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Abstract
We present a review on the recent advances
and emerging opportunities around the theme of
analyzing deep neural networks (DNNs) with
information-theoretic methods. We first discuss
popular information-theoretic quantities and their
estimators. We then introduce recent develop-
ments on information-theoretic learning principles
(e.g., loss functions, regularizers and objectives)
and their parameterization with DNNs. We fi-
nally briefly review current usages of information-
theoretic concepts in a few modern machine learn-
ing problems and list a few emerging opportunities.

1 Introduction
Information-theoretic methods have become the workhorse
of several impressive deep learning achievements over the
past years, ranging from practical applications (e.g., the
variational information bottleneck in representation learn-
ing [Alemi et al., 2017]) to theoretical investigations (e.g., the
generalization bound induced by mutual information [Xu and
Raginsky, 2017; Steinke and Zakynthinou, 2020]). Further,
a few novel information-theoretic quantities (e.g., mutual in-
formation) estimators and learning principles have been de-
veloped and applied to different deep learning problems in
fruitful ways. A recent example is the mutual information
neural estimator (MINE) [Belghazi et al., 2018] and its ap-
plication in representation learning [Hjelm et al., 2018] with
the renowned information maximization (InfoMax) princi-
ple [Linsker, 1988].

Information theory requires the knowledge of the data
probability density function (PDF), and in machine learning
this is normally unknown. Therefore, the application of infor-
mation theory to machine learning is predicated to the selec-
tion of PDF estimators or mathematical alternatives to com-
pute from data the statistical quantities of entropy, mutual in-
formation or divergence. The theory of information-theoretic
estimators is vast [Pardo, 2018; Gao et al., 2018], so it is
often hard for practitioners to make a quick decision on suit-
able estimators. On the other hand, the rapid development of
computer vision and natural language processing applications
is likely to drive our attention to a particular class of estima-
tors, neglecting other possible choices that may enjoy other

favorable properties. Such restrictions will, in turn, impose
constraints on the performance limit of those applications.

In this work, we first discuss popular information-theoretic
quantities (i.e., entropy, mutual information and divergence)
and their estimators, aiming at illustrating their inner con-
nections and specific properties. We then introduce com-
mon information-theoretic learning principles (e.g., InfoMax
and the information bottleneck (IB) approach [Tishby et al.,
1999]) and their practical usages in the understanding and the
design of DNNs. We finally demonstrate how information
theory can be brought to bear on several challenging deep
learning problems in unorthodox and fruitful ways. To con-
clude this survey, we provide a list of future directions that
we consider, have potential to move the field forward.

2 Information-Theoretic Quantities and
Estimators

Information-theoretic quantities provide useful descriptions
of the underlying behavior of random variable (or process)
and that this behavior is a key factor in developing and an-
alyzing deep models. Shannon entropy and relative entropy
(a.k.a., Kullback-Leibler or KL divergence) evidence a long
track record of usefulness in information theory and machine
learning. However, there is no reason to restrict ourselves to
Shannon’s measures of entropy and relative entropy as alter-
native quantities may have other properties advantageous for
machine learning [Kapur, 1994].

Hence, we first introduce definitions and estimators of pop-
ular information-theoretic quantities. For conciseness, we fo-
cus our discussion on continuous random variables for which
it is assumed the probability density function exits.

2.1 Shannon’s Entropy, Mutual Information and
KL divergence

For a continuous random variable X with probability density
function (PDF) f(x) and support X , Shannon’s differential
entropy H(X) is given by:

H(X) = −
∫
X
f(x) log f(x)dx = E (− log f(x)) (1)

Similarly, the joint entropy for a pair of random variables
(X,Y ), with joint PDF f(x, y), is defined as:

H(X,Y ) = −
∫
X

∫
Y
f(x, y) log f(x, y)dxdy (2)
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A fundamental measure of dependence (or correlation) be-
tween two random variables is the mutual information (MI):

I(X;Y ) =

∫
X

∫
Y
f(x, y) log

(
f(x, y)

f(x)f(y)

)
dxdy. (3)

MI is symmetric and reduces to zero iff X and Y are statisti-
cally independent. Another important problem in information
theory is measuring the dissimilarity between two probability
distributions (or in our case PDFs) f(x) and g(x). The first
principled approach that is based on the probability measure
is the KL divergence (a.k.a., relative entropy), defined as:

DKL(f(x)‖g(x)) =

∫
X
f(x) log

(
f(x)

g(x)

)
dx. (4)

MI can be expressed as the KL divergence between the joint
distribution f(x, y) and the product of marginals f(x)f(y):

