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Abstract
Extensions of Dung’s Argumentation Framework
(AF) include the class of Recursive Bipolar AFs
(Rec-BAFs), i.e. AFs with recursive attacks and
supports. We show that a Rec-BAF ∆ can be trans-
lated into a logic program P∆ so that the extensions
of ∆ under different semantics coincide with sub-
sets of the partial stable models of P∆.

1 Introduction
Dung’s abstract Argumentation Framework (AF) [Dung,
1995] is a simple yet powerful formalism for modelling dis-
putes between two or more agents which has been extended in
many different ways, including the introduction of new kinds
of interactions between arguments and/or attacks. In partic-
ular, the class of Bipolar Argumentation Frameworks (BAFs)
is an interesting extension of AF which allows for modelling
the support between arguments [Nouioua and Risch, 2011;
Villata et al., 2012]. Different interpretations of the no-
tion of support have been proposed [Cayrol and Lagasquie-
Schiex, 2013; Cohen et al., 2014]. Deductive support [Vil-
lata et al., 2012] is intended to capture the following in-
tuition: if argument a supports argument b, then the ac-
ceptance of a implies the acceptance of b; thus, the non-
acceptance of b implies the non-acceptance of a. On the
other hand, necessary support [Nouioua and Risch, 2011;
Baroni et al., 2011] is interpreted in a dual way [Cayrol and
Lagasquie-Schiex, 2013]: if a supports b, then the acceptance
of a is necessary to get the acceptance of b; equivalently,
accepting b implies accepting a. An AFN (AF with Neces-
sities) is a BAF where supports are interpreted as necessi-
ties [Nouioua and Risch, 2011]; an AFD (AF with Deductive
supports) is a BAF where supports are interpreted as deduc-
tions [Villata et al., 2012]. Clearly, the way the support is
interpreted changes the set of extensions, i.e. the set of ac-
ceptable elements of an argumentation framework.

Further extensions of AF consider recursive AFs and re-
cursive BAFs where attacks/supports can be recursively at-
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p

o
β1

r α1
s

α3

α2

Figure 1: Rec-BAF of Example 1.

tacked/supported [Baroni et al., 2011; Cayrol et al., 2017;
Gottifredi et al., 2018; Cayrol et al., 2018].

Following Dung’s approach, the meaning of recursive AF-
based frameworks is still given by relying on the concept of
extension. However, the extensions of an AF with Recur-
sive Attacks (AFRA) [Baroni et al., 2011] and of an Attack-
Support Argumentation Framework (ASAF) [Cohen et al.,
2015; Gottifredi et al., 2018] also include the (names of) at-
tacks and supports that intuitively contribute to determine the
set of accepted arguments. Particularly, the acceptability of
an attack is related to the acceptability of its source argument:
an attack in AFRA is defeated even when its source argument
is defeated. This is not the case for Recursive AF (RAF) [Cay-
rol et al., 2017] and Recursive AF with Necessities (RAFN)
frameworks [Cayrol et al., 2018], which offer a different se-
mantics for recursive AFs and recursive BAFs with necessary
supports, respectively. From a syntax standpoint all the ar-
gumentation frameworks mentioned above can be viewed as
(possibly restricted forms of) Recursive Bipolar Argumenta-
tion Frameworks (Rec-BAFs), though semantically different
because having different interpretations of the supports and
different ways of determining the status of attacks.

Example 1 Consider a situation where we want to decide
whether to play tennis on the basis of some information. As-
sume we have the following arguments: r (it is raining), p
(play tennis), o (the tennis court is outside), s (it is sunny),
and the implications: (α1) if it is raining, then we do not play
tennis, and (β1) if the tennis court is outside, then α1 should
hold. Notice that arguments r and s are mutually conflicting.
The scenario can be modelled using the Rec-BAF ∆ of Fig-
ure 1 where α1, as well as α2 and α3 modelling the mutual
conflicts between r and s, are attacks (denoted by→) and β1

is a support (denoted by⇒).

