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Abstract

Tournaments are commonly used to select winning
alternatives in scenarios involving pairwise com-
parisons such as sports competitions and political
elections. This survey discusses recent develop-
ments in two major lines of work—tournament so-
lutions and single-elimination tournaments—with
a focus on how computational social choice has
brought new frameworks and perspectives into
these decades-old studies.

1 Introduction

The theory of social choice is primarily concerned with
choosing a socially desirable outcome from a given set of al-
ternatives. In many practical scenarios, these decisions are
made based on pairwise comparisons between alternatives,
also known as fournaments. Problems pertaining to tour-
naments, and more generally to collective decision making,
often involve the use of algorithms and have therefore at-
tracted significant attention from computational social choice
researchers over the past two decades [Brandt et al., 2016b].
Much of the relevant research has been published in major
artificial intelligence venues, including IJCALI.

A familiar example of tournaments arises in sports compe-
titions, where players or teams compete against each other in
head-to-head matches in order to determine the winner of the
competition. Several sports competitions, including Grand
Slam tennis, NCAA basketball, and FA Cup football, are run
using single-elimination tournaments, also known as knock-
out tournaments. While sports fans love this tournament for-
mat for its “do-or-die” nature, the fact that not all pairs of
players play each other in such a tournament raises several
interesting questions. If the organizers want to help a certain
player win the tournament, can they set up the tournament
bracket to achieve that goal? What if the organizers can also
bribe a limited number of players to intentionally lose?

Beyond sports competitions, tournaments serve to model
a number of scenarios ranging from voting [Laslier, 1997]
to webpage ranking [Brandt and Fischer, 2007] to biologi-
cal interactions [Allesina and Levine, 2011]. In order to se-
lect the best alternatives according to pairwise comparisons,
numerous methods—known as tournament solutions—have
been proposed in the literature. Although most early work on
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tournament solutions was based on the axiomatic approach,
with the recent advent of computational social choice, the
solutions have also been intensively examined from the al-
gorithmic and complexity-theoretic viewpoints. These fresh
perspectives have in turn given rise to exciting new questions,
methods, and frameworks for analysis.

Research in computational social choice on knockout tour-
naments and tournament solutions has been surveyed in ex-
tensive book chapters by Vassilevska Williams [2016] and
Brandt et al. [2016a], respectively. The present survey ex-
pands and complements the two chapters from the Handbook
of Computational Social Choice [Brandt et al., 2016b] by fo-
cusing on work that appeared in the five years or so since the
publication of these chapters, particularly in Al venues.

2 Single-Elimination Tournaments

In this section, we survey work on single-elimination (SE)
tournaments. While there exist unbalanced SE tournaments
(in extreme cases, a certain player proceeds directly to the
final), the vast majority of real-life SE tournaments are bal-
anced, and most of the research on this subject assumes bal-
anced brackets. We will therefore restrict our attention to bal-
anced SE tournaments.

2.1 Preliminaries

Let n denote the number of players in the tournament, where
we assume for simplicity that n = 2" for some positive inte-
ger . A (balanced) SE tournament is represented by a bal-
anced binary tree with n leaves corresponding to the players.
The assignment of the players to the leaves is called a bracket.
The winner of the tournament is determined recursively: the
winner of a leaf is the player at the leaf, and the winner of a
subtree rooted at node v is the winner of the match between
the winners of the subtrees rooted at the two children of w.
An example of a SE tournament is shown in Figure 1.

In order to determine the outcome of each match, we as-
sume that there is an underlying graph, called a fournament
graph.! For any pair of players, the tournament graph indi-
cates which player would win if they were to play each other.
An important question in tournament fixing is whether, given

'Tn Section 3, a tournament graph will be referred to simply as a
tournament, but in this section we use this terminology to distinguish
it from a SE tournament.
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Figure 1: Example of a single-elimination tournament with 8 players

the knowledge of the tournament graph, the tournament orga-
nizers can choose a bracket to help their favorite player win.

Definition 2.1 (Tournament fixing problem). Given a set of
players, a tournament graph over the players, and a player of
interest v, the tournament fixing problem (TFP) asks whether
there exists a bracket such that v wins the tournament.

The complexity of TFP had been posed as an open question
in several papers, before it was finally resolved by Aziz et
al. [2018] via a complex reduction from a version of 3SAT.

Theorem 2.2 ([Aziz et al., 2018]). TFP is NP-complete.