I(X;Y ) = DKL(f(x, y)‖f(x)f(y)). (5)
A natural way to estimate MI from samples {xi,yi}ni=1 is

the plug-in approach that uses a non-parametric density esti-
mator such as kernel density estimator (KDE) [Parzen, 1962]
to approximate f(x, y), f(x) and f(y), and then uses the es-
timated densities to compute MI. However, density estima-
tion is notoriously hard in high-dimensional space. There-
fore, most of the commonly employed estimators for MI are
based on nearest neighbour and graph properties [Kraskov et
al., 2004]. One of the most recent proposals of this kind is en-
semble dependency graph estimator (EDGE) [Noshad et al.,
2019]. Despite fast convergence rate and low computational
complexity of EDGE, one downside of all estimators based
on neighborhoods or graphs is their lack of differentiabilty,
and thus cannot be used for gradient-based optimization that
is so prevalent in DNNs.

In an effort to devise estimators that scale to present-day
machine learning problems, most recent work on estimating
MI has focused on variational lower bounds that can be pa-
rameterized, for instance using neural networks [Belghazi et
al., 2018]. These approaches do solve the differentiability is-
sue; however, theoretical results have shown that such high
confidence estimators based on the lower bound on MI re-
quire a sample size that is exponential in the MI of the data,
making reliable estimation impractical in high entropy, high
MI scenarios [McAllester and Stratos, 2020].

2.2 Rényi’s α-order Entropy and Related
Quantities

A widely used generalization of Shannon entropy is Rényi’s
α-entropy. For a continuous random variable X with PDF
f(x) and support X , the α-entropy Hα(X) is defined as:

Hα(X) =
1

1− α
log

∫
X
fα(x)dx. (6)

A big difference with respect to Shannon entropy is the in-
terchange of the “log” with the integral, which has enormous
implications for estimation [Principe, 2010]. Rényi also ex-
tended the concept to divergence. The α-relative entropy) be-
tween random variables with PDFs f and g is given by:

Dα(f‖g) =
1

α− 1
log

(∫
X
fα(x)g1−α(x)dx

)
. (7)

In limit case where α → 1, both (6) and (7) reduce to Shan-
non’s entropy and KL divergence, respectively. There are
multiple ways to generalize MI in a similar way, as first done
by Rényi [Rényi, 1961]. One of the most notable generaliza-
tions on α-MI was suggested by Arimoto [Arimoto, 1977].
For simplicity, one can also define the α-MI as the α-relative
entropy between f(x, y) and f(x)f(y) [Pál et al., 2010], i.e.,

Iα(X;Y ) = Dα(f(x, y)‖f(x)f(y)) (8)

k-NN graph-based estimators have been proposed for α-order
generalizations (i.e., Eqs. (6)-(8)) [Leonenko et al., 2008].
However, the consistency proof of these estimators (e.g., [Pál
et al., 2010; Póczos and Schneider, 2011]) are usually re-
stricted to a narrow range of α ∈ (0, 1). Additionally, [Singh
and Póczos, 2014] established a rate of convergence for the
simple KDE estimator of α-divergence.

A modified version of Rényi’s definition of α-relative en-
tropy is given by Lutwak [Lutwak et al., 2005]:

Dα(f‖g) = log
(
∫
gα−1f)

1
1−α (

∫
gα)

1
α

(
∫
fα)

1
α(1−α)

. (9)

For α = 2, expressions for entropy of f and relative entropy
(Lutwak’s definition) between f and g can be obtained as
functions of inner products between PDFs:

H2(f) = − log

∫
X
f2(x)dx, (10)

D2(f‖g) = −1

2
log

(
∫
fg)2

(
∫
f2)(

∫
g2)

. (11)

Eq. (11) is also called the Cauchy-Schwarz (CS) diver-
gence [Jenssen et al., 2006] and is defined based on the well-
known CS inequality:∣∣∣∣∫ f(x)g(x)dx

∣∣∣∣2 ≤ ∫ |f(x)|2dx
∫
|g(x)|2dx. (12)

Given Eq. (11), the quadratic mutual information (QMI)
between X and Y can be defined as the CS divergence be-
tween f(x, y) and f(x)f(y):

ICS = DCS(f(x, y)‖f(x)f(y)). (13)

Alternatively, one can use the Euclidean distance
DED(f‖g) =

∫
X (f(x) − g(x))2dx to define QMI as:

IED = DED(f(x, y)‖f(x)f(y)). (14)

Note that definitions in Eq. (13) and Eq. (14) are not equiv-
alent. The case of α = 2 is of special interest as it al-
lows simple closed form expressions for KDE-based estima-
tors [Principe, 2010, Chapter 2.10].