Recently there has been an increasing interest in study-
ing the relationships between argumentation frameworks and
logic programming (LP). In particular, the semantic equiva-
lence between (complete) extensions in AF and 3-valued sta-
ble models in LP was first established in [Wu et al., 2009]

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4735



and further studied in [Caminada et al., 2015]. Efficient
mappings from AF to Answer Set Programming (i.e. LP
with Stable Model semantics [Gelfond and Lifschitz, 1988])
have been investigated as well [Sakama and Rienstra, 2017;
Gaggl et al., 2015]. However, the relationships between LP
and more general frameworks extending AF such as Rec-
BAFs has not been adequately studied. Thus, in this paper,
by generalizing the work in [Caminada et al., 2015], we in-
troduce a general approach for characterizing the extensions
of different AF-based frameworks (e.g. AFRA, RAF, ASAF,
RAFN) under several well-known argumentation semantics
in terms of Partial Stable Models (PSMs) of logic programs.
This is achieved by providing a modular definition of the sets
of defeated and acceptable elements (i.e. arguments, attacks
and supports) for each AF-based framework, and by leverag-
ing on the connection between argumentation semantics and
subsets of PSMs. In particular, for any framework belonging
to the class of Rec-BAFs, our formulation of acceptable ele-
ments allows us to easily and systematically derive a propo-
sitional program whose PSMs corresponds to the extensions
(under a given semantics) of the given framework.

2 Preliminaries
We first recall Dung’s framework and then introduce the gen-
eral class of recursive bipolar argumentation frameworks. We
also briefly recall logic programs and partial stable semantics.

2.1 Argumentation Framework
An abstract Argumentation Framework (AF) is a pair 〈A,Ω〉,
where A is a set of arguments and Ω ⊆ A × A is a set of
attacks. An AF can be seen as a directed graph, whose nodes
represent arguments and edges represent attacks.

Different semantics notions have been defined leading to
the characterization of collectively acceptable sets of ar-
guments, called extensions [Dung, 1995]. Given an AF
∆ =〈A,Ω〉 and a set S ⊆ A of arguments, an argument
a ∈ A is said to be i) defeated w.r.t. S iff ∃b ∈ S such that
(b, a) ∈ Ω, and ii) acceptable w.r.t. S iff for every argument
b ∈ A with (b, a) ∈ Ω, there is c ∈ S such that (c, b) ∈ Ω.
The sets of defeated and acceptable arguments w.r.t. S are
defined as follows (where ∆ is understood):
•Def(S) = {a ∈ A | ∃ b ∈ S . (b, a) ∈ Ω};
•Acc(S) = {a ∈ A | ∀ b ∈ A . (b, a) ∈ Ω ⇒ b ∈ Def(S)}.

Given an AF 〈A,Ω〉, a set S ⊆ A of arguments is said to
be i) conflict-free iff S ∩Def(S) = ∅, and ii) admissible iff
it is conflict-free and S ⊆ Acc(S).

Given an AF 〈A,Ω〉, a set S ⊆ A is an extension called:
complete iff it is conflict-free and S = Acc(S); preferred
iff it is a ⊆-maximal complete extension; stable iff it is a
total preferred extension, i.e. a preferred extension such that
S ∪ Def(S) = A; semi-stable iff it is a preferred extension
such that S ∪ Def(S) is ⊆-maximal; grounded iff it is the
⊆-smallest complete extension; ideal iff it is the ⊆-biggest
complete extension contained in every preferred extension.

We use CO(∆) (resp., PR(∆), ST (∆), SST (∆),
GR(∆), ID(∆)) to denote the set of complete (resp., pre-
ferred, stable, semi-stable, grounded, ideal) extensions of a
framework ∆.

2.2 Recursive Bipolar AFs
A Recursive Bipolar Argumentation Framework (Rec-BAF)
is a tuple 〈A,Σ,Π, s, t〉, where A is a set of arguments, Σ is
a set of attack names, Π is a set of support names, s (resp.,
t) is a function from Σ ∪ Π to A (resp., to A ∪ Σ ∪ Π)
mapping each attack/support to its source (resp., target). In
the following, given a set Φ such that either Φ ⊆ Σ or Φ ⊆ Π,
we denote by i) Φ∗ = {(s(γ), t(γ)) | γ ∈ Φ} the set of pairs
connected by an attack/support edge, and ii) Φ+ the transitive
closure of Φ. It is assumed that Π∗ is acyclic.