Kim and Vassilevska Williams [2015] strengthened this re-
sult by proving that the problem remains NP-complete even
when the player of interest v is a “king” that beats n/4 other
players in the tournament graph—a player v is said to be a
king if v has distance at most 2 to any other player in the graph
(i.e., for every other player v/, either v beats v’, or v beats an-
other v"" who beats v"). Despite these hardness results, several
interesting questions remain, such as identifying conditions
under which a winning bracket for a player exists and can be
found efficiently, or designing parameterized algorithms. We
summarize recent results in some of these directions next.

2.2 Algorithms

Consider the problem #TFP of computing the number of
brackets under which a particular player can win the tourna-
ment. Since an algorithm for #TFP can be used to solve TFP
(by simply checking whether the answer is zero or not), #TFP
is also NP-hard. Aziz et al. [2018] showed that even random-
ization cannot help: there is no fully polynomial-time ran-
domized approximation scheme (FPRAS) unless NP is equal
to RP, the complexity class consisting of problems that can be
solved in randomized polynomial time. In spite of this, it is
possible to solve #TFP faster than the brute-force solution.

Theorem 2.3 ([Kim and Vassilevska Williams, 2015]). #TFP
can be solved in time O(2™poly(n)).

The approach of Kim and Vassilevska Williams [2015] is
recursive: to compute the number of winning brackets for a
player v, it considers all possible ways of partitioning the set
of players S into two subsets T" and S \ T of equal size such
that v € T, iterate over all players w € S \ T beaten by v,
and compute the number of winning brackets of v in 7" and
win S\ T. At the core of their algorithm is a subroutine
based on the ideas of Bjorklund et al. [2007] on fast subset
convolution. This subroutine ensures that given functions f, g
taking subsets of size k/2 of some ground set, a function h
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taking subsets of size k defined by
hsS)= > f(T)-g(S\T),

TCS
IT|=k/2

and oracle access to f and g, computing h(S) for all S of
size k takes time O(k - 2™). The resulting algorithm for #TFP
also takes O(2"poly(n)) space. Aziz et al. [2018] gave an
algorithm that offers a range of time-space trade-offs: when
optimizing for time, their algorithm takes time O(2.83™) and
space O(1.75™), while if space is limited, the algorithm re-
quires time 4™*°(") but space only poly(n).

As polynomial-time algorithms for TFP are not to be ex-
pected in general, a natural direction is to identify tractable
cases. Aziz et al. [2018] showed that the problem is effi-
ciently solvable when the players form a constant number
of types, where the outcome of a match between two play-
ers depends only on the players’ types. Another useful pa-
rameter of the problem is the size of a smallest feedback arc
set, i.e., a set of edges whose removal leaves the tournament
acyclic. Aziz et al. gave a dynamic programming algorithm
running in time n®*), where k denotes this size. Ramanujan
and Szeider [2017] improved upon this result by showing that
TFP is in fact fixed-parameter tractable (FPT) with respect to
k; in particular, they presented an algorithm running in time
20(k*1og k), O(1) | Theijr algorithm relies on translating TFP
into an algebraic system of equations and feeding it into an
integer linear programming (ILP) solver. This running time
was later improved by Gupta et al. [2018al.

Theorem 2.4 ([Gupta et al., 2018al). TFP can be solved in
time 20108 k) nOW) “yuhere [ is the size of the smallest feed-
back arc set.

Besides a faster running time, the algorithm of Gupta et
al. [2018a] has the advantage that it is combinatorial in na-
ture and does not rely on any “black box” like an ILP solver.
At a high level, it first guesses a “template tree” and then fills
up the paths and subtrees that are not already determined by
the guess in a greedy manner. Later on, Gupta et al. [2019]
provided the first “polynomial kernelization” for TFP param-
eterized by k: given any instance of TFP, their kernelization
returns an equivalent SAT encoding whose size (i.e., the num-
ber of clauses and variables) is polynomial in k and inde-
pendent of the size of the original tournament. Aronshtam
et al. [2017] also studied related problems through the lens
of parameterized complexity. Nevertheless, it remains inter-
esting in future work to determine whether TFP is FPT with
respect to other parameters, for example the size of a mini-
mum feedback vertex set, i.e., a set of vertices whose removal
renders the tournament acyclic.