2.3 Matrix-based Entropy Functional
Information-theoretic quantities can be defined (or measured)
over the eigenspectrum of symmetric positive semidefinite
(SPS) matrix, avoiding the necessity of estimating the un-
derlying density distributions of variables. For example, it is
reasonable that the eigenvalues of sample covariance matrices
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of two collections of samples manifest their distributional di-
vergence [Moskvina and Zhigljavsky, 2003]. More formally,
given a strictly convex, differentiable function ϕ : Sd+ → R
that maps SPS matrices (of size d × d) to a real number, the
Bregman matrix divergence from matrix ρ to matrix σ is de-
fined as [Tsuda et al., 2005]:

Dϕ,B(σ‖ρ) = ϕ(σ)− ϕ(ρ)− tr((∇ϕ(ρ))T (σ − ρ)), (15)

where tr(A) denotes the trace of matrixA. Examples include
ϕ(σ) = ‖σ‖2F , which leads to the squared Frobenius norm
‖σ − ρ‖2F .

When ϕ(σ) = tr(σ log σ − σ), where log σ is the matrix
logarithm, the resulting Bregman matrix divergence is:

DvN (σ‖ρ) = tr(σ log σ − σ log ρ− σ + ρ), (16)

which is also referred to von Neumann divergence or quan-
tum relative entropy [Nielsen and Chuang, 2010]. An-
other important matrix divergence arises by taking ϕ(σ) =
− log detσ, in which the resulting Bregman matrix diver-
gence reduces to:

D`D(σ‖ρ) = tr(σρ−1)− log det(σρ−1)− d, (17)

and is commonly called the LogDet divergence.
Given two sets of observations SX = {xi}ni=1 ∼ f and

SY = {yi}mi=1 ∼ g, the divergence from f to g can be
simply measured by Dϕ,B on their respective sample co-
variance matrices Σx and Σy with Dϕ,B(Σx‖Σy). Taking
the chain rule of KL divergence, Dϕ,B can also be used to
quantify the divergence of two conditional distributions (i.e.,
D(f(y|x)‖g(y|x))) [Yu et al., 2020b].

Similarly, one is able to non-parametrically obtain mea-
sures of entropy and MI on the eigenspectrum of a Gram ma-
trix of the projected data in a reproducing kernel Hilbert space
(RKHS) [Sanchez Giraldo et al., 2014]. Specifically, the
matrix-based Rényi’s α-order entropy for samples {xi}ni=1
(each xi can be a real-valued scalar or vector) is defined over
the eigenspectrum of their normalized Gram matrix A of size
n× n as follows:

Hα(A) =
1

1− α
log2 (tr(Aα)) (18)

where tr(Aα) =
∑n
i=1 λi(A)α, andA = K/ tr(K) in which

K = κ(xi,xj) is sample Gram matrix1 and tr denotes matrix
trace. λi(A) denotes the i-th eigenvalue of A.

LetB be another (normalized) Gram matrix from {yi}ni=1,
the joint entropy between X and Y is defined as:

Hα(A,B) = Hα

(
A ◦B

tr(A ◦B)

)
, (19)

where A ◦ B denotes the Hadamard product between A and
B. Given Eqs. (18) and (19), one can define the matrix-based
Rényi’s α-order MI, in analogy to Shannon MI, as:

Iα(A;B) = Hα(A) +Hα(B)−Hα(A,B). (20)

and the matrix-based Rényi’s α-order conditional entropy,

Hα(A|B) = Hα(A,B)−Hα(B). (21)
1κ : χ × χ 7→ R is a real valued positive definite kernel that is

also infinitely divisible [Bhatia, 2006]. Usually, a Gaussian kernel is
chosen [Sanchez Giraldo et al., 2014; Yu et al., 2019].

2.4 Other Popular Divergence and Dependence
Measures

Apart from the above-mentioned divergences and their
matrix-based counterparts, Maximum Mean Discrepancy
(MMD) [Gretton et al., 2012] and Wasserstein distance or op-
timal transport (OT) are perhaps the most two popular classes
of distances in DNNs. MMD quantifies distances between
distributions as the distance between mean embeddings of
features. Specifically, given distributions f and g over X ,
the MMD is defined by a feature map ϕ : X 7→ H, where
H is also called a reproducing kernel Hilbert space (RKHS).
More formally, the MMD is defined as:

MMD(f, g;H) = ‖EX∼f [ϕ(X)]− EY∼g [ϕ(Y )] ‖H (22)

