not one of the models
that the human expects.This allows for open-world reasoning
since the human can form additional hypotheses about the
robot and is not limited by the explicit set she originally has.
This strategy of introducing a specific hypothesis that corre-
sponds to a previously unexpected entity has been commonly
used to model scenarios where there is a possibility of a novel
or previously unknown event happening (c.f. [Zabell, 1992]).

'In this paper, we focus on quantifying these measures for one
shot or episodic interactions only, rather than longitudinal ones. In
Section 5, we discuss more about longitudinal interactions.
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Figure 2: Graphical representation of the human’s model.

We represent MY using a high entropy model: i.e. the like-
lihood function of this model assigns a small but equal like-
lihood to any of the possible behaviors, including the ones
facilitated by other models. This can be viewed as a model
belonging to a random agent. We assume that the human, by
default, assigns smaller priors to MY than other models. We
can now define the following problem:

Definition 4.1. A Generalized Human-Aware Planning
Problem (G-HAP) is a tuple I3, = (M M P) Py, Cy),
where P} is the human’s initial prior over the models in the
hypothesis set Mf and C'y is a generalized cost function that
depends on the exact objective of the agent.

A solution to G-HAP consists of a behavior that is valid
in M% and minimizes C. In the most general setting, C%
would be a mapping from entire behavior to a cost. Though
internally C'y; may be a function that takes into account each
of the intermediate steps (not just in M® but also the other
models in MJ?). While the exact form would depend on the
specific agent objectives, in general the cost function may
need to consider (1) costs of the action in the sequence in
M*® and their counterparts in each of the models in MJ? (2)
the state induced by the action in each model (3) possible
completions at each intermediate step and their relation to the
actual behavior and (4) the beliefs over M}f it may induce.
Rather than investigate the space of all possible cost func-
tions, we will ground the discussion by focusing on scenarios
and objectives previously studied in the literature. We will
see how this specialization of the framework, naturally gives
rise to the specific interpretability measures. Throughout the
discussion we will use the notations 7/, and 7/, for a com-
plete behavior 7 to represent the behavior prefix that would
have been observed and the behavior postfix remaining to be
executed for a timestep ¢ respectively. The overall framework
presented in the paper is summarized in Figure 3. It illustrates
that a human that could hold multiple hypotheses about the
agent and show how the various existing measures could be
extended to this more general setting. Explicability, in this
case, becomes the human’s confidence that they can explain
the robot behavior with one of the explicit hypothesis they
have regarding the robot, while legibility maps to their spe-
cific confidence that the robot model actually includes some
parameter (which is, in fact, present) and predictability turns
into a measure of confidence they assign to the actual future
behavior the robot is going to generate. Below we will look at
each of these individual measures in more detail and see how
they arise from G-HAP.

4.1 Explicability

We will start by looking at cases where the agent wants to
avoid behaviors that may confuse the observer about the agent
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Figure 3: An overview of our unifying framework. The hu-
man holds multiple hypotheses about the agent and she uses
the observed behavioral prefix to update her beliefs about the
model. Each of the interpretability measure optimizes for spe-
cific inferential outcomes in this framework.

model. That is the human should be able to explain the ob-
served behavior with the explicit models they hold. We will
refer to such behaviors as explicable behaviors. We can cap-
ture the generation of such behavior within our framework
by using a cost function that is proportional to the posterior
probability associated with model MO ie.,

Cou(r) < Y i P(MO|77,.,) (1)

Where «; > 0 is the weight associated with each timestep <.
This means the formulation would prefer behavior with high
likelihood in the explicit models for timesteps with non-zero
weight. We will define the explicability score (£) associated
with a behavior prefix (7;,,¢) to be directly proportional to one
minus this probability, i.e.,

E(ripe) o >

MEMP\{ MO}

P(M|r,.) )

Likelihood functions that assign high probabilities to optimal
(or low cost traces), give rise to traces like P1 and P2 in Figure
1, since they correspond to optimal plans in the explicit mod-
els considered in the example (i.e. the model for delivering
coffee or delivering mail).