Two different semantics have been defined under the nec-
essary interpretation of supports, as recalled in what follows.
Recursive AF with Necessities. The Recursive Argumen-
tation Framework with Necessities (RAFN) has been pro-
posed in [Cayrol et al., 2018]. The semantics combines the
RAF interpretation of attacks [Cayrol et al., 2017] with that
of BAF under the necessity interpretation of supports (i.e.
AFN) [Nouioua and Risch, 2011]. Here we consider a
simplified version where supports have a single source and
the support relation is acyclic. Formally, given an RAFN
〈A,Σ,Π, s, t〉, X ∈ (A∪Σ∪Π), a ∈ A, and S ⊆ A∪Σ∪Π,
we say that argument a recursively attacks X given S (de-
noted as a attS X) if either (a,X) ∈ (Σ∩S)∗ or there exists
b ∈ A such that (a, b) ∈ (Σ ∩ S)∗ and (b,X) ∈ (Π ∩ S)+.

For any RAFN ∆ and S ⊆ A ∪ Σ ∪ Π, the defeated and
acceptable sets (given S) are defined as follows:
•Def(S) = {X ∈ A ∪ Σ ∪Π | ∃b ∈ A ∩ S . b attS X};
•Acc(S)={X∈A∪Σ∪Π | ∀b∈A. b attSX⇒b∈Def(S)}.
Attack-Support AF. The Attack-Support Argumentation
Framework (ASAF) has been proposed in [Cohen et al., 2015;
Gottifredi et al., 2018]. The semantics combines the AFRA
interpretation of attacks [Baroni et al., 2011] with that of BAF
under the necessary interpretation of supports (i.e. AFN). For
the sake of presentation, we consider a slight generalization
of ASAF, where attack and support names are first-class cit-
izens, giving the possibility to represent multiple attacks and
supports from the same source to the same target.

Formally, given an ASAF 〈A,Σ,Π, s, t〉,X ∈ (A∪Σ∪Π),
α ∈ Σ, and S ⊆ A ∪ Σ ∪ Π, we say that i) α (directly or
indirectly) attacks X (denoted by α def X) if either t(α) =
X or t(α) = s(X), and ii) α extendedly defeats X given
S (denoted as α defS X) if either α def X or there exists
b ∈ A such that t(α) = b and either (b,X) ∈ (Π ∩ S)+ or
(b, s(X)) ∈ (Π∩S)+. For any ASAF ∆ and S ⊆ A∪Σ∪Π,
the defeated and acceptable sets (given S) are as follows:
•Def(S) = {X ∈ A ∪ Σ ∪Π | ∃ α ∈ Σ ∩ S . α defS X};
•Acc(S)={X∈A∪Σ∪Π|∀α∈Σ. α defSX⇒α∈Def(S)}.

The notions of conflict-free, admissible sets, and the differ-
ent types of extensions can be defined in a standard way (see
Section 2.1) by considering S ⊆ A ∪Σ ∪Π and by using the
definitions of defeated and acceptable sets reported above.
Example 2 For the framework ∆ of Example 1, under
RAFN semantics CO(∆) = {E1 = {o, s, p, α1, α2, α3,
β1}, E2 = {o, r, α1, α2, α3, β1}}. Differently, under ASAF
semantics CO(∆) = {E3 = {o, s, p, α3, β1}, E4 = {o, r,
α1, α2, β1}}. Note that α1 and α2 (resp., α3) do not belong
to E3 (resp. E4) since their source, r (resp., s), is defeated.
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AFs with high-order interactions can be mapped to AFs,
though the mapping is not trivial because extensions also
contain attacks and supports. In particular, an equivalent
AF for an ASAF can be obtained by translating it into an
AFN [Cohen et al., 2015] that in turns can be translated into
an AF [Nouioua and Risch, 2011; Gottifredi et al., 2018].

AF-based frameworks belonging to the class of Rec-BAFs.
It is important to observe that different frameworks extending
AF share the same structure, although they have different se-
mantics. Thus we distinguish between framework and class
of frameworks. Two frameworks sharing the same syntax (i.e.
the structure) belong to the same (syntactic) class. For in-
stance, BAF is a syntactic class, whereas AFN and AFD are
two frameworks sharing the BAF syntax; their semantics dif-
fer because they interpret supports in different ways. Recur-
sive AF (Rec-AF) is another syntactic class, where AFs are
extended by allowing recursive attacks: AFRA and RAF are
frameworks belonging to this class, which differ only in the
determination of attacks’ status. Finally, ASAF and RAFN
are two frameworks belonging to the general class Rec-BAF
presented in this section, consisting in the extension of BAF
with recursive attacks and supports.