An unbiased U-statistic estimator for MMD on observa-
tions SX = {xi}ni=1 and SY = {yi}mi=1 is given by:

M̂MD
2

u(SX , SY ;κ) =
1

n(n− 1)

∑
i6=j

Hij , (23)

where Hij = κ(xi,xj) + κ(yi,yj)− κ(xi,yj)− κ(yi,xj).
On the other hand, let Π(f, g) denotes the set of joint dis-

tributions π whose marginal distributions are f and g, the
Wasserstein distance is defined as:

Wp(f, g) =

(
inf

π∈Π(f,g)

∫
‖x− y‖pdΠ(x,y)

)1/p

(24)

In recent years, alternative dependence measures, based
on MMD and OT between probability joint and product
of marginal distributions, have been proposed. Exam-
ples include the Hilbert Schmidt Independence Criterion
(HSIC) [Gretton et al., 2007] based MMD and the Wasser-
stein’s dependence measure (WDM) [Ozair et al., 2019]. Em-
pirical results show that WDM overcomes to some extent the
issue of measuring dependencies when MI is large. Neverthe-
less, the estimator of WDM requires optimizing the parame-
ters of a Lipchitz-continuous neural network, a condition that
remains challenging to be enforced in practice. A very re-
cent development, is the concept of usable information under
computational constraints [Xu et al., 2020]. In this work, it is
assumed that limiting the expressiveness of the quantity de-
scribing information might be beneficial not only in terms of
estimation but also in the context of learning. A characteris-
tic feature of these measures of mutual information and mu-
tual information-like quantities, including the matrix-based
entropy and mutual information, is the incorporation of some
inductive bias in the estimation process, which can be advan-
tageous for machine learning [Tschannen et al., 2020].

Another popular variant of MI, also called the squared-loss
MI (SMI) [Suzuki et al., 2009], defines the dependence of two
random variables X and Y as the Pearson’s χ2 divergence
from f(x, y) to f(x)f(y):

SMI(X;Y ) =

∫∫
X×Y

f(x, y)

(
f(x, y)

f(x)f(y)
− 1

)2

dxdy. (25)

SMI is usually estimated by least-square approaches. A
recent proposal is SMI with OT [Liu et al., 2019].
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3 Information-Theoretic Principles and
Regularizations in DNNs

3.1 Information-Theoretic Loss Functions for
Robust Deep Learning

Information-theoretic measures can be directly used as a loss
function to train DNNs. The most notable example is the
cross-entropy loss for classification. Another example is the
aforementioned CS divergence, which has been used, as a
loss function, in both deep clustering [Kampffmeyer et al.,
2019] and classification [Janocha and Czarnecki, 2017]. In
terms of clustering, one could model each cluster by its PDF
and optimize cluster assignments such that the divergence be-
tween their PDFs is maximized. On the other hand, the f -
divergence (a generalization of KL divergence) can be used
to train deep energy-based models [Yu et al., 2020a].

However, recent research has demonstrated that DNNs
trained with cross-entropy or mean squared error (MSE) can
easily fit (corrupted or even randomly) labeled data [Zhang et
al., 2017; Jiang et al., 2018; Feng et al., 2020], but with very
poor generalization capacity on held out data, indicating that
loss functions like cross-entropy or MSE are not a reliable
indicator of generalization and robustness.

To improve the learning performance in non-Gaussian
noises and outliers, a variety of (information-theoretic) non-
MSE criteria have been proposed in the literature. Partic-
ularly in recent years, the maximum correntropy criterion
(MCC) have found many successful applications in domains
of machine learning and signal processing, which is very use-
ful for the case where the signals are contaminated by heavy-
tailed impulsive noises [Chen et al., 2019]. Under the MCC,
an optimal model can be obtained by maximizing the corren-
tropy between the desired output (e.g., class label) y and the
estimated output ŷ [Liu et al., 2007]:
f∗MCC = arg max

f∈F
Vσ(ŷ, y) = arg max

f∈F
E(Gσ(e)), (26)

where f∗ is the optimal model, F stands for models hypoth-
esis space, e = y − ŷ is the prediction residual, E refers
to mathematical expectation, and Vσ(ŷ, y) = E(Gσ(e)) de-
notes the correntropy between ŷ and y [Liu et al., 2007], with
Gσ(e) being the Gaussian kernel function with width σ.

