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Abstract

Topic modelling has been a successful technique
for text analysis for almost twenty years. When
topic modelling met deep neural networks, there
emerged a new and increasingly popular research
area, neural topic models, with nearly a hundred
models developed and a wide range of applica-
tions in neural language understanding such as text
generation, summarisation and language models.
There is a need to summarise research develop-
ments and discuss open problems and future direc-
tions. In this paper, we provide a focused yet com-
prehensive overview of neural topic models for in-
terested researchers in the AI community, so as to
facilitate them to navigate and innovate in this fast-
growing research area. To the best of our knowl-
edge, ours is the first review on this specific topic.

1 Introduction
A powerful technique for text analysis, topic modelling has
enjoyed success in various applications in machine learning,
natural language processing (NLP), and data mining for al-
most two decades. A topic model is applied to a collection of
documents and aims to discover a set of latent topics, each of
which describes an interpretable semantic concept. Bayesian
probabilistic topic models (BPTMs) have been the most pop-
ular and successful series of models, with latent Dirichlet al-
location (LDA) as representative. A BPTM usually speci-
fies a probabilistic generative model that generates the data
of a document with a structure of latent variables sampled
from pre-specified distributions connected by Bayes’ theo-
rem. Topics are captured by these latent variables. Like
other Bayesian models, the learning of a BPTM is done by a
(Bayesian) inference process (e.g. variational inference (VI)
or Monte Carlo Markov chain sampling).

Despite their success, conventional BPTMs started to show
signs of fatigue in the era of big data and deep learning: 1)
Given a specific BPTM, its inference process usually needs
to be customised accordingly and the inference complexity
may grow significantly as the model complexity grows. Un-
fortunately, it is also hard to automate the design of the infer-
ence processes. 2) The inference processes for conventional

BPTMs can be hard to scale efficiently on large text collec-
tions or to leverage parallel computing facilities like GPUs.
3) It is usually inconvenient to integrate BPTMs with other
deep neural networks (DNNs) for joint training.

With the recent developments in DNNs and deep genera-
tive models, there has been an emerging research direction
that aims to leverage DNNs to boost performance, efficiency,
and usability of topic modelling, named neural topic mod-
els (NTMs). With appealing flexibility and scalability, NTMs
have gained a huge research following, with more than a hun-
dred models and variants developed to date. Moreover, NTMs
have been used in important NLP tasks including text gen-
eration, document summarisation, and translation, areas to
which conventional topic models are harder to apply. There-
fore, it is important to properly summarise research develop-
ments, categorise existing approaches, identify remaining is-
sues, and discuss open problems and future directions. To the
best of our knowledge, a comprehensive review specifically
focusing on NTMs has not been published. In this paper, we
would like to fill this gap by providing an overview for inter-
ested researchers who want to develop new NTMs and/or to
apply NTMs in their domains. The notable contributions of
our paper can be summarised as follows: 1) We propose a tax-
onomy of NTMs where we categorise existing models based
on their backbone framework. 2) We provide an informative
discussion and overview of the background and evaluation
methods for NTMs and conduct a focused yet comprehen-
sive review, offering detailed comparisons of the variants of
NTMs. 3) We identify the limitations of existing methods and
analyse possible future research directions for NTMs.

The rest of this paper is organised as follows. Section 2
introduces the background, definitions, and evaluations. Sec-
tion 3 and 4 review NTMs with various backbone frame-
works. The current challenges and future directions are dis-
cussed in Section 5.

2 Background, Definition, and Evaluation
2.1 Background and Definition
The most important idea of a topic model is modelling of
three key entities: document, word, and topic.