Reduction to Previous Explicability Definitions

Previous works generally identify a behavior to be explica-
ble if it meets the human’s expectation from the agent for the
given task [Zhang er al., 2017]. In the binary form this is usu-
ally taken to mean that a plan is explicable if it is one of the
plans that the human expects from the agent [Chakraborti et
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al., 2019b]. In the more general continuous form, this expec-
tation is taken to be proportional to the distance between the
observed trace and the closest expected behavior [Kulkarni et
al., 2019c; Zhang et al., 2017]:

T# = argmin.o(T, Tﬁf) 3)

where 0 is some distance function between two plans and
M » is the closest expected behavior for the model MF.
While there is no consensus on the distance function or ex-
pected behavior, a reasonable possibility for the expected set
is the set of optimal plans [Chakraborti ef al., 2017] and the
distance can be the cost difference [Kulkarni et al., 2020].
To see how our framework subsumes earlier works, lets
start by plugging in the two assumptions made by the origi-
nal works, namely (1) the human only has one explicit model
about the agent (i.e. ME = {MZ M°}) and (2) the expli-
cability is measured over the entire plan (i.e. o; = 0 for all ¢
other than the last step). Thus the cost function is dependent
only on the explicability of the entire behavior

E(r) o P(MG{|r) o< P(TIM) + (M) (4)

Since the observed prefix is the entire plan, we can directly
use the likelihood function

E(7) ox Py (M}, ) % P(M}) 5)

Let us consider two plausible likelihood models. First, for a
normative model where the agent is expected to be optimal,
Py(ME | 7,,.) assigns high but equal probability to all the op-
timal plans and O probabilities for the others. This is the orig-
inal binary explicability formulation used by [Chakraborti et
al., 2019b; 2019al.

Another possible likelihood function is a noisy rational
model [Fisac er al., 2020] given by:

Pg(Mﬁ,T) x e

where 7* is an optimal behavior in Mf, C(r)>C(t*) >0
for MJ. This maps the formulation to the distance based def-
inition as in [Kulkarni et al., 2020] where a cost-based dis-
tance is defined. We can also recover the earlier normative
model by setting 3 — oo and model M° by setting 3 = 0.
Going back to the original motivation of explicability,
it was meant to capture the human’s understanding of the
agent’s behavior generation process (which includes both its
perceived model and computational component). Earlier for-
mulations rely on using the space of expected plans as a proxy
of this process. This is further supported by the fact that the
works that have looked at updating the human’s perceived
explicability value of a plan do so by providing information
about the model and not by directly telling the human what
plans to expect [Chakraborti er al., 2017; 2019b; Sreedharan
et al., 2020a]. Thus our formulation of explicability directly
in terms of the human’s beliefs about the agent’s model con-
nects to the original motivation of explicability definitions.

—BXC(r) o PXC(E)=C() ()

Novel Properties of Generalized Explicability

An interesting side-effect of a probability-based explicabil-
ity formulation is that, the probability of behavior and hence
the explicability score can now be affected by the presence
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Figure 4: A possible scenario, where the introduction of new
plans could cause the explicability to drop.

or absence of other plans. For example, consider two scenar-
i0s, one where Mf contains M; and M? and another where
it contains M5 and M?P. Now consider a behavior trace 7
that is equidistant from an optimal plan in both models M;
and M. Even though they are at the same distance, the trace
may be more explicable in the first scenario than in the sec-
ond, if the second scenario allows for more traces that are
closer. Assuming the probability of choosing optimal plans
isn’t reduced, introducing new plans into the sample space
better than the current trace would cause more probability to
be assigned to those and thus less to the trace in question. We
argue that this makes intuitive sense for explicability since the
user should be more surprised in the second scenario as the
agent would have ignored many more behaviors that the ob-
server would have considered desirable. Figure 4 illustrates
such an example.

Property 1. Explicability of a trace is dependent not only on
the distance from the expected plans but also on the presence
or absence of plans close to the expected plans.

Here the plan remains explicable whether or not the obser-
vation leads to all the probability being assigned to a single
model versus being distributed across multiple models. This
means that the formulation doesn’t require the human to have
a single explanation for the behavior, rather it allows their be-
lief to be distributed across multiple hypotheses. While the
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exact values would depend on the likelihood function, in the
office robot scenario our formulation would assign high expli-
cability scores (need not be the same) to both P1 and P2. For
P1, the probability mass would be distributed across the two
possible hypotheses corresponding to the two goals, while for
P2 the probability mass is centered around the model corre-
sponding to the goal to fetch coffee.