Compared to MSE (i.e., arg minE(e2)), MCC is robust to
outliers because the correntropy criterion is closely related to
M-estimators [Mandanas and Kotropoulos, 2016]. A popu-
lar alternative to MCC is the minimum error entropy (MEE)
criterion arg minH(e), in which H(e) refers to the entropy
of prediction residual e [Erdogmus and Principe, 2002]. The
robustness of MEE over MSE is elaborated in [Chen et al.,
2016] and the references herein. As a replacement of MSE,
both MCC and MEE have demonstrated improved robustness
to non-Gaussian noises and outliers, when they are been de-
ployed as a loss function to train DNNs [Qi et al., 2014;
Yu et al., 2021a]. A most recent proposal along this line
of research is the Determinant based Mutual Information
(DMI) [Xu et al., 2019], with a loss of − log[DMI(ŷ, y)].

Information-Theoretic measures also demonstrate great
potential towards robust deep learning under domain
shift [Quiñonero-Candela et al., 2009], i.e., the joint dis-
tribution of samples (x, y) in the training (or source) data

Psource(x, y) is different to that in the test (or target) data
Ptarget(x, y). Taking the covariate shift (i.e., Ptarget(y|x) =
Psource(y|x), but Ptarget(x) 6= Psource(x)) as an example,
[Greenfeld and Shalit, 2020] suggests that a DNN is robust
to covariate shift iff the distribution of the prediction resid-
uals y − f(x) is statistically independent of the distribution
of the input x. The authors use HSIC to measure the degree
of independence. [Yu et al., 2021a] replaces HSIC with the
matrix-based mutual information (i.e., Eq. (20)) and obtained
favorable performance improvement. Note that, such inde-
pendence criterion (for training regression models) was ini-
tially developed to identify causal direction among two vari-
ables. Feasible independence measures include HSIC [Mooij
et al., 2009] and least-square mutual information [Yamada
et al., 2014]. Interestingly, the independence criterion is also
closely related to the aforementioned MEE [Yu et al., 2021a],
which provides new insight on its robustness.

3.2 InfoMax Principle and its Practical Usage
The information maximization (InfoMax) is well studied in
statistics as exemplified by Burg’s power spectrum algo-
rithm [Burg, 1974]. For machine learning, the InfoMax prin-
ciple dates back to [Linsker, 1988], which pointed out that
a linear or nonlinear network can be treated as an informa-
tion channel. A principle to self-organize such networks is
to transfer as much information as possible of given data
through the network. The InfoMax principle has recently
been used in many computer vision and natural language
processing studies on self-supervised representation learn-
ing, with the objective of maximizing the MI I(X;T ) be-
tween input X and latent representation T [Oord et al., 2018;
Hjelm et al., 2018; Kong et al., 2020]. Since MI is computa-
tional intractable in high-dimensional space, most of existing
studies turn to optimize a lower bound of MI. However, re-
cent studies show that InfoMax principle may introduce ex-
cessive and noisy information, which could be adversarial.
The IB principle, as will be introduced later, can mitigate this
issue [Wang et al., 2021; Mahabadi et al., 2021].

Alongside the representation learning, the InfoMax princi-
ple also offers an appealing strategy to train DNNs in a layer-
wise manner without backpropagation. Traditionally, to learn
a feedforward DNN in a supervised setting, one needs to train
all components (or modules) of the network simultaneously
using backpropagation (BP) since there is no explicit target
for each hidden layer. By contrast, the InfoMax principle can
help us to implement layer-wise training of DNNs. But to
train a DNN, one needs to incorporate information about the
desired output Y as well. Linsker’s idea can be extended with
the MI formalism to include not only the input information
but also other sources of information which are usually char-
acterized by desired outputs. From this perspective, different
layers can be trained greedily [Hu and Principe, 2021]: the
first hidden layer can be trained such that the MI I(Y ;T1)
between the output of this layer (denote T1) and the desired
output Y is maximized; then the second hidden layer can be
trained in the same way by maximizing I(Y ;T2). This pro-
cedure is repeated until the last hidden layer (see Fig. 1(a)).
Interested readers can refer to [Duan et al., 2020] for a com-
prehensive discussion on this topic.
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(a) Information channel in InfoMax (b) Markov chain in deep IB

Figure 1: Given input X and desired output Y , denote T their
latent representation. InfoMax can be implemented explicitly via
max I(X;T ) or implicitly with max I(Y ;T (X)). By contrast,
deep IB approaches search T via max I(Y ;T )− βI(X;T ).