Hereafter, we focus on necessary supports only, even if
the approach discussed in next section has been extended to
cope with deductive supports in two frameworks: Recursive
Argumentation Framework with Deductive supports (RAFD),
which extends RAF, and Argumentation Framework with Re-
cursive Attacks and Deductive supports (AFRAD), which ex-
tends AFRA. AFDs are special cases of these frameworks.
We refer the reader to [Alfano et al., 2020c] for details.

Thus, the class of Rec-BAF includes ASAF, RAFN,
AFRAD, and RAFD, and their specializations AF, AFRA,
RAF, AFN, and AFD. We use F to denote the set of these
9 frameworks.

2.3 Propositional Logic Programs

Given a set of symbols Λ = {a1, ..., an}, a (propositional)
program over Λ is a set of |Λ| rules ai ← bodyi (1 ≤ i ≤ n),
where every bodyi is a propositional formula defined over Λ.
The semantics of a propositional program P , defined over a
given alphabet Λ, is given in terms of the set PS(P ) of its
Partial Stable Models (PSMs) [Saccà and Zaniolo, 1990].

The set of PSMs of a logic program P , denoted by
PM(P ), define a meet semi-lattice. The well-founded
model (denoted by WF(P )) and the maximal-stable mod-
elsMS(P )1, are defined by considering ⊆-minimal and ⊆-
maximal elements. The set of (total) stable models (denoted
by SM(P )) is obtained by considering the maximal-stable
models which are total, whereas the least-undefined mod-
els (denoted by LM(P )) are obtained by considering the
maximal-stable models with a ⊆-minimal set of undefined
atoms (i.e. atoms which are neither true or false). The max-
deterministic model (denoted byMD(P )) is the ⊆-maximal
PSM contained in every maximal-stable model [Saccà, 1997;
Greco and Saccà, 1999].

1Corresponding to the preferred extensions of [Dung, 1991].

3 AF-based Frameworks and PSMs
We present a new way to define the semantics of AF-
based frameworks by considering propositional programs and
PSMs. To compare extensions E of a given framework ∆
(containing acceptable elements) with PSMs of a given pro-
gram P (containing true and false atoms), we denote by
Ê = E ∪ {¬a | a ∈ Def(E)} the completion of E. For
a collection of extensions E, Ê denotes the set {Ê | E ∈ E}.

A first relationship between AF-based frameworks (e.g.
BAF, Rec-BAF) and logic programs with PSMs is as follows.
Proposition 1 For any framework ∆ ∈ F and proposi-
tional program P , whenever ĈO(∆) = PS(P ) it holds
that P̂R(∆) = MS(P ), ŜT (∆) = ST (P ), ̂SST (∆) =

LM(P ), ĜR(∆) =WF(P ), and ÎD(∆) =MD(P ).
The result of Proposition 1 derives from the fact that pre-

ferred, stable, semi-stable, grounded, and ideal extensions are
defined by selecting a subset of the complete extensions sat-
isfying given criteria (see Section 2). On the other side, the
maximal, stable, least-undefined, well-founded, and max-
deterministic (partial) stable models are obtained by selecting
a subset of the PSMs satisfying criteria coinciding with those
used to restrict the set of complete extensions.

Given a framework ∆ and an extension E, for any element
a which could occur in some extension of ∆, the truth value
v
E

(a), or simply v(a) whenever E is understood, is equal to
true if a ∈ E, false if a ∈ Def(E), undec (undecided)
otherwise. Hereafter, we assume that false < undec <
true and ¬undec = undec.

The relationship between the semantics of AFs (given in
terms of subset of complete extensions) and the semantics of
logic programs (given in terms of subset of PSMs) has been
shown in [Wu et al., 2009; Caminada et al., 2015]. The rela-
tionship is based on the observation that the meaning of an at-
tack a→ b is that the condition v(b) ≤ ¬v(a) must hold. On
the other side, the satisfaction of a logical rule a← b1, ..., bn
implies that v(a) ≥ min{v(b1), ..., v(bn), true}.
Definition 1 Given AF ∆ = 〈A,Ω〉, P∆ = {a ←∧

(b,a)∈Ω ¬b | a ∈ A} is the program derived from ∆.