2.3 Structural Results

Since some players may not be able to win a SE tourna-
ment regardless of the bracket, a line of work has provided
conditions under which a player is a SE winner for at least
one bracket. An example of this is the “superking” condi-
tion: a king v is said to be a superking if for every player
v’ beating v, there exist at least log, n players v” such that
v beats v"" and v beats v. Another condition is that of a
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king of high outdegree, i.e., a king with outdegree d who
loses to fewer than d players with outdegree larger than d.
Vassilevska Williams [2010] and Stanton and Vassilevska
Williams [2011] showed that a superking and a king of high
outdegree can always win a SE tournament, respectively.
Both of these results were later generalized in one fell swoop
by Kim et al. [2017].

Theorem 2.5 ([Kim et al., 2017]). Let v be a king, and denote
by A and B the set of remaining players who lose to v and
beat v, respectively. Suppose that B is a disjoint union of
three (possibly empty) sets H, I, J such that

1. |[H| < |A

2. Every player in I loses to at least log, n players in A;

s

3. Every player in J beats at most | A| players.

Then, v is a SE winner. Moreover, there exists a polynomial-
time algorithm that computes a winning bracket for v.

Intuitively, each of the three sets H, I, J are weak in some
respect. The set H has small size, each player in I can be
reached from v via a non-negligible number of paths of length
two, and players in J have relatively low outdegrees. Note
that the superking result corresponds to taking H = J = 0,
while the “king of high outdegree” result corresponds to tak-
ing I = (). The proof of this theorem proceeds by induction.
At each stage, the goal is to construct a matching of the play-
ers such that for the subsequent round of the tournament (with
half of the players remaining), v is still a king and the three
conditions remain fulfilled. The matching is constructed by
first considering a maximum matching from A to H, then a
maximum matching from the remaining players in A to U J,
and finally performing arbitrary matchings within each of the
sets A, H,and I U J.

In addition to kings, another notion that has featured in
structural results is that of 3-kings, i.e., players who can reach
any other player via a path of length at most three. Perhaps
surprisingly, 3-kings are significantly weaker than kings with
respect to SE tournaments: even though a king that beats at
least /2 players is always a SE winner,> a 3-king may not
be able to win the tournament even if it beats n — 3 players
[Kim and Vassilevska Williams, 2015, Figure 2]. Kim and
Vassilevska Williams [2015] and Kim er al. [2017] provided
different sets of conditions under which a 3-king can win a SE
tournament. However, these conditions are rather restrictive
compared to the conditions for kings in Theorem 2.5, which
leaves the question of whether a 3-king is guaranteed to be a
SE winner under more general conditions.

2.4 Bribery

As Gupta et al. [2018b] noted, sometimes one wants to
win a SE tournament “by any means necessary”. Besides
fixing the tournament bracket, a common way to achieve
this goal is to bribe certain players to intentionally lose a
match. This setting was first studied by Kim and Vassilevska
Williams [2015], who defined the problem of Bribery-TFP
(BTFP), where in addition to choosing the bracket, the or-
ganizers can bribe up to b players to lose a match that they

2This follows by taking H = B and I = J = ) in Theorem 2.5.
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would otherwise win.> If b = 0, then BTFP is equivalent to
TFP which is NP-hard (Theorem 2.2), whereas if b = log, n,
then the tournament can easily be rigged by bribing all play-
ers that our favorite player faces. By using a reduction from
TFP, Kim and Vassilevska Williams showed that the problem
is computationally intractable in between.*

Theorem 2.6 ([Kim and Vassilevska Williams, 20151). For
any constant € > 0, BTFP is NP-hard when b < (1 —
e) logy n.

Gupta et al. [2019] presented “obfuscation operations”
which can take in one bribery solution and output another so-
lution in polynomial time. Their operations are relevant when
the bribery in the given solution is too conspicuous or cannot
be realized (e.g., when some players refuse to be bribed). In
addition, they gave an exact algorithm for BTFP running in

time 20(+” log k)nO() where k denotes the size of a smallest
feedback arc set—this implies that like the version without
bribery, BTFP is FPT with respect to k. Nevertheless, the
running time of this algorithm is worse than that of the cor-
responding algorithm for TFP (Theorem 2.4), where the de-
pendence on k in the exponent is linear instead of quadratic.

Konicki and Vassilevska Williams [2019] studied bribery
in SE tournaments using models involving probabilities; we
discuss their contributions in the next subsection.