3.3 Information Bottleneck (IB) in Deep Learning
The IB principle was proposed in [Tishby et al., 1999] as
an information-theoretic framework for learning. It considers
extracting information about a target signal Y through a cor-
related observableX . The extracted information is quantified
by a variable T , which is (a possibly randomized) function of
X , thus forming the Markov chain Y ↔ X ↔ T . Suppose
we know the joint distribution p(X,Y ), the objective is to
learn a representation T that maximizes its predictive power
to Y subject to some constraints on the amount of information
that it carries about X:

LIB = I(Y ;T )− βI(X;T ), (27)

where I(·; ·) denotes the mutual information. β is a Lagrange
multiplier that controls the trade-off between the sufficiency
(the performance on the task, as quantified by I(Y ;T )) and
the minimality (the complexity of the representation, as mea-
sured by I(X;T )). In this sense, the IB principle also pro-
vides a natural approximation of minimal sufficient statistic.

The IB principle has both practical and theoretical impacts
to DNNs. Practically, it can be formulated as a learning ob-
jective (or loss function) for deep models. When parameter-
izing IB with a DNN, X denotes input variable, Y denotes
the desired output (e.g., class labels), T refers to the latent
representation of one hidden layer. Usually, this was done
by optimizing the IB Lagrangian (i.e., Eq. (27)) via a classic
cross-entropy loss (which amounts to max I(Y ;T ) [Achille
and Soatto, 2018; Amjad and Geiger, 2019]) regularized by
a differentiable mutual information term I(X;T ). Depends
on implementation details, I(X;T ) can be measured by vari-
ational approximation [Alemi et al., 2017; Kolchinsky et al.,
2019], MINE [Elad et al., 2019] and the matrix-based en-
tropy functional [Yu et al., 2021b]. According to [Kolchinsky
et al., 2019], the IB curve in classification scenario is piece-
wise linear and becomes a flat line at I(Y ;T ) = H(Y ) for
I(X;T ) ≥ H(Y ). We obtain both theoretical and empiri-
cal IB curve by training a three layer MLP with 256 units in
the bottleneck layer on MNIST dataset, as shown in Fig. 2(a).
Empirically, the IB objective was observed to improve model
generation performance and robustness to adversarial attack.

Theoretically, it was argued that, even though the IB ob-
jective is not explicitly optimized, DNNs trained with cross-
entropy loss and stochastic gradient descent (SGD) inherently
solve the IB compression-prediction trade-off [Tishby and
Zaslavsky, 2015; Shwartz-Ziv and Tishby, 2017]. The authors
also posed the information plane (IP), i.e., the trajectory in
R2 of the mutual information pair {I(X;T ), I(Y ;T )} across

(a)

(b)

Figure 2: (a) Theoretical (the dashed light grey line) and empirical
IB curve (of 4 different deep IB models) found by maximizing the IB
Lagrangian with different values of β; different β leads to different
trade-offs between compression and prediction; (b) A representative
information plane for one DNN layer, different colors denote dif-
ferent training epochs. Two phases are visible: a short-term fitting
phase in which both I(X;T ) and I(Y ;T ) increase, a subsequent
long-term compression phase manifested by decrease of I(X;T ).

training epochs, as a lens to analyze dynamics of learning of
DNNs (see Fig. 2(b)). According to [Shwartz-Ziv and Tishby,
2017], there are two training phases in the common SGD opti-
mization: an early “fitting” phase, in which both I(X;T ) and
I(T ;Y ) increase rapidly, and a later “compression” phase, in
which there is a reversal such that I(X;T ) continually de-
creases. This work attracted significant attention, culminat-
ing in many follow-up works that tested the proclaimed nar-
rative and its accompanying empirical observations. So far,
the “fitting-and-compression” phenomena of the layered rep-
resentation T have been observed in other types of DNNs, in-
cluding the multilayer perceptrons (e.g., [Chelombiev et al.,
2019; Shwartz-Ziv and Tishby, 2017]), the AEs (e.g., [Yu and
Principe, 2019]), and the CNNs (e.g., [Noshad et al., 2019;
Yu et al., 2020c]). However, the IB theory is still a controver-
sial issue, and different MI estimators may lead to different
behaviors of curves in IP. We have to remember that not all
the properties of the statistical definition of mutual informa-
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tion are transferred to the estimators [Yu and Principe, 2019].
We recommend interested readers to [Goldfeld and Polyan-
skiy, 2020; Zaidi et al., 2020] for comprehensive surveys on
IB approach for deep learning.

3.4 Other Principles and Applications
There are other popular information-theoretic principles that
have demonstrated great potential in their respective appli-
cation fields. For example, in reinforcement learning, the
maximum entropy regularization encourages exploration and
avoids getting stuck in a local optima [Haarnoja et al., 2017;
Ahmed et al., 2019]; the Stratonovich’s value of informa-
tion criterion [Stratonovich, 1965] can help agent to strike
a balance between exploration and exploitation [Sledge and
Prı́ncipe, 2017]. Here, we additionally introduce two other
learning principles that are relevant to InfoMax and IB.