Notations of Data. A topic model works on a corpus (i.e.,
a collection of documents), where a document, by its nature,
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can be represented as a sequence of words, which can be de-
noted by a vector of natural numbers, s ∈ NL, where L is
the length of the document and sj ∈ {1, · · · , V } is the in-
dex in the vocabulary (with the size of V ) of the token for
the jth (j ∈ {1, · · · , L}) word. A more common represen-
tation in topic modelling is the bag-of-words model, which
represents a document by a vector of word counts, b ∈ ZV≥0,
where bv indicates the occurrences of the vocabulary token
v ∈ {1, · · · , V } in the document. One can readily obtain b
for a document from its word sequence vector s.

Notations of Latent Variables. A central concept is a
topic, which is usually interpreted as a cluster of words, de-
scribing a specific semantic meaning. A topic is or can be
normalised into a distribution over the tokens in the vocab-
ulary, named word distribution, t ∈ ∆V , where ∆V is a V
dimensional simplex and tv indicates the weight or relevance
of token v under this topic. Usually, a document’s seman-
tic content is assumed to be captured or generated by one or
more topics shared across the corpus. Therefore, a document
is commonly associated with a distribution (or a vector that
can be normalised into a distribution) over K (K ≥ 1) top-
ics, named topic distribution, z ∈ ∆K , where zk indicates
the weight of the kth topic for this document. We further use
D, Z , and T to denote the corpus with all the document data,
the collections of topic distributions of all the documents, and
the collections of word distributions of all the topics, respec-
tively.

Notations of Architectures and Learning. With these no-
tations, the task for a topic model is to learn the latent vari-
ables of Z and parameters of T from the observed data D.
More formally, a topic model learns a projection parame-
terised by θ from a document’s data to its topic distribution:
z = θ(b) and a set of global variables for the word dis-
tributions of the topics: T . To learn these parameters, one
can generate or reconstruct a document’s BoW data from its
topic distribution, which is modelled by another projection
parameterised by φ: b̃ = φ(z, T ). Note that the majority of
topic models belong to the category of probabilistic genera-
tive models, where z and b are latent and observed random
variables assumed to be generated from certain distributions
respectively. The projection from the latent variables to the
observed ones is named the generative process, which we
further denote as: b̃ ∼ pbφ(z, T ) where z is sampled from
the prior distribution z ∼ pz . While the inverse projection is
named the inference process, denoted as z ∼ qzθ(b), where
qz is the posterior distribution of z. For NTMs, these proba-
bilities are typically parameterised by deep neural networks.

2.2 Evaluation
It is still challenging to comprehensively evaluate and com-
pare the performance of topic models including NTMs.
Based on the nature and applications of topic models, the
commonly-used metrics are as follows.

Predictive accuracy. It has been common to measure the
log-likelihood of a model on held-out test documents, i.e.,
the predictive accuracy. A more popular metric based on
log-likelihood is perplexity, which captures how surprised

a model is of new (test) data and is inversely proportional
to average log-likelihood per word. Although log-likelihood
or perplexity gives a straight numerical comparison between
models, there remain issues: 1) As topic models are not for
predicting unseen data but learning interpretable topics and
representations of seen data, predictive accuracy does not re-
flect the main use of topic models. 2) Predictive accuracy
does not capture topic quality. Predictive accuracy and human
judgement on topic quality are often not correlated [Chang
et al., 2009], and even sometimes slightly anti-correlated.
3) The estimation of the predictive probability is usually in-
tractable for Bayesian models and different papers may apply
different sampling or approximation techniques [Wallach et
al., 2009; Buntine, 2009]. For NTMs, the computation of
log-likelihood is even more inconsistent, making it harder to
compare the results across different papers.