2.5 Probabilistic Approaches

In real-life tournaments, players have varying strengths, and
therefore not all tournament graphs are equally likely to oc-
cur. A model for generating tournament graphs that has been
studied in several papers is the Condorcet random model. In
this model, there is a linear ordering of players from strongest
to weakest, and a probability p < 1/2. For each pair of play-
ers, the stronger player beats the weaker player with proba-
bility 1 — p (so the weaker player wins with probability p),
independently of other pairs. If p € o(logn/n), then the
weakest player is expected to win only o(logn) matches—
this is insufficient to be a SE winner since such a winner
must beat log, n players. On the other hand, Vassilevska

Williams [2010] showed that when p € Q(y/logn/n), it
is likely that every player can win a SE tournament under
some bracket, leaving a gap of roughly ©(y/n). This gap was
closed by Kim e al. [2017], who established that Q(logn/n)
is the threshold where the transition occurs. Manurangsi and
Suksompong [2021] extended this result to the generalized
random model: for each pair of players 7 and j, player ¢ beats
player j with probability p; ; independently of other pairs,
where p; j + p;s = 1foralli # j.

Theorem 2.7 ([Manurangsi and Suksompong, 2021]). As-
sume that the tournament is generated according to the gen-
eralized random model with p; ; € Q(logn/n) for all i, j.
With high probability, for each player; there exists a bracket
under which the player wins the SE tournament.

3Bribery has also been studied in other settings, perhaps most
notably in voting [Faliszewski and Rothe, 2016].

“The setting where the bracket is given in advance but bribery is
allowed has also been studied [Russell and Walsh, 2009; Mattei et
al., 2015].
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The Condorcet random model was also studied by Konicki
and Vassilevska Williams [2019] in the context of bribery.
These authors showed that for any p, it is sufficient to bribe
the top O(logn) players in the linear ordering to make any
player win the SE tournament with high probability. Their
proof relies on Theorem 2.5 in order to establish the existence
of winning brackets.

So far, we have assumed that the tournament graph is de-
terministic, i.e., if a pair of players were to play against each
other, it is already known with certainty who would win. In
particular, even though the Condorcet random model provides
a randomized way to generate a tournament graph, the result-
ing graph is deterministic. A more general version of TFP
encodes the uncertainty into the tournament graph itself [Vu
et al., 2009]. Specifically, for each pair of players i and j,
the probability that 4 beats j is given by ¢; ;. This general-
ization of TFP is sometimes referred to as the probabilistic
tournament fixing problem (PTFP).

Chatterjee er al. [2016] investigated the robustness of SE
brackets in PTFP. They considered perturbing each entry of
the probability matrix by at most €, and asked how much the
probability of a certain player winning the tournament can
drop through such perturbations. Intriguingly, they showed
that the robustness can vary significantly across brackets.

Theorem 2.8 ([Chatterjee et al., 2016]). There exist de-
terministic tournament graphs such that for one winning
bracket of a player, the winning probability can drop by
O(en) through e-perturbations, whereas for another winning
bracket of the same player, the drop is only ©(elogn).

Konicki and Vassilevska Williams [2019] also considered
probabilistic tournament graphs. They showed that even
when the probability matrix is “monotonic”, i.e., ¢;; >
gi,j—1 forall ¢ < j — 2, the probabilistic version of BTFP is
NP-hard. An interesting open question is whether the proba-
bilistic version of TFP is also computationally hard for mono-
tonic probability matrices.

3 Tournament Solutions

In this section, we address work on tournament solutions.
Although research on this topic in the last few years has ar-
guably been less coherent than on single-elimination tourna-
ments, some new frameworks and perspectives have emerged,
which have opened up intriguing directions for future work.

3.1 Preliminaries

A tournament is defined by a set of alternatives and a domi-
nance relation between the alternatives: for every pair of al-
ternatives, one dominates the other. The tournament can also
be viewed as a directed graph T' = (V, E), with the vertices
in V corresponding to the alternatives and the edges in E' to
the dominance relation. The Copeland score of an alternative
x is the number of alternatives that = dominates, i.e., the out-
degree of = in 7. For alternatives x and y, we write x > y to
denote that x dominates y, and for sets of alternatives X and
Y, we write X > Y to mean that x > y for all x € X and
y € Y. An example of a tournament is shown in Figure 2.