CorEx and Representation Learning
The Cor-relation Ex-planation (CorEx) [Steeg and Galstyan,
2014] is an information-theoretic principle for learning rep-
resentations that are maximally informative about the data.
Specifically, let x = (x1;x2; · · · ;xd) be a d-dimensional
random variable with PDF p(x), a measure of total depen-
dence amongst each dimension of x is defined as (which is
also known as total correlation [Watanabe, 1960]):

TC(x) =
d∑
i=1

H(xi)−H(x) (28)

Let z be the latent variable we want to infer from x.
The total dependence of x, after conditioning on z, becomes
TC(x|z) =

∑d
i=1H(xi|z) − H(x|z). A measure of infor-

mativeness of z about the dependence among the observed
variables x can then be quantified as how total correlation is
reduced after conditioning on z, i.e.,

TC(x; z) ≡ TC(x)− TC(x|z) =
d∑
i=1

I(xi; z)− I(x; z)

(29)
TC(x; z) corresponds to the amount of dependence (in x)

that is explained by z. Obviously, TC(x; z) is maximized
(or TC(x|z) is zero) iff the conditional distribution p(x|z)
factorizes, in which case we can interpret z as capturing the
information about common causes across all xi. The CorEx
principle is thus formulated as [Steeg and Galstyan, 2014]:

max
p(z|x)

TC(x; z). (30)

Recently, [Gao et al., 2019] constructed a variational lower
bound of CorEx and optimized the bound with DNNs. Inter-
estingly, the resulting objective (under mild assumptions) is
the same to the evidence lower bound (ELBO) in variational
autoencoder (VAE) [Kingma and Welling, 2014].

Principle of Relevant Information
The fixed point update underlying the IB can de extended to a
single random variableX , as demonstrated in the Principle of
Relevant Information (PRI) [Principe, 2010, Chapter 8]. PRI
is an unsupervised principle that aims to perform mode de-
composition of a random variable X with a known and fixed
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Figure 3: Illustration of the structures revealed by the PRI for (a)
3-dimensional isotropic Gaussian. As β increases, the solution iden-
tifies (b) principal curves and (c) principal surfaces.

probability distribution g. Suppose we aim to obtain (from
X) a reduced statistical representation characterized by an-
other random variable Z with probability distribution f .

The PRI casts this problem as a trade-off between the en-
tropy H(f) of Z and its descriptive power about X in terms
of their divergence D(f‖g):

J(f) = arg min
f

H(f) + βD(f‖g), (31)

where β is a hyper-parameter controlling the amount of rele-
vant information that Z can extract from X . The minimiza-
tion of entropy can be viewed as a means of reducing uncer-
tainty (or redundancy) and finding the statistical regularities
in the outcomes, whereas the minimization of information di-
vergence ensures that such regularities are closely related to
X . The PRI is similar in spirit to the IB approach, but the
formulation is different because PRI does not require a rele-
vant auxiliary variable Y and the optimization is done directly
on the random variable X (rather than the joint distribution
p(X,Y ) as in the IB).

The choice of entropy and divergence estimators is
application-specific and depends on the simplicity of opti-
mization. An interesting scenario arises when we use the
Rényi’s 2-order entropy (i.e., Eq. (10)) and the CS divergence
(i.e., Eq. (11)), in which Eq. (31) has an elegant expression
and provides multiscale representations of X controlled by
increasing β, yielding clustering, principal curves (Fig. 3(b))
or surfaces (Fig. 3(c)), vector quantization and X itself in
the limiting case (β → ∞). Recent applications of PRI in-
clude the extraction of spectral-spatial features for hyperspec-
tral image classification [Wei et al., 2019] and the undersam-
pling for imbalanced data classification [Hoyos-Osorio et al.,
2021]. The authors feel that PRI provides a solid mathemati-
cal foundation for data reduction using information theory.