Property 2. Explicability is agnostic to whether it is sup-
ported by multiple models or by a single one.

Further, the explicability of a trace is now controlled by
the priors on the models. E.g., a trace that is only possible in
a model with low prior will not have high explicability score
even if it is highly likely in that model.

4.2 Legibility

The next class of behavior is the one where the agent is try-
ing to choose behavior that increases the agent’s belief about
some component (captured by the parameter ¢) of the agent
model. Such behavior could be especially important when the
achievement of the human’s desired outcome is tied directly
to the model possessing a certain parameter value. An obvi-
ous example would be establishing if the end-goal itself is
what the human desires, but this could also be in relation to
other model parameters. Thus inducing high confidence in re-
lation to such model parameters in the human’s mind could be
tied intimately with engendering trust in the human that the
agent can achieve the desired objectives.

Oy (1) Za «(1=P@O=0M"M)7.)) (D

That is the cost here becomes the weighted sum of the prob-
ability associated with the target parameter having the incor-
rect value (i.e. different from what is true in the robot model)
at each step. Keeping with the existing literature, we will refer
to such behaviors as legible behavior, with the actual legibil-
ity score of a behavior prefix being proportional to the proba-
bility of the parameter being the true value

L (Tpre) < P(O = (M) |7pe)  (8)
o X pem\ (MO} Where oM™ =0(M) P (M|Tpre) — (9)

We skip M since it doesn’t correspond to an explicit model
in the human’s mind. In the context of Figure 1, a plan prefix
with high legibility score for the goal of deliver coffee would
be P2 as compared to the other options illustrated. Since P1,
allows for an optimal completion for both objectives and P3’s
completions in both models are equally bad. As we will see,
while original formulations might assign P4 as a more legible
option given the fact that it would assign zero probability to
delivering mail, our formulation allows for the possibility that
P4 may lead to more probability getting assigned to M?.

Reduction to Previous Legibility Definitions

Legibility was originally formalized [Dragan et al., 2013] as
the ability of a behavior to reveal its underlying objective.
This involves a human who is considering a set of possible
goals (G) of the agent and is trying to identify the real goal by
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observing its behavior. Legibility is, thus, the maximization
of the probability of the real goal through behavior:

#; = argmaz.,,, P(G"|1ye) (10)

where G is the agent’s true goal. While originally in-
troduced in the context of motion planning, this was later
adapted to task planning by [MacNally et al., 2018], and gen-
eralized to implicit communication of beliefs when the hu-
man has partial observability by [Kulkarni et al., 2019a] as
well as to implicit communication of any model parameter
by [Miura and Zilberstein, 2020].

To keep the discussion in line with previous works, we will
focus our attention on communicating end-goals (over arbi-
trary parameters). Some central assumptions made by earlier
works is that the model only differs in terms of the end goal
and the actual model is part of the set (M ¢ Mf). Also, the
agent is expected to communicate its information as early as
possible, so earlier «; terms are given higher weights than the
latter ones. They also assume that at no point would the hu-
man consider goals outside the explicit ones she had in mind.
That is the possibility that she may be wrong about the origi-
nal model and that the agent may be possibly trying to achieve
something she didn’t consider before would never cross her
mind. In our framework, this would correspond to assigning
a zero prior to MO, Thus the legibility score here would be

L0 (Tpre) o< P(ME|7,0) (11)

A zero prior on M? means the agent can create extremely
circuitous routes as legible behavior provided the behavior is
more likely in the agent model than others. This means that
regardless of how suboptimal the plan is in the agent model
(or ones with the parameter value), given its even lower prob-
ability in other models (or for other parameter values) the
agent model will get assigned higher posterior probability and
thus higher legibility score. For example in Figure 1, the re-
stricted formulation would select the prefix P4 highlighted in
red in order to reveal the goal of delivering coffee, eventhough
that corresponds to an extremely sub-optimal plan given the
set of possible plans.