Topic Coherence. Experiments show topic coherence (TC)
computed with the coherence between a topic’s most repre-
sentative words (e.g, top 10 words) is in line with human eval-
uation of topic interpretability [Lau et al., 2014]. As various
formulations have been proposed to compute TC, we refer
readers to [Röder et al., 2015] for more details. Most for-
mulations require to compute the general coherence between
two words, which are estimated based on word co-occurrence
counts in a reference corpus. Regarding TC, we have the fol-
lowing remarks: 1) The ranking of TC scores may vary un-
der different formulations. Therefore, it is encouraged to re-
port TC scores of different formulations or report the average
score. 2) The choice of the reference corpus can also affect
the TC scores, due to the change of lexical usage, i.e, the
shift of word distribution. For example, computing TC for
a machine learning paper collection with a tweet dataset as
reference may generate inaccurate results. Popular choices of
the reference corpus are the target corpus itself or an external
corpus such as a large dump of Wikipedia. 3) To exclude less
interpretable “background” topics, one can select the topics
(e.g., top 50%) with the highest TC or the largest proportions
and report the average score over those selected topics [Zhao
et al., 2018a] or to vary the proportion of the selected topics
(e.g, from 10% to 100%) and plot TC score at each propor-
tion [Zhao et al., 2021].

Topic Diversity. Topic diversity (TD), as its name implies,
measures how diverse the discovered topics are. It is prefer-
able that discovered topics describe different semantic topical
meanings. Specifically, [Dieng et al., 2020] defines topic di-
versity to be the percentage of unique words in the top 25
words.

Downstream Application Performance. The topic distri-
bution z of a document learned by a topic model can be
viewed as the semantic representation of the document, which
can be used in document classification, clustering, retrieval,
visualisation, and elsewhere. For document classification,
one can train a classification model with the topic distribu-
tions learned by a topic model as features and report the
classification performance to compare different topic mod-
els. Document clustering can be conducted by two strate-
gies: 1) Similar to classification, one can perform a clustering
model (e.g. K-means with different numbers of clusters) on
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the topic distributions, such as in [Zhao et al., 2021]; 2) Al-
ternatively, topics can actually be viewed as clusters of doc-
uments. Thus, one can use the most significant topic of a
document (i.e., the topic with the largest weight in the topic
distribution) as the cluster assignment, such as in [Nguyen et
al., 2015]. For document retrieval, we can use the distance of
the topic distributions of two documents as their semantic dis-
tance and report retrieval accuracy as a metric of topic mod-
elling [Larochelle and Lauly, 2012]. For qualitative analysis,
a straight-forward way is to plot the most significant words of
topics. Recently, [Doogan and Buntine, 2021] shows that it
can be more insightful to show and analyse the typical docu-
ments for a topic.

3 Neural Topic Models with Amortised
Variational Inference

The recent success of deep generative models such as vari-
ational autoencoders (VAEs) and amortised variational infer-
ence (AVI) has shed light on extending the generative process
and amortising the inference process of BPTMs, which is the
most popular framework for NTMs. We name this series of
models VAE-NTMs. The basic framework of a VAE follows
the description in Section 2.1, where b and z are the observed
and latent variables respectively and the generative and infer-
ence processes are modelled by the DNN-based decoder and
encoder respectively. Following [Kingma and Welling, 2014;
Rezende et al., 2014], one can learn a VAE model by max-
imising the Evidence Lower BOund (ELBO) of the marginal
likelihood of the BoW data b in terms of θ, φ, and T :
Ez∼qz [log p(b | z)] − KL [qz ‖ pz] , where the RHS term is
the Kullback-Leiber (KL) divergence. To compute/estimate
gradients, tricks like reparameterisations are usually used
to back-propagate gradients through the expectation in the
LHS term and approximations are applied when the analyt-
ical form of the KL divergence is unavailable.

To adapt the VAE framework for topic modelling, there are
two key questions to be answered: 1) Different from other
applications, the input data of topic modelling has its unique
properties, i.e., b is a high-dimensional, sparse, count-valued
vector and s is a variable-length sequential data. How to deal
with such data is the first question for designing a VAE topic
model. 2) Interpretability of topics is extremely important
in topic modelling. When it comes to a VAE model, how
to explicitly or implicitly incorporate the word distributions
of topics (i.e., T ) to interpret the latent representations or
each dimension remains another question. [Miao et al., 2016]
proposes the first answers to the above questions, where the
decoder is developed by specifying the data distribution pb
as: pb := Multi