4 Applications and Emerging Opportunities
of Information Theory in DNNs

Information-theoretic measures (such as f -divergence,
MMD, mutual information and HSIC) and principles (such
as minimizing variational representations of f -divergence
and maximizing an “evidence lower bound”) have been ex-
tensively investigated to the design and the understanding
of mainstream generative models [Goodfellow et al., 2014;
Kingma and Welling, 2014], with fruitful applications in both
computer vision and natural language processing. Here, we
additionally introduce two other emerging opportunities.
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4.1 Understanding Deep Neural Networks
Information Theory is always a promising way to analyze and
understand DNN behaviors in either training phase or deci-
sion process. Apart from the aforementioned IB theory that
is still under debate (see Section 3.3), information-theoretic
methods can also be used to understand the generalization
capacity and construct generalization bound for DNNs. Ex-
amples in this category include [Xu and Raginsky, 2017;
Bu et al., 2020; Steinke and Zakynthinou, 2020]. On the
other hand, information-theoretic measures can also quantify
the importance (or redundancy) of individual neurons [Liu et
al., 2018] or filters [Yu et al., 2020c], which in turn is benefi-
cial to problems like pruning and generalization.

4.2 Learning with Multiple Tasks
A closely related topic to generalization is the joint learning
of multiple tasks. Relevant problems include the multi-task
learning (MTL) that aims to learn all tasks simultaneously
and more proficiently than learning them independently; the
meta-learning that aims to learn efficient learning model that
can learn new tasks quickly; and the continual learning (CL),
where the problem requires learning a sequence of tasks,
avoiding negative transfer or catastrophic forgetting.

For all these three problems, information-theoretic tools
have demonstrated great potential to strengthen theoretical
discoveries and practical performance. For example, in CL,
the elastic weight consolidation (EWC) [Kirkpatrick et al.,
2017] introduces penalty constructed by Fisher information to
force important parameters of the network to remain close to
the parameters of the network trained for the previous tasks.
In MTL, [Yu et al., 2020b] uses the Bregman-Correntropy
(conditional) divergence to quantify the closeness of two
tasks and penalize large model discrepancy for related tasks.
In meta-learning, [Yin et al., 2019] proposes an information-
theoretic meta-regularizer to mitigate the memorization prob-
lem. In general, information theory is beneficial to construct
generalization bound for these problems (e.g., the H∆H di-
vergence for both classification [Ben-David et al., 2010] and
regression [Cortes and Mohri, 2014]). These bounds can
then be used to design different training or optimization al-
gorithms. On the other hand, information theory also offers a
new insight to analyze the fundamental trade-offs of existing
algorithms [Vera et al., 2018].

5 Topics of Future Interests & Conclusions
The intersection between information theory and deep neural
networks (DNNs) a challenging and promising area due to its
rapidly increasing prevalence in real-world applications. It
is challenging, because most of expressions are defined on
probability density functions (PDFs) that are hard to mea-
sure for real data. It is also promising, due to the remark-
able performance gain and rigorous mathematical foundation.
In this paper, we provided a survey of common information-
theoretic estimators, learning principles and regularizations in
DNNs, and recent developments of these estimators or prin-
ciples in practical deep learning applications.

While there is now a significant body of work, there are
still several open problems in applying information theory in

DNNs. Some of these open problems - certainly not an ex-
haustive list - include the following.

• Information-theoretic measures beyond global PDF: The
RKHS is a functional space that is very appropriate for
statistical inference [Parzen, 1962], statistical embed-
ding [Sriperumbudur et al., 2010], and statistical mod-
eling. Our current work is extending these methodolo-
gies to model local regions of the space of samples, i.e.
working beyond the PDF for higher specificity and sen-
sitivity. We have recently applied ideas from quantum
mechanics, the famous Schroedinger equation based on
the Laplacian of the wave function (here the estimator
of the PDF in RKHS) to estimate model and data un-
certaintity. Preliminary results show that estimators of
uncertainty derived from this approach supplant conven-
tional techniques [Singh and Principe, 2020]. This line
of research can lead to better methods for transfer learn-
ing, and even causality.

• Information theory beyond i.i.d. data: Most of exist-
ing information-theoretic estimators are limited to i.i.d.
data, a property that many problems do not meet (e.g.,
blind source separation on audio data and change detec-
tion on stream data). Therefore, it is crucial to extend
information-theoretic measures to deal with structured
and interdependent observations, including graphs [Han
et al., 2015; Wu et al., 2020].

• Fruitful and unorthodox AI applications: It is not hard
to foresee more successful applications of information-
theoretic concepts on emerging AI topics. Taking
the Explainable AI (XAI) as an example, informa-
tion theory can help identify informative features to
explain given example [Chen et al., 2018] or gener-
ate interpretable representation to explain a black-box
model [O’Shaughnessy et al., 2020; Bang et al., 2019].
Meanwhile, there is no doubt that information theory
will contribute causal inference and offering fresh in-
sights to its relevant modern deep learning topics include
generalization and robustness [Schölkopf et al., 2021].
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