Novel Properties of Generalized Legibility

A core assumption relaxed by the general formulation is that
we now allow for the possibility that the human could be sur-
prised by unexpected behavior and they may form new hy-
potheses about the agent. If you assume a non-zero prior for
M©O, then in cases where the agent presents an extremely
suboptimal behavior they have a new hypothesis they can
consider. That is they can now shift some of their belief to
the fact that they may have been originally wrong about the
agent model. Going back to the case of route P4 in Figure
1, given how far it is from the optimal, any completion of
that prefix would have extremely low likelihood in the model
for delivering coffee as opposed to M? where that path is
as likely as any other. This means our formulation now as-
signs more weight to M and thus capturing the fact that,
when presented with highly unlikely behavior, the observer
may question their beliefs about the agent. This brings us to
the property

Property 3. Inexplicable plans are also illegible.
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We believe allowing for such uncertainty is essential to
capture more realistic human-robot interaction as it is rare
for people to have absolute certainty about the agent models
(and even discard the possibility that something might have
just gone wrong with the agent). Also if we wish to move to a
more longitudinal setting, indicating that the human no longer
believes in one of the possible hypotheses in the set may not
be enough, but we may need to explicitly try to identify what
the newly formed hypothesis might be.

4.3 Predictability

The final case is one where the agent is interested in commu-
nicating to the human the future behavior it will be selecting.
In this case, the agent would be required to choose behav-
ior prefixes that allow the human to correctly guess the rest
of the behavior the agent will follow with high confidence.
This may be useful in cases where the agent may be sharing
a workspace with the observer and may want to allow the ob-
server to take into account future agent actions when coming
up with their plans.

CH(T) X Zai * (]' - P(T;;osthﬁpire)) (12)

This gives us predictable behavior. Further, P(7},.|7%..) de-
notes the predictability score for the prefix T;; (with respect
to the completion 7;,;)

re

P"';,ost (Tpire) X P(T[iosth—;Te)

> Pty The. M) x P(M) (13)
MeMP

From Figure 1, a plan prefix with high predictability would
be P3. Given the prefix P3, the completion of going down
the corridor has the highest likelihood for both the goals. So
after marginalizing across all possible models that completion
will have high probability and therefore the prefix has high
predictability.

Reduction to Previous Predictability Definitions

We need to incorporate two main assumptions into the frame-
work to reduce it to existing definitions of predictability: (1)
the human observer only has a single explicit model about
the agent and this is equal to the actual agent model MY =
{M%E MO} and (2) the user will not form new hypothesis
about the agent regardless of how unexpected the behavior is
(i.e. the MY prior is zero). Thus we get:

P (Tpre) X P(T" = T|Tpre, MT) (14)

This directly maps to the predictability measure as defined
in earlier works [Fisac et al., 2020]. Previous works have
also looked at the possibility of generating k step predictable
plans, i.e., plans that try to guarantee predictability only after
k steps. This allows for the system to choose unlikely prefixes
for cases where the agent is only required to achieve required
levels of predictability after the first k& steps. We can capture
such optimization preferences by setting «; to zero for all but
i = k. Going back to the example, prefix P3 optimizes for
predictability for k = 5.
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Generalized Predictability

Our generalization introduces two new aspects to the pre-
dictability formulation. The fact that the human now consid-
ers potential models and we also introduce the new hypothe-
sis MY. However, the formulation marginalizes out the model
and thus, effectively, for a given prefix, the human observer
has to consider all the possible completions of the prefix in
each of the individual models. Thus even if the trace is per-
fectly predictable in an individual model, the fact that the hu-
man has uncertainty over the models means the prefix may
not be predictable. On the other hand, the fact that MO as-
signs equal probability to all the possible completions would
mean that the introduction of this new hypothesis would have
less of an influence on the resulting predictability score.

4.4 Deception and Interpretability

The interpretability measures being discussed involve lever-
aging reasoning processes at the human’s end to allow them
to reach specific conclusions. At least for legibility and pre-
dictability, the behavior is said to exhibit a particular inter-
pretability property only when the conclusion lines up with
the ground truth at the agent’s end. But as far as the human
is concerned, they would not be able to distinguish between
cases where the behavior is driving them to true conclusions
or not. This means that the mechanisms used for interpretabil-
ity could be easily leveraged to perform behaviors that may be
adversarial [Chakraborti et al., 2019a]. Two common classes
of such behaviors are deception and obfuscation. Deceptive
behavior corresponds to behavior meant to convince the user
of incorrect information about the agent model or its future
plans [Masters and Sardina, 2017]:

D" (Tyre) o¢ —1 % P(ME|7) (15)

Adversarial behaviors meant to confuse the user are either
inexplicable plans that increase the posterior on MY or, plans
that actively obfuscate [Keren er al., 2016; Kulkarni et al.,
2019al:

OMA (1) o H(ME|mpre) (16)

This is proportional to the conditional entropy of the model
distribution given the observed behavior.