A tournament solution is a function that maps each tourna-
ment to a nonempty subset of its alternatives, usually called
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Figure 2: A tournament 7" with 6 alternatives. All omitted edges are
assumed to point from right to left. The Copeland score of e is 3.

the set of winners or the choice set. Some common tourna-
ment solutions are listed below.

» The Copeland set (CO) is the set of alternatives with the
largest Copeland score.

e The top cycle (T'C') is the (unique) smallest nonempty
set W of alternatives such that W = V(T') \ W.

e The uncovered set (UC) is the set of alternatives that
are not “covered” by any other alternative, where an al-
ternative x is said to cover another alternative y if z > y
and for any alternative z such that y > z, we also have
x > z. Equivalently, the uncovered set coincides with
the set of kings from Section 2.

e The Banks set (BA) is the set of alternatives that appear
as the maximal element of some maximal transitive sub-
tournament.

The containment relations CO(T) C UC(T) C TC(T)
and BA(T) C UC(T) hold for any tournament 7" [Laslier,
19971. For the tournament 7" in Figure 2, we have CO(T') =
{f}, TC(T) = {b,c,d,e, f}, and UC(T) = BA(T) =
{c,d,e, f}.

3.2 Query Complexity

While much of the work on tournament solutions in compu-
tational social choice has focused on the computational com-
plexity, it is also interesting to examine these solutions from
a query complexity perspective. This study was conducted by
Dey [2017]. In the query model, instead of the tournament
being given as an input, an algorithm has to make (determin-
istic) queries in order to discover it. With each query, the
algorithm can find out the orientation of a desired edge. The
goal of the algorithm is to compute the set of winners for each
tournament solution using the minimum number of queries in
the worst case. Unlike the computational complexity, which
can be exponential, the query complexity is always at most
O(n?), since the entire tournament is described by O(n?)
edges. Unfortunately, Dey showed that for all of the tour-
nament solutions above, making ©(n?) queries is inevitable.

Theorem 3.1 ([Dey, 2017]). Any deterministic algorithm that
computes the Copeland set, the top cycle, the uncovered set,
or the Banks set of a tournament must make Q(n?) queries in
the worst case.

To demonstrate the idea of Dey’s proof, consider the top
cycle. Assume for simplicity that n = 4s + 2 for some posi-
tive integer s. We partition the set of alternatives into two sets
A={ai,...,a2s41} and B = {by,...,bas11}. An alterna-
tive a; dominates the alternatives a;y1, a;y2, - . - , @45, Where
the indices are taken modulo 2s -+ 1; an analogous dominance
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Figure 3: An illustration of the proof of Theorem 3.1 for TC

relation holds within the set B. (See Figure 3 for an illustra-
tion of the case s = 2.) For any algorithm, we will construct
an adversary that forces the algorithm to make £2(n?) queries
as follows. When the algorithm makes a query, if the query
is within the set A or the set B, the adversary answers ac-
cording to the specified relations. Else, the query is between
alternatives a € A and b € B—in this case, the adversary an-
swers that ¢ dominates b. We claim that the algorithm must
query all (2s + 1)? € ©(n?) edges between A and B. In-
deed, suppose that some such edge is left unqueried. If the
algorithm answers that at least one vertex of B is included
in TC, the adversary orients all edges from A towards B,
thereby making the top cycle a subset of A. Otherwise, the
algorithm answers that the top cycle is a subset of A. In that
case, the adversary orients all unqueried edges between A and
B from B to A. As a result, every alternative in B can reach
all other alternatives, meaning that the top cycle contains B.
The proofs for CO, UC, and BA use similar ideas.

Despite these negative results, Dey [2017] showed that if
the top cycle is small, then it is possible to compute all of
these tournament solutions with fewer queries. Specifically, if
the size of T'C of a given tournament 7" is at most ¢, then there
exists an algorithm for computing each of the above tourna-

ment solutions using O (nt + bg(ioi_gf/t)

ing other parameters that make the problem tractable is an
interesting direction for future research.

) queries. Identify-

3.3 Margin of Victory

Given that the purpose of tournament solutions is to distin-
guish the stronger alternatives from the weaker ones, it is
perhaps surprising that most common tournament solutions
tend to select all alternatives in large random tournaments.
Indeed, Fey [2008] and Scott and Fey [2012] showed that the
top cycle, the uncovered set, and the Banks set are unlikely
to exclude any alternative from a tournament drawn accord-
ing to the uniform random model, wherein each edge is ori-
ented in either direction with probability 1/2 independently
of other edges.”> Moreover, choosing a large set of alternatives
is sometimes unavoidable if certain properties of the tourna-
ment solutions are desired. For example, Brandt et al. [2018]
proved that any tournament solution satisfying a normatively
appealing property called “stability” (including the top cycle)
must select at least half of the alternatives on average.