The semantics of an AF ∆ can be obtained by considering
PSMs of the logic program P∆. In fact, ĈO(∆) = PS(P∆).

In the rest of this section, we show how the semantics de-
fined for frameworks extending AF can be captured by means
of PSMs of logic programs. We propose a general method
that can be applied to all the discussed frameworks. Specifi-
cally, to model frameworks extending Dung’s framework by
logic programs under PSM semantics, we provide new defi-
nitions of defeated and acceptable sets that, for a given set S,
will be denoted by DEF(S) and ACC(S), respectively. These
definitions will be used to derive rules in P∆, the proposi-
tional program for ∆ ∈ F. For AFs we have that, for every
set S ⊆ A, DEF(S) = Def(S) and ACC(S) = Acc(S).

3.1 Recursive BAFs with Necessary Supports
We now study the relationship between PSMs and the seman-
tics of Rec-BAFs. We first present results for RAFN seman-
tics, and then we discuss results for the ASAF framework.
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RAFN. We next provide the definitions of defeated and ac-
ceptable sets for an RAFN.
Definition 2 For any RAFN 〈A,Σ,Π, s, t〉 and set S ⊆ A ∪
Σ ∪Π, we have that:

•DEF(S) = {X ∈ A ∪ Σ ∪Π |
(∃ α ∈ Σ ∩ S . s(α) ∈ S ∧ t(α) = X) ∨
(∃ β ∈ Π ∩ S . s (β) ∈ DEF(S) ∧ t(β) = X) };
•ACC(S)={X ∈ A ∪ Σ ∪Π |

(∀ α∈Σ . t(α)=X⇒(α∈DEF(S) ∨ s(α)∈DEF(S))) ∧
(∀ β∈Π . t(β)=X⇒(β ∈ DEF(S) ∨ s(β)∈ACC(S)))}.
Notice that DEF(S) and ACC(S) are defined recursively. If

S is a complete extension we obtain the following result.

Theorem 1 Given an RAFN ∆ and an extension S ∈
CO(∆), then Def(S) = DEF(S) and Acc(S) = ACC(S).

Theorem 1 states that in order to define the semantics for
an RAFN ∆ we can use acceptable sets S = ACC(S). This is
captured by the following definition, that shows how to derive
a propositional program from an RAFN from Definition 2.

Definition 3 Given an RAFN ∆ = 〈A,Σ,Π, s, t〉, then P∆

(the propositional program derived from ∆) contains, for
each X ∈ A ∪ Σ ∪Π, a rule

X ←
∧

α∈Σ∧t(α)=X

(¬α∨¬s(α))∧
∧

β∈Π∧t(β)=X

(¬β ∨ s(β)).

Intuitively, starting from the definition of ACC(S) in Defi-
nition 2, the rationale of the above definition is as follows. An
element X ∈ A ∪ Σ ∪ Π is true if (i) every attack α toward
X is false or originates from a source s(α) which is false,
and (ii) every support β towardX is false or originates from
a source s(β) which is true. These conditions resemble the
conditions (∀α ∈ Σ . t(α) = X ⇒ (α ∈ DEF(S) ∨ s(α) ∈
DEF(S))) and (∀β∈Π . t(β) = X⇒(β ∈ DEF(S) ∨ s(β) ∈
ACC(S))), respectively, of Definition 2 after interpreting ele-
ments in DEF(S) as false and elements in ACC(S) as true.

As stated below, the set of complete extensions of an
RAFN ∆ coincides with the set of PSMs of P∆.

Theorem 2 For any RAFN ∆, ĈO(∆) = PS(P∆).

Thus, using Proposition 1, also the others argumentation
semantics turns out to be characterized in terms of subsets of
PSMs. Notice that, previous results also apply to restricted
frameworks such as RAF, where Π = ∅, and AFN, where
t : Σ ∪Π→ A.
ASAF. We next provide definitions of defeated and accept-
able sets for an ASAF. They will be used in a way similar
to that described above to obtain a semantically-equivalent
propositional program for ASAFs.
Definition 4 Given an ASAF 〈A,Σ,Π, s, t〉 and a set S ⊆
A ∪ Σ ∪Π, we define:

•DEF(S) = {X ∈ A∪Σ∪Π |(X ∈ Σ ∧ s(X) ∈ DEF(S)) ∨
(∃α ∈ Σ ∩ S . t(α) = X) ∨
(∃β ∈ Π ∩ S . t(β) = X ∧ s(β) ∈ DEF(S))};
•ACC(S)={X∈A∪Σ∪Π |(X ∈ Σ⇒ s(X) ∈ACC(S))∧

(∀ α ∈ Σ . t(α)=X ⇒ α ∈ DEF(S)) ∧
(∀ β ∈ Π . t(β)=X⇒ (β∈DEF(S) ∨ s(β)∈ACC(S)))}.