With explicability, the question of deceptive behavior be-
comes interesting, since explicable plan generation is relevant
when the actual agent model may not be part of the human’s
expected set of models (else the agent could just follow its
optimal behavior). By choosing to generate plans that align
with a non-true model, explicability can be seen as decep-
tive behavior as it is reinforcing incorrect notions about the
agent’s model. Such plans would have a high deceptive score
per the formulation above (since P(M%|7) = 0). One can ar-
gue that explicable behaviors are white lies in such scenarios
as the goal here is just to ease the interaction and the behavior
is not driven by any malicious intent. One could even further
restrict the explicability formulation to a version that only lies
by omission by restricting the agent to just behavior optimal
in the original agent model. The agent chooses from this set
the one that best aligns with the human’s expectation. It is a
lie by omission in the sense that while the agent has not ex-
plicitly been deceptive, by choosing behavior that aligns with
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the human’s expectations, it is maintaining the human’s in-
correct beliefs.

S Implications of the Framework

Below we briefly discuss several implications of our unifying
framework.

Legibility, Explicability. These notions are related to the
human’s desire to recognize the model [Aineto ef al., 2019]).
Our formulation shows that outside limited cases, legibility,
and explicability are closely connected. Earlier works have
been separating these measures by assuming away either leg-
ibility, like in existing explicability works with the human’s
hypothesis consisting of a single model [Zhang er al., 2017;
Kulkarni et al., 2019c¢], or by assuming away explicability
by assigning zero prior on MO for legibility [Dragan et al.,
2013; Dragan and Srinivasa, 2013; MacNally et al., 2018;
Kulkarni et al., 2019a; Miura and Zilberstein, 2020]. Inter-
estingly, in cases where the human is aware that the agent is
trying to be legible or more generally they know the agent
is trying to model the observer, the human may be more
open to suboptimal behavior from the agent as they might
attribute it to the agent trying to communicate. However, this
does not eliminate M but instead introduces a new level of
nesting for reasoning. This comes with all the known com-
plexities and pitfalls of reasoning with nested beliefs [Fa-
gin et al., 2003]. Though studying a limited amount of ad-
ditional nesting could be important especially in cases where
the agent plans to leverage communication. Since commu-
nication strategies make the most sense when the human is
expecting the agent to model them.

Longitudinal Interactions. Our formulation currently
looks at interpretability metrics for one-off interactions only.
In cases where a human interacts with the agent for a long
period, we can expect the user to start with a uniform distri-
bution over models and a low probability for M. In order to
take a more long-term view of the human’s interaction with
the same agent (say, over a time horizon), legibility and pre-
dictability measures can be handled by directly carrying over
the posterior from each interaction to the next one. However,
for explicability more care needs to be taken. For example,
[Kulkarni et al., 2020] hypothesize a possible discounting of
inexplicable behavior. The paper argues that after the first in-
explicability, a human would be less surprised when similar
inexplicable behavior is again presented to her. Part of this
discounting can be explained by the human forming new hy-
pothesis that explain the unexpected behavior and using that
to analyze future agent behavior. As mentioned earlier, going
to a longitudinal setting may require introducing new mecha-
nisms to identify such newly formed hypothesis.

Planning and Environment Design. One of the next
logical steps would be to facilitate the generation of plans
that maximize the measures described in the paper. In
particular, we could build on the work done in [Sreedharan et
al., 2020a] to encode the human’s belief about the task into
the planning space. Though in this case, given the possible
multiple hypotheses held by the human, we would have to
consider a belief space formulation, where the state includes
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information about the various models and each one is associ-
ated with a probability. Now each action of the robot has an
effect on the likelihood of each hypothesis. Also unlike the
earlier formulations, we can’t just have a cost associated with
each action or even one that is state-dependent. In fact for
measures like predictability, not only does the plan cost for
an intermediate step depend on the current state but also the
eventual path that will be followed by the robot. As such these
costs can only be computed at each goal node, where a cost
will be assigned to each step of the path to the goal. These
formulations could also be used to design the environment
to facilitate easy generation of behavior that naturally aligns
with these objectives (similar to [Kulkarni et al., 2020]).