In order to differentiate among the winning alternatives of
any given tournament, Brill ef al. [2020] proposed a generic

3The uniform random model is a special case of the Condorcet
random model where p = 1/2. Saile and Suksompong [2020]
extended some of these results to the generalized random model
(cf. Theorem 2.7).
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framework for refining tournament solutions based on a con-
cept called margin of victory (MoV).® The MoV of a winning
alternative captures how close it is to dropping out of the win-
ner set, where distance is measured in terms of the number of
edges that need to be reversed. This notion can also be viewed
in terms of bribery, specifically as the amount of bribe that
must be paid to other players or the referees in order to obtain
the desired outcome.” Brill et al. investigated the complexity
of computing the MoV and established bounds on its value
for several tournament solutions.

Theorem 3.2 ([Brill et al., 2020]). Computing the MoV for
winners with respect to CO, TC, and UC can be done in
polynomial time, whereas the corresponding problem for BA
is NP-hard. For all of these tournament solutions, the MoV
can be as high as |n /2|, but no higher.

For all four tournament solutions, the bound |n/2] is at-
tained by an alternative that dominates the remaining n — 1
alternatives, when these n — 1 alternatives form a subtourna-
ment with the structure described for each of the sets A and
B following Theorem 3.1 (see Figure 3).

In a follow-up paper, the same authors examined the
MoV notion from the structural and experimental perspec-
tives [Brill ef al., 2021]. On the structural side, they de-
fined the axioms of cover-consistency and (strong) degree-
consistency. For a tournament solution .S, we say that MoV g
is cover-consistent if for any alternatives x and y such that x
covers y, we have MoV g(x) > MoVg(y). We say that MoV g
is strong degree-consistent if the same inequality holds for
any x, y such that the Copeland score of x is at least that of y.

Theorem 3.3 ([Brill et al., 2021]). For each tournament
solution S € {CO,TC,UC,BA}, MoV satisfies cover-
consistency. On the other hand, among these tournament so-
lutions, only MoV r¢ satisfies strong degree-consistency.?

Theorem 3.3 implies that the margin of victory is typically
aligned with the covering relation, an important indicator of
strength of alternatives. Moreover, for most of the tourna-
ment solutions, the MoV provides information on the tour-
nament under consideration beyond simply the outdegrees.
Besides these structural contributions, Brill ef al. [2021] also
performed experiments demonstrating how the discriminative
power of the MoV varies across tournament solutions.

3.4 Relationship to Single-Elimination Winners

The set of single-elimination winners considered in Section 2
can also be viewed as a tournament solution. In this light,
it is natural to explore its relation to traditional tournament
solutions. For example, can a player chosen by a certain tour-
nament solution always win a SE tournament? How large is

®Similar concepts of the same name have been applied in other
domains including voting [Xia, 2012], sports modeling [Kovalchik,
20201, and political districting [Stoica et al., 2020].

"Brill et al. [2020] also defined the MoV for non-winning alter-
natives, and considered a more general setting where reversing dif-
ferent edges may have unequal costs. Related problems have been
studied by Faliszewski et al. [2009], Russell and Walsh [2009], Aziz
et al. [2015], and Yang and Guo [2017].

8MoV ¢o satisfies a weaker version of degree-consistency.
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T A\ Y
Figure 4: Example of a tournament in which the uncovered set and
the set of single-elimination winners are largely disjoint.

the overlap between the set of SE winners and the set of win-
ners according to other tournament solutions? The answers
to some of these questions were given by Kim er al. [2017].

Theorem 3.4 ([Kim et al., 2017]). Any alternative in CO
is a SE winner. On the other hand, for any constant ¢ €
(0,1), there exists a tournament such that the proportion of
alternatives in UC that are SE winners is less than ¢, and the
proportion of SE winners that are in UC' is also less than c.