(
softmax

(
TTz + c

))
. Here z ∈ RK mod-

els the topic distribution of a document, T ∈ RK×V mod-
els the words distributions of the topics, and c ∈ RV is the
bias. That is to say, φ := {c}1 and T := {T}. For the en-
coder which takes b as input and outputs (the samples of) z,
the paper follows the original VAE: pz := N (0, diagK(1));
qz := N (µ, diagK(σ2)), where π = θ0(b), µ = θ1(π), and

1With a slight abuse of notation, we use θ and φ to denote the
projections or the parameters of the projections.

logσ = θ2(π). Here, θ := {θ0, θ1, θ2}, all of which are
multi-layer perceptrons (MLPs). To better address the above
questions, various configurations of the prior distribution pz ,
data distribution pb, posterior distribution qz , as well as dif-
ferent architectures of the decoder φ, encoder θ, word distri-
butions of the topics T , have been proposed for VAE-NTMs.

3.1 Variants of Distributions
Given the knowledge and experience of BPTMs, z’s prior
plays an important role in the quality of topics and document
representations in topic models. Thus, various constructions
of the prior distributions and their corresponding posterior
distributions have been proposed for VAE-NTMs, aiming to
be better alternatives to the normal distributions used in the
original models.

Variants of Prior Distributions for z. Note that the appli-
cation of Dirichlet is one of the key successes of LDA for
encouraging topic smoothness and sparsity. For VAE-NTMs,
one can apply: pz := Dir(α0) and qz := Dir(θ(b)). How-
ever, it is difficult to develop an effective reparameterisation
function (RF) for Dirichlet, making it hard to compute the
gradient of the expectation in ELBO. Therefore, various ap-
proximations have been proposed. For example, [Srivastava
and Sutton, 2017] uses the Laplace approximation, where
Dirichlet samples are approximated by these sampled from a
logistic normal distribution, whose mean and co-variance are
specifically configured. Recall that the Dirichlet distribution
can be simulated by normalising gamma variables. Although
the gamma distribution still does not have non-central differ-
entiable RF, it is easier to approximate. Several works have
been proposed in this line, such as using the Weibull distribu-
tion as the approximation of gamma in [Zhang et al., 2018],
approximating the cumulative distribution function of gamma
with an auxiliary uniform variable in [Joo et al., 2020], and
leveraging the proposal function of a rejection sampler of
the gamma distribution as the RF in [Burkhardt and Kramer,
2019]. Recently, [Tian et al., 2020] proposes to tackle this
challenge by using the so-called rounded RF, which approx-
imates Dirichlet samples by those drawn from the rounded
posterior distribution. Other than Dirichlet, [Miao et al.,
2017] introduces a Gaussian softmax (GSM) function in the
encoder: qz := softmax

(
N (µ, diagK(σ2))

)
and [Silveira et

al., 2018] proposes to use a logistic-normal mixture distribu-
tion for the prior of z. To further enhance the sparsity in z,
[Lin et al., 2019] introduces to use the sparsemax function to
replace the softmax in GSM.

Nonparametric Prior for z. Bayesian Nonparametrics
such as the Dirichlet processes, Indian Buffet Processes, and
gamma processes have been successfully applied in Bayesian
topic modelling, enabling to automatically infer the prior pro-
portion and number of topics (i.e., K), e.g., in [Teh et al.,
2006; Williamson et al., 2010; Buntine and Mishra, 2014;
Zhou et al., 2016; Zhao et al., 2018b]. As a flexible con-
struction of Dirichlet processes, the stick-breaking process
(SBP) is able to generate probability vectors with infinite di-
mensions, which has been used to the prior of z in VAE-
NTMs. Given z ∼ SBP(α0), we have z1 = v1 and zk =
vk
∏
j<k(1 − vj) for k > 1, where vk ∼ Beta(1, α0). This
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procedure can be viewed as iteratively breaking a length-one
stick into multiple ones and the kth iteration breaks the stick
at the point of vk. Although not for NTMs, [Nalisnick and
Smyth, 2017] uses SBP to generate z for VAEs, where its
VI is done by various approximations to the beta distribu-
tion of vk with truncation. [Ning et al., 2020] adapts this
SBP construction for VAE-NTMs and also proposes to im-
pose an SBP on the corpus level, which serves as the prior for
the document-level SBP, forming into a hierarchical model.
In [Miao et al., 2017], the break points vk are generated from
a posterior modelled by a recurrent neural network (RNN)
with normal noises as input, making the model able to au-
tomatically infer K in a truncation-free manner. Recently,
[Wu et al., 2020a] uses the (truncated) gamma negative bi-
nomial process to generate discrete vectors for z (i.e. each
entry of z is equivalently generated by an independent Pois-
son distribution), which gives the model certain ability to be
nonparametric.