Goal/Plan/Model Recognition and Interpretability. This
paper focuses on scenarios where the agent is acting in the
world, with the knowledge that it is being observed. Though
there could well be scenarios where the agent may be the ob-
server and trying to reason about the human’s model. In these
settings, the agent may be engaged in similar reasoning to
what is expected of the human in this paper. Chief among
them is the case of model recognition [Aineto et al., 2019]
and it’s more popular special case of goal recognition [Baker
et al., 2007; Ramirez and Geffner, 2009]. In a way this could
be viewed as the inverse of the legibility as studied in the pa-
per and is also associated with explicability. Though in most
cases these papers assume away the possibility of the agent
being surprised by assuming that the candidate hypothesis
set contains the target model/goal that generated the behav-
ior. But as the community starts shifting to more open-world
cases or allow for the possibility of novel behavior [Senator,
2019], we will need to allow for the possibility that our agents
may come across truly novel and inexplicable behavior (as
per previous beliefs) and enable them to detect and update
their beliefs from such behaviors. The next related class of
abductive reasoning problems that have been studied in the
literature is that of plan recognition [Kautz and Allen, 1986],
wherein the agent tries to identify the full plan/behavior from
some observations. One could consider this to be the inverse
of the predictability problem studied in the paper.

Generalized Collaborative Behavior. One of the goals of
the generalized human-aware planning problem is to establish
the fact that specific interpretability behaviors could naturally
be generated by an agent capable of reasoning about the hu-
man’s belief and the impact of its actions on these beliefs.
Though studying individual measures are still helpful not
only in creating more specialized algorithms for generating
them but also for understanding general strategies the agent
may engage in. In this vein, we could further generalize most
of the interpretability strategies the agent could engage in, to
two broad categories, namely, a model-communication strat-
egy or a model-following strategy. Model-communication in-
volves molding the human’s expectation through implicit or
explicit communication, to allow the agent to achieve their
objectives. On the other hand, the model following strat-
egy involves taking the current understanding of the hu-
man and generating behavior that conforms to current hu-
man expectations. One could see the agent engaging cycli-
cally in model-communication and model-following behav-
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iors or possibly a combination of the two (for example involv-
ing actions that may have epistemic side-effects), wherein the
agent may choose to mold the user’s expectations to a point
where their behavior may be better received by the observer.
Legible behavior and explanations [Sreedharan er al., 2020al
could be understood as specific instances of model commu-
nication strategies, while explicability can be seen as an ex-
ample of a model following behavior. Predictability is a bit
harder to place, as at any point the agent is following the
most likely plan as per the human’s beliefs. Though the agent
may have previously engaged in behavior meant to limit its
future behaviors (including using techniques like projection
[Chakraborti et al., 2018]). One could definitely argue that
these earlier efforts are in fact communicative in so far as they
are trying to inform the human about the agent’s intentions.

6 Conclusion

Works on interpretable behavior generation have generally
focused on studying and defining individual human-aware
measures under limited settings. By placing and studying
human-aware planning in a more general context we are able
to not only see connections between these works that were
previously ignored but also help formalize new collaboration
strategies. In terms of future work, one plausible direction
would be performing a validation of the novel properties of
this framework through user studies. While we have started
investigating in this direction with preliminary studies (c.f.
[Sreedharan er al., 2020b]), further work is required to val-
idate it in more general settings. Another avenue for future
work would be to extend the current setting to more involved
scenarios. While there are multiple ways we could extend
the current setting, two that may actually be worth consider-
ing are the ones with partial observability as well as settings
where humans play the role of an actor (as against just an ob-
server). It has already been shown by Kulkarni er al. [2019a]
that partially observability is a factor that can be directly ex-
ploited to generate observed sequences which optimize for
certain interpretability/deception measures, in fact for users
with different observation models [Kulkarni et al., 2019b]
shows that the agent can choose a single observation sequence
that generates different effects in their respective mental mod-
els. Another factor worth considering is whether the human
is an actor in the world, in such cases, the robot’s ability to
be interpretable, could not only affect the choice of human’s
actions but could also have safety implications. For instance
[Kulkarni, 2021], present a work where interpretability mea-
sures are explored in the context of a human actor.