The proof of the CO claim is succinct: any alternative in
the Copeland set is a king (i.e., contained in UC') and domi-
nates at least /2 other alternatives, so we may directly apply
Theorem 2.5 with I = J = (. For UC, consider the tour-
nament 7" in Figure 4, where A and B are subtournaments.
Since all alternatives in B are covered by y while the remain-
ing alternatives are uncovered, we have UC(T') = AU{x, y}.
If B is exponentially larger than A, the players in A cannot
win enough matches to win a SE tournament. On the other
hand, one can check that all players in B are SE winners pro-
vided that they have roughly equal strength. This means that
the vast majority of SE winners are in B.

While any alternative with the maximum Copeland score
can win a SE tournament, there can be SE winners with low
Copeland scores. An extreme example is a player who can
beat only log n other players and wins a SE tournament by
beating precisely these players. An interesting question arises
from a randomized point of view: is it true that for every
tournament graph, the winner according to a bracket cho-
sen uniformly at random must have a high Copeland score?
Hulett [2019] answered this question in the negative.

Theorem 3.5 ([Hulett, 2019]). There exists a tournament
graph such that the SE winner according to a uniformly ran-

dom bracket has Copeland score n - 2~©(V1og7n),

For comparison, choosing a uniformly random alternative
from any tournament already yields a much higher Copeland
score of (n — 1)/2, and the quantity n - 2-©(V1°27) jg gtill
lower than, say, ©(n/logn). Hulett’s proof is based on con-
structing a probability distribution over a class of tournament
graphs for which weak alternatives win a SE tournament un-
der most brackets. Her result shows that as an indicator of
alternative strength, the ability to win a SE tournament does
not necessarily align with the Copeland score.

3.5 Randomized Tournament Solutions

For this final subsection, we turn our attention to variants of
tournament solutions where instead of returning a subset of
the alternatives, our functions return a probability distribu-
tion over them. We refer to such functions as randomized
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tournament solutions. A desirable property in this context is
Condorcet-consistency, which means that an alternative that
dominates all other alternatives should receive probability 1.
Indeed, it would be strange if a player wins all of her matches
and yet leaves the competition empty-handed. Another im-
portant consideration is strategyproofness—no group of com-
petitors should be able to significantly improve the probabil-
ity that one of them wins the tournament, by fixing the out-
comes of their matches. If a group of size k cannot increase
their combined probability by more than «, we say that the
function is k-Strongly-Non-Manipulable-c (k-SNM-av).

When k = 2, no Condorcet-consistent randomized tourna-
ment solution can be 2-SNM-« for any o < 1/3. To see this,
consider a tournament with three players a, b, ¢ such that a
beats b, b beats ¢, and ¢ beats a. Regardless of the randomized
tournament solution, some pair of players necessarily receive
a combined probability of at most 2/3. However, this pair
of players can reverse their match outcome and increase their
probability to 1 due to Condorcet-consistency. Schneider et
al. [2017] showed that the bound 1/3 can be attained via a
simple rule central to the present survey.’

Theorem 3.6 ([Schneider et al., 2017]). A uniformly random
SE bracket is 2-SNM-1/3.

The proof of Theorem 3.6 uses a clever coupling argument
that ties a bracket where a pair of players can potentially gain
from manipulation with two other brackets where no manip-
ulation potential for this pair exists. Schneider et al. also
showed that several other formats are either 2-SNM-1/2 or
worse, making the high resistance to manipulation of random
SE tournaments all the more striking.

For k > 2, Schneider et al. [2017] showed that no rule is k-
SNM-a for o < Qkk;_ll, and conjectured that this is tight. The
conjecture was refuted by Schvartzman er al. [2020], who
proved that no rule is k-SNM-1/2 for large enough %, and
established the existence of a k-SNM-2/3 rule for all &.

4 Conclusion

The study of tournaments has given rise to a rich and fasci-
nating literature, and several exciting directions remain for
future research. In particular, it would be interesting to inves-
tigate other tournament formats in greater depth, for instance
double-elimination [Stanton and Vassilevska Williams, 2013;
Aziz et al., 2018], round-robin, stepladder [Yang and Dim-
itrov, 2021], Swiss-system, multi-stage tournaments, as well
as those involving promotion and relegation features. Other
important avenues include performing empirical studies on
real-world tournaments, for example using data from sports
competitions [Russell and van Beek, 2011; Mattei and Walsh,
2016; Eidelstein et al., 20191, and examining the effects of the
tournament structure on fairness [Ryvkin and Ortmann, 2008;
Suksompong, 2016; Arlegi and Dimitrov, 2020].
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