Variants of Data Distribution pb. In addition to manipu-
lating distributions on z, [Zhao et al., 2020] proposes to re-
place the multinomial data distribution used in other NTMs
with the negative-binomial distribution to capture overdisper-
sion, making the model more robust: b ∼ NB(φ0(z), φ1(z)),
where two separate decoders φ0 and φ1 are proposed to gen-
erate the two parameters of the negative-binomial distribution
from z.

Variants of Word Distributions T . Conventionally, the
collection of the word distributions of the topics T is aK×V
matrix, i.e., T ∈ RK×V with KV free parameters. In
BPTMs, it has been popular to factorise the matrix into a
product of topic and word embeddings, meaning that the rele-
vance between a topic and a word is captured by their distance
in the embedding space [Zhao et al., 2017a]. This construc-
tion has been studied in NTMs, e.g., in [Jung and Choi, 2017;
Dieng et al., 2020; Ding et al., 2018].

3.2 Correlated and Structured Topics
Topics discovered by conventional topic models like LDA are
usually independent. An important research direction is to
explicitly capture topic correlations (e.g. pairwise relations
between topics) or structures (e.g. tree structures of top-
ics), which has been studied in NTMs as well. Following
the framework of VAE with Householder flow that enables
to draw z from the normal posterior with a non-diagonal co-
variance matrix, [Liu et al., 2019] develops a more efficient
centralised transformation flow for NTMs, which is able to
discover pairwise topic correlations by the covariance matrix.
In terms of discovering tree-structured topics, [Isonuma et al.,
2020] introduces to generate a series of topics from the root
to the leaf of a topic tree with a doubly-recurrent neural net-
work [Alvarez-Melis and Jaakkola, 2017]. When applied in
topic modelling, the gamma belief network (GBN) [Zhou et
al., 2016] can be viewed as a Bayesian model that also discov-
ers three-structured topics, whose inference is done by Gibbs
sampling. [Zhang et al., 2018] introduces the NTM counter-
part of GBN, which leverages AVI as the inference process
and significantly improves the test time of GBN. [Esmaeili et
al., 2019] proposes an structured VAE-NTM that discovers

topics with respect to different aspects, specialising in mod-
elling user reviews.