Analogously to what has been done RAFNs, since it can be
shown that for any complete extension S of an ASAF ∆ it is
the case that Acc(S) = ACC(S), the program P∆ for ∆ can
be derived by looking at the definition ACC(S) of acceptable
elements. In this case, the three conjuncts in the acceptance
condition for an element X will correspond to three (group
of) conjuncts, respectively, in the rule for X of P∆. Specifi-
cally, the last two conjuncts in the definition of ACC(S) can
be mapped by reasoning similarly to the RAFN case, whereas
the first one entails a rule’s body conjunction stating that if X
is an attack then all of its sources must be true.
Definition 5 For any ASAF ∆ = 〈A,Σ,Π, s, t〉, P∆ (the
propositional program derived from ∆) contains, for each
X ∈ A ∪ Σ ∪Π, a rule of the form

X ← ϕ(X) ∧
∧

α∈Σ∧t(α)=X

¬α ∧
∧

β∈Π∧t(β)=X

(¬β ∨ s(β))

where: ϕ(X) = s(X) if X ∈ Σ; otherwise, ϕ(X) = true.
The set of complete extensions of an ASAF ∆ coincides

with the set of PSMs of P∆, meaning that using Proposition 1
also the others argumentation semantics turns out to be char-
acterized in terms of subsets of PSMs.

Theorem 3 For any ASAF ∆, ĈO(∆) = PS(P∆).
The above results also apply to restricted frameworks such

as AFRA, where Π = ∅, and AFN, where t : Σ ∪Π→ A.
Example 3 Consider ∆ of Example 1, whose complete ex-
tensions under RAFN and ASAF semantics are given in Ex-
ample 2. The program under the RAFN semantics is P∆ =
{(o←), (r← ¬α3∨¬s), (p← ¬α1∨¬r), (s← ¬α2∨¬r),
(α1 ← ¬β1 ∨ o), (α2 ←), (α3 ←), (β1 ←)}, whose set
of PSM is PS(P∆′) = {M1={o,¬r, s, p, α1, α2, α3, β1},
M2={o, r, ¬s,¬p, α1, α2, α3, β1}}. For ASAF semantics,
P∆ = {(o←), (r← ¬α3), (p← ¬α1), (s← ¬α2), (α1 ←
r∧ (¬β1 ∨ o)), (α2 ← r), (α3 ← s), (β1 ←)}, whose set of
PSMs is PS(P∆′) = {M3={o,¬r, s, p,¬α1,¬α2, α3, β1},
M4={o, r,¬s,¬p, α1, α2,¬α3, β1}}. Note that M1 (resp.,
M2) differs from M3 (resp., M4) in the status of α1 and α2

(resp., α3).

4 Conclutions and Future Work
We have proposed a general framework that can be used
i) for better understanding the semantics of several AF-
based frameworks, ii) to easily define new semantics for ex-
tended frameworks, and iii) to provide additional tools for
computing stable semantics using answer set solvers [Geb-
ser et al., 2018], as well as other complete-based seman-
tics using classical program rewriting [Janhunen et al., 2006;
Sakama and Rienstra, 2017; Gaggl et al., 2015].

Future work will be devoted to generalize our approach to
also deal with AF-based framework with probabilities [Fazz-
inga et al., 2015; Alfano et al., 2020a], weights [Bistarelli
et al., 2018], preferences [Amgoud and Vesic, 2011; Modgil,
2009], and constraints [Alfano et al., 2021b]. Finally, we plan
to investigate incremental techniques tailored at using our ap-
proach to compute extensions of dynamic AF-based frame-
works, where the sets of arguments and interactions change
over the time [Alfano et al., 2020b; Alfano et al., 2021a].
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