Acknowledgements

We would like to thank Dr. Tathagata Chakraborti for his sig-
nificant contributions to an earlier version of this paper and
for extensive discussions on the topic. This research is sup-
ported in part by ONR grants N00014-16-1-2892, N00014-
18-1- 2442, N00014-18-1-2840, N00014-9-1-2119, AFOSR
grant FA9550-18-1-0067, DARPA SAIL-ON grant W91 1NF-
19- 2-0006, NASA grant NNX17AD06G, and J.P. Morgan
Faculty Research Award.

4609

References

[Aineto et al., 2019] Diego Aineto, Sergio Jiménez, Eva On-
aindia, and Miquel Ramirez. Model Recognition as Plan-
ning. In ICAPS, 2019.

[Baker et al., 2007] Chris L Baker, Joshua B Tenenbaum,
and Rebecca R Saxe. Goal Inference as Inverse Planning.
In Proceedings of the Annual Meeting of the Cognitive Sci-
ence Society, 2007.

[Baker et al., 2009] Chris L Baker, Rebecca Saxe, and
Joshua B Tenenbaum. Action Understanding as Inverse
Planning. Cognition, 2009.

[Chakraborti ef al., 2017] Tathagata Chakraborti, Sarath
Sreedharan, Yu Zhang, and Subbarao Kambhampati. Plan
Explanations as Model Reconciliation: Moving Beyond
Explanation as Soliloquy. In IJCAI, 2017.

[Chakraborti ef al., 2018] Tathagata Chakraborti, Sarath
Sreedharan, Anagha Kulkarni, and Subbarao Kambham-
pati. Projection-Aware Task Planning and Execution for
Human-in-the-Loop Operation of Robots in a Mixed-
Reality Workspace. In IROS, 2018.

[Chakraborti et al., 2019a] Tathagata Chakraborti, Anagha
Kulkarni, Sarath Sreedharan, David E Smith, and Sub-
barao Kambhampati.  Explicability? Legibility? Pre-
dictability? Transparency? Privacy? Security? The Emerg-
ing Landscape of Interpretable Agent Behavior. In ICAPS,
2019.

[Chakraborti ef al., 2019b] Tathagata Chakraborti, Sarath
Sreedharan, and Subbarao Kambhampati. Balancing Ex-
planations and Explicability in Human-Aware Planning. In
IJCAL, 2019.

[Chakraborti, 2018] Tathagata Chakraborti. Foundations of
Human-Aware Planning — A Tale of Three Models. PhD
thesis, ASU, 2018.

[Dragan and Srinivasa, 2013] Anca Dragan and Siddhartha
Srinivasa. Generating Legible Motion. In RSS, 2013.

[Dragan er al., 2013] Anca D Dragan, Kenton CT Lee, and
Siddhartha S Srinivasa. Legibility and predictability of
robot motion. In HRI, 2013.

[Dragan er al., 2015] Anca D Dragan, Shira Bauman, Jodi
Forlizzi, and Siddhartha S Srinivasa. Effects of Robot Mo-
tion on Human-Robot Collaboration. In HRI, 2015.

[Dragan, 2017] Anca D Dragan. Robot Planning with
Mathematical Models of Human State and Action.
arXiv:1705.04226, 2017.

[Fagin et al., 2003] Ronald Fagin, Yoram Moses, Joseph Y
Halpern, and Moshe Y Vardi. Reasoning About Knowl-
edge. MIT press, 2003.

[Fisac et al., 2018] Jaime F Fisac, Andrea Bajcsy, Sylvia L
Herbert, David Fridovich-Keil, Steven Wang, Claire J
Tomlin, and Anca D Dragan. Probabilistically Safe Robot
Planning with Confidence-Based Human Predictions. In
RSS, 2018.



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

[Fisac et al., 2020] Jaime F Fisac, Chang Liu, Jessica B
Hamrick, Shankar Sastry, J Karl Hedrick, Thomas L Grif-
fiths, and Anca D Dragan. Generating Plans that Pre-
dict Themselves. In Algorithmic Foundations of Robotics.
Springer, 2020.

[Gunning and Aha, 2019] David Gunning and David W Aha.
DARPA’s Explainable Artificial Intelligence Program. Al
Magazine, 2019.

[Kautz and Allen, 1986] Henry A Kautz and James F Allen.
Generalized plan recognition. In AAAI volume 86, page 5,
1986.