3.3 NTMs with Meta-data
Conventionally, topic models learn from documents in an un-
supervised way. However, documents are usually associated
with rich sets of meta-data on both document and word levels,
such as document labels, authorship, and pre-trained word
embeddings, which can be used to improve topic quality or
document representation quality [Zhao et al., 2017b] for su-
pervised tasks (e.g., accuracy of predicting document meta-
data). [Card et al., 2018] proposes a VAE-NTM that is able to
incorporate various kinds of meta-data, where the BoW data
b of a document and its labels (e.g., sentiment) are generated
with a joint process conditioned on the document’s covariates
(e.g., publication year) in the decoder and the encoder gener-
ates z by conditioning on all types of data of the document:
BoW, covariates, and labels. Instead of specifying the gen-
erative model as a directed network as in most of topic mod-
els, [Korshunova et al., 2019] introduces the logistic LDA
model whose generative process can be viewed as an undi-
rected graph. In addition to the BoW data, a document’s la-
bel is also an observed variable in the graph. Following a few
assumptions of factorisation in the generative process, the pa-
per manually specifies the complete conditional distributions
in the graph with the interactions between the latent variables
captured by neural networks. The inference is done by the
mean-field VI and z in the model is further trained to be more
discriminative for the classification of labels. Given a set of
documents with labels, [Wang and Yang, 2020] uses a VAE-
NTM to model a document’s BoW data and an RNN classifier
to predict a document’s label based on its sequential data in
a joint training process. The paper combines the two mod-
els by introducing an attention mechanism in the RNN which
takes documents’ topics into account. [Bai et al., 2018] pro-
poses to incorporate relational graphs (e.g. citation graph) of
documents into NTMs, where the topic distributions of two
document are fed into a neural network to predict whether
they should be connected.

3.4 NTMs for Short Texts
Texts generated on the internet (e.g., tweets, news headlines
and product reviews) can be short, meaning that each indi-
vidual document contains insufficient word co-occurrence in-
formation. This results in degraded performance for both
BPTMs and NTMs. To tackle this issue, one can limit a
model’s capacity and to enhance the contextual information
of short texts. [Zeng et al., 2018] proposes a combination
of an NTM and a memory network for short text classifica-
tion in a similar spirit to [Wang and Yang, 2020]. The main
difference is the memory network instead of RNN is respon-
sible for classification, which is informed by the topic distri-
butions learned by the NTM. To enhance the contextual in-
formation of short documents, [Zhu et al., 2018] proposes
an NTM whose encoder is a graph neural network (GNN)
taking the biterms graph of the words in sampled documents
as inputs and outputting the topic distribution for the whole
corpus. The model also learns a decoder that reconstructs
the input biterms graph. Despite the novel idea, the model
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might not be able to generate the topic distribution of an in-
dividual document. To limit a short document to focus on
several salient topics, [Lin et al., 2020] introduces to use the
Archimedean copulas to regularise the discreteness of topic
distributions for short texts. [Wu et al., 2020b] introduces an
NTM with vector quantisation over z, i.e., a document’s topic
distribution can only be one vector in the learned dictionary
in the vector quantisation process. In addition to maximis-
ing the likelihood of the input documents, the paper intro-
duces to minimise the likelihood of the negatively-sampled
“fake documents”. Although not directly addressing the short
text problem for topic modelling, [He et al., 2018] introduces
NTMs for modelling microblog conversations, by leveraging
their unique meta data and structures.

3.5 Sequential NTMs
The flexibility of VAE-NTMs enables to leverage various
neural network architectures for the encoder and decoder.
With the help of sequential networks like RNNs, unlike other
NTMs working with BoW data (i.e., b), sequential NTMs
(SNTMs) usually take sequences of words of documents (i.e.,
s) and are able to capture the orders of words, sentences, and
topics. [Nallapati et al., 2017] proposes an SNTM working
with s, which samples a topic for each sentence of an in-
put document according to z and then generates the word
sequence of the sentence with an RNN conditioned on the
sentence’s topic. Note that z is attached to a document and
shared across all its sentences. In [Zaheer et al., 2017], given
s, a word’s topic is conditioned on its previous word’s and
this order dependency is captured by a long short-term mem-
ory (LSTM) model. At the similar period of time, [Dieng et
al., 2017] independently proposes an SNTM whose genera-
tive process is similar to [Zaheer et al., 2017], with an addi-
tional variable modelling stop words and several variants in
the inference process. Recently, [Panwar et al., 2020] pro-
poses to use an LSTM with attentions as the encoder taking s
as input, where the attention incorporates topical information
with a context vector that is constructed by topic embeddings
and document embeddings. [Rezaee and Ferraro, 2020] intro-
duces an SNTM that is related to [Dieng et al., 2017], where
instead of marginalising out the discrete topic assignments,
the paper proposes to generate them from an RNN model.
This helps to avoid using reparameterisation tricks in the vari-
ational inference.

3.6 NTMs with Pre-trained Language Models
Recently, pre-trained transformer-based language models
such as BERT are becoming ubiquitous in NLP. Pre-trained
on large corpora, such models usually have a fine-grained
ability to capture aspects of linguistic context, which can be
partially represented by contextual word embeddings. These
contextual word embeddings can provide richer context in-
formation than BoW or sequential data, which has been re-
cently used to assist the training of topic models. Instead
of using the BoW or sequential data of a document as the
input of the encoder, [Bianchi et al., 2020] proposes to
use the document embedding vector generated by Sentence-
BERT [Reimers and Gurevych, 2019] and to keep the remain-
ing part of an NTM the same as [Srivastava and Sutton, 2017].

[Thompson and Mimno, 2020] shows that the clusters ob-
tained by performing clustering algorithms (e.g., Kmeans) on
the contextual word embeddings generated by various pre-
trained models such as BERT and GPT-2 can be interpreted
as topics, similar to those discovered by LDA. Having sim-
ilar ideas with [Zeng et al., 2018; Wang and Yang, 2020],
[Chaudhary et al., 2020] proposes to combine an NTM with
a fine-tuned BERT model by concatenating the topic distri-
bution and the learned BERT embedding of a document as
the features for document classification. [Hoyle et al., 2020]
proposes an NTM learned by distilling knowledge from a
pre-trained BERT model. Specifically, given a document,
the BERT model generates the predicted probability for each
word then the paper introduces to average those probabilities
to generate a pseudo BoW vector for the document. An NTM
following [Card et al., 2018] is used to reconstruct both the
actual and pseudo BoW data.

4 NTMs based on Other Frameworks
Besides VAE-NTMs, there are other frameworks for NTMs
that also draw research attention.
NTMs based on Autoregressive Models. VAE-NTMs
gained popularity after VAEs were invented. Before that,
NTMs based on the autoregressive framework had been stud-
ied. Specifically, [Larochelle and Lauly, 2012] proposes an
autoregressive NTM, named DocNADE, similar to the spirit
of RNNs, where the predictive probability of a word in a
document is conditioned on its hidden state, which is fur-
ther conditioned on the previous words. A hidden unit can
be interpreted as a topic and a document’s hidden states cap-
ture its topic distribution. The learning is done by maximis-
ing the likelihood of the input documents. Recently, [Gupta
et al., 2019a] extends DocNADE by introducing a structure
similar to the bi-directional RNN, which allows to model
bi-directional dependencies between words. [Gupta et al.,
2019b] combines DocNADE with an LSTM for incorporating
external knowledge. [Gupta et al., 2020] extends DocNADE
into the life long learning settings.
NTMs based on Generative Adversarial Nets. Besides
VAEs, generative adversarial networks (GANs) are another
popular series of deep generative models. Recently, there
are a few attempts on adapting the GAN framework for topic
modelling. [Wang et al., 2019] proposes a GAN generator
that takes a random sample of the Dirichlet distribution as a
topic distribution z̃ and generates the word distributions of a
“fake” document conditioning on z̃. A discriminator is in-
troduced to distinguish between generated word distributions
and real word distributions obtained by normalising the TF-
IDF vectors of real documents. Although the proposed model
is able to discover interpretable topics, it cannot learn topic
distributions for documents. To address this issue, [Wang et
al., 2020] introduces an additional encoder that learns z for a
given document. Moreover, z is concatenated with the word
distribution of a document as a real datum and z̃ is concate-
nated with the generated word distribution as a fake datum.
The discriminator is designed to distinguish between the real
and fake ones. [Hu et al., 2020] further extends the above
model with a CycleGAN framework.
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NTMs based on Graph Neural Networks. Instead of
viewing a document as a sequence or bag of words, one can
consider the graph presentations of a corpus of documents.
This perspective enables leveraging a variety of GNNs to
discover latent topics. As discussed in Section 3.4, [Zhu et
al., 2018] views a collection of documents as a biterm word
graph. While [Yang et al., 2020; Zhou et al., 2020] model a
corpus by a bipartite graph with documents and words as two
separate parties and connected by the occurrences of words
in documents. For the former, it directly uses the word oc-
currences of documents as the weights of the connections be-
tween them and for the latter, it uses TF-IDF values instead.