[Keren et al., 2016] Sarah Keren, Avigdor Gal, and Erez
Karpas. Privacy Preserving Plans in Partially Observable
Environments. In IJCAI, 2016.

[Kulkarni ef al., 2019a] Anagha Kulkarni, Siddharth Srivas-
tava, and Subbarao Kambhampati. A Unified Frame-
work for Planning in Adversarial and Cooperative Envi-
ronments. In AAAI 2019.

[Kulkarni er al., 2019b] Anagha Kulkarni, Siddharth Srivas-
tava, and Subbarao Kambhampati. Signaling friends
and head-faking enemies simultaneously: Balancing

goal obfuscation and goal legibility. arXiv preprint
arXiv:1905.10672, 2019.

[Kulkarni ef al., 2019c] Anagha Kulkarni, Yantian Zha,
Tathagata Chakraborti, Satya Gautam Vadlamudi,
Yu Zhang, and Subbarao Kambhampati. Explicable Plan-
ning as Minimizing Distance from Expected Behavior. In
AAMAS Extended Abstract, 2019.

[Kulkarni et al., 2020] Anagha Kulkarni, Sarath Sreedharan,
Sarah Keren, Tathagata Chakraborti, David Smith, and
Subbarao Kambhampati. Designing environments con-
ducive to interpretable robot behavior. IROS, 2020.

[Kulkarni, 2021] Anagha Kulkarni.  Synthesis of Inter-
pretable and Obfuscatory Behaviors in Human-Aware Al
Systems. PhD thesis, ASU, 2021.

[L Griffiths et al., 2008] Thomas L Griffiths, Charles Kemp,
and Joshua B Tenenbaum. Bayesian Models of Cognition.
The Cambridge Handbook of Computational Psychology,
2008.

[Langley et al., 2017] Pat Langley, Ben Meadows, Mohan
Sridharan, and Dongkyu Choi. Explainable Agency for
Intelligent Autonomous Systems. In JAAI, 2017.

[MacNally et al., 2018] Aleck M MacNally, Nir Lipovetzky,
Miquel Ramirez, and Adrian R Pearce. Action Selection
for Transparent Planning. In AAMAS, 2018.

[Masters and Sardina, 2017] Peta Masters and Sebastian
Sardina. Deceptive path-planning. In IJCAI, 2017.

[Miura and Zilberstein, 2020] Shuwa Miura and Shlomo Zil-
berstein. Maximizing plan legibility in stochastic environ-
ments. In AAMAS, 2020.

[Ramirez and Geffner, 2009] Miquel Ramirez and Hector
Geftner. Plan recognition as planning. In Twenty-First

International Joint Conference on Artificial Intelligence,
2009.

4610

[Reddy er al., 2018] Sid Reddy, Anca Dragan, and Sergey
Levine. Where Do You Think You’re Going?: Inferring
Beliefs about Dynamics from Behavior. In NeurIPS, 2018.

[Senator, 2019] Ted Senator. Science of artificial in-
telligence and learning for open-world novelty (sail-
on). https://www.darpa.mil/program/science-of-artificial-
intelligence-and-learning-for-open-world-novelty, 2019.
Accessed: 2021-06-07.

[Sreedharan er al., 2020a] Sarath  Sreedharan, Tathagata
Chakraborti, Christian Muise, and Subbarao Kambham-
pati. Expectation-Aware Planning: A Unifying Framework
for Synthesizing and Executing Self-Explaining Plans for
Human-Aware Planning. In AAAI 2020.

[Sreedharan ef al., 2020b] Sarath  Sreedharan,  Anagha
Kulkarni, Tathagata Chakraborti, David E Smith, and
Subbarao Kambhampati. A bayesian account of measures

of interpretability in human-ai interaction. arXiv preprint
arXiv:2011.10920, 2020.

[Zabell, 1992] Sandy L Zabell. Predicting the unpredictable.
Synthese, 90(2):205-232, 1992.

[Zhang et al., 2017] Yu Zhang, Sarath Sreedharan, Anagha
Kulkarni, Tathagata Chakraborti, Hankz Hankui Zhuo,
and Subbarao Kambhampati. Plan Explicability and Pre-
dictability for Robot Task Planning. In /CRA, 2017.