Other NTMs. In addition to the above frameworks, other
kinds of NTMs have also been developed. An NTM is de-
veloped in [Cao et al., 2015] that takes n-gram embeddings
(obtained from word embeddings) and a document index as
input and then predicts whether an n-gram is in the docu-
ment. [Chen and Zaki, 2017] proposes an autoencoder model
for NTMs where the neurons in the hidden layer of the au-
toencoder compete with each other, focusing them to be spe-
cialised in recognising specific data patterns. [Peng et al.,
2018] proposes an NTM based on matrix factorisation. [Gui
et al., 2019] proposes a reinforcement learning framework
for NTMs, where the encoder and decoder of an NTM are
kept. In addition, an agent takes actions to select the topical-
coherent words from a document and uses the selected words
as the input document for the encoder. The reward to the
agent is the topic coherence of the reconstructed document
from the decoder. [Nan et al., 2019] adapts the framework
of Wasserstein auto-encoders (WAEs), which minimises the
Wasserstein distance between reconstructed documents from
the decoder and real documents, similarly to VAE-NTMs.
Recently, topic models based optimal transport have been de-
veloped, such as in [Huynh et al., 2020]. [Zhao et al., 2021]
introduces an NTM based on optimal transport, which min-
imises the optimal transport distance between the topic distri-
bution learned by an encoder and the word distribution of a
document.

5 Discussion
This paper is the first survey paper focusing on the specific
area of neural topic models, which is the most popular re-
search trend of topic modelling in the deep learning era.
Due to the appealing flexibility, effectiveness, and efficiency,
NTMs show a promising potential in a range of applications.

After providing an overview of existing approaches of
NTMs, we in this section would like to discuss the follow-
ing challenges and opportunities for NTMs.

Better evaluation. As stated in Section 2.2, evaluation of
topic models is challenging. This is mainly because there
has not been a unified system of evaluation metrics, and in-
deed some metrics are not always appropriate, making the
comparisons across different NTMs harder due to the vari-
ety of frameworks, architectures and datasets. For example,
VAE-NTMs calculate perplexity using the ELBO, attached to
the models with variational inference, which cannot be com-
pared with models without ELBO. Also for topic coherence

and downstream performance, the evaluation processes, met-
rics, settings usually vary in different papers. A topic model
should be evaluated with comprehensive metrics, including
those on topic quality, predictive accuracy, document repre-
sentation, and downstream applications. It could be tenden-
tious to only use one kind of metric (e.g., topic coherence),
which can reflect just one aspect of a model. Therefore, uni-
fied platforms and benchmarks for NTMs are needed.

Richer architectures and applications. Compared to
BPTMs, NTMs offer better flexibility for representing topic
distributions for documents and word distributions for topics.
Particularly, projecting documents, topics, and words into a
unified embedding space transforms the thinking of the rela-
tionships between the three. Given this flexibility, NTMs are
expected to get integrated with the most recent neural archi-
tectures and play a unique role in richer applications.

More external knowledge. With the development of topic
models including NTMs, people have not stopped seeking to
leverage external knowledge to help the learning, from doc-
ument meta-data to pre-trained word embeddings. Recently-
proposed pre-trained language models (e.g., BERT) provide
more advanced, finer-grained, and higher-level representa-
tions of semantic knowledge (e.g., contextual word embed-
dings over global embeddings), which can be leveraged in
NTMs to boost performance. Although the marriage between
NTMs and language models is still an emerging area, we ex-
pect to see more developments in this important direction.
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