
Abstract Cores in Implicit Hitting Set MaxSat Solving
(Extended Abstract)

Jeremias Berg1 , Fahiem Bacchus2 , Alex Poole2
1University of Helsinki, HIIT, Department of Computer Science, Finland

2University of Toronto, Department of Computer Science, Canada
jeremias.berg@helsinki.fi, fbacchus@cs.toronto.edu

Abstract
Maximum satisfiability (MaxSat) solving is an ac-
tive area of research motivated by numerous suc-
cessful applications to solving NP-hard combinato-
rial optimization problems. One of the most suc-
cessful approaches for solving MaxSat instances
from real world domains are the so called implicit
hitting set (IHS) solvers. IHS solvers decouple
MaxSat solving into separate core-extraction (i.e.
reasoning) and optimization steps which are tack-
led by a Boolean satisfiability (SAT) and an inte-
ger linear programming (IP) solver, respectively.
While the approach shows state-of-the-art perfor-
mance on many industrial instances, it is known
that there exists instances on which IHS solvers
need to extract an exponential number of cores
before terminating. Motivated by the simplest of
these problematic instances, we propose abstract
cores, a compact representation for a potentially ex-
ponential number of regular cores. We demonstrate
how to incorporate abstract core reasoning into the
IHS algorithm and report on an empirical evalu-
ation demonstrating, that including abstract cores
into a state-of-the-art IHS solver improves its per-
formance enough to surpass the best performing
solvers of the 2019 MaxSat Evaluation.

1 Introduction
Maximum Satisfiability (MaxSat), the optimisation exten-
sion of the Boolean Satisfiability (SAT) problem, has in re-
cent years matured into a competitive and thriving constraint
optimisation paradigm with several successful applications
in a variety of domains [Bacchus et al., 2021]. Effective
MaxSat solvers enable solving instances of NP-hard optimi-
sation problems by encoding them into propositional formu-
las in conjunctive normal form (CNF) and then computing an
assignment to the variables in the formula that maximizes the
number (or weight) of satisfied constraints. Algorithmically
MaxSat is typically treated as the equivalent problem of min-
imizing the weight of unsatisfied constraints.

As witnessed by the annual MaxSAT evaluations [Bac-
chus et al., 2019a], the currently most successful complete
MaxSAT solvers rely heavily on the exceptionally effective

Boolean satisfiability (SAT) solvers. SAT solvers are usu-
ally used in order to iteratively extract either: (i) MaxSAT
solutions of improving quality [Koshimura et al., 2012], or
(ii) unsatisfiable cores, i.e. small sets containing constraints
that can not all be satisfied by a single assignment. Pure
SAT-based solvers that extract cores [Ansótegui et al., 2013]
then relax the formula in order to allow, in a controlled way,
an increasing number of constraints to be falsified in sub-
sequent iterations. The so called implicit hitting set (IHS)
solvers [Bacchus et al., 2019a; Davies and Bacchus, 2013a;
Saikko et al., 2016] instead give the cores to an Integer Lin-
ear Programming (ILP) optimizer that computes minimum-
cost subsets of constraints to be considered for falsification
in subsequent iterations. IHS solvers are currently one of the
most successful approaches to solving MaxSat instances en-
countered in practical applications [Bacchus et al., 2019a].

By decoupling MaxSat solving into separate core extrac-
tion and optimisation steps, IHS solvers are able to exploit the
disparate strengths of SAT and IP solvers and avoid increas-
ing the complexity of the underlying SAT instance by de-
ferring all numerical reasoning to the optimizer [Davies and
Bacchus, 2011]. One drawback of the approach, however, is
that on some formulas, an exponential number of cores need
to be extracted by the SAT solver. In this work we analyze
the simplest formulas exhibiting this exponential worse case
and propose abstract cores as a compact representation for a
potentially exponential number of ordinary cores. We show
how the IHS algorithm can be extended to support reasoning
over abstract cores and that by doing so we can in principle
achieve an exponential reduction in the number of constraints
the SAT solver has to extract and give to the optimizer.

This abstract is based on [Berg et al., 2020]. Here we
overview the IHS algorithm for MaxSat, informally introduce
the concept of abstract cores and discuss how the IHS algo-
rithm can be extended with abstract cores, both in theory and
practice. We also demonstrate empirically that adding ab-
stract core reasoning to a state-of-the-art IHS solver improves
its performance enough to surpass the best performing solvers
of the 2019 MaxSat evaluation.

2 Maximum Satisfiability
For a Boolean variable x there are two literals, the positive x
and the negative ¬x. A CNF formula F is a conjunction of
clauses, each of which is a disjunction of literals. We mostly

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4745

treat F and C as sets of clauses and literals, respectively.
Hence we write clauses C = (x ∨ y ∨ ¬z) in set notation by
{x, y,¬z} and C ∈ F to indicate that the clause C is in the
formula F . An assignment τ that maps variables to 1 (TRUE)
or 0 (FALSE) satisfies C (τ(C) = 1) if it assigns a positive
literal in C to TRUE or a negative literal in C to FALSE. A
formula F is satisfied by τ (τ(F) = 1) if all of its clauses are
satisfied. Such τ is a model of F . A formula is satisfiable if
it has a model, otherwise it is unsatisfiable.

An instance I = (FH ,FS ,wt) of (weighted partial)
MaxSat consists of two CNF formulas, the hard clauses FH ,
the soft clauses FS , and a weight function wt that maps ev-
ery soft clause C ∈ FS to an integer weight wt(C) > 0.
The instance is unweighted if wt(C1) = wt(C2) holds for
any two C1, C2 ∈ FS . An assignment τ is a solution to
I if it satisfies the hard clauses. The cost cost(I, τ) =∑

C∈FS
(1 − τ(C))wt(C) of a solution τ is the sum of the

weights of soft clauses it falsifies. When the instance is clear
from context, we shorten notation to cost(τ). A solution τ
to I is optimal if cost(τ) ≤ cost(τ∗) holds for all solutions
τ∗ to I. The cost of an instance, cost(I), is the cost of its
optimal solutions. The objective of MaxSAT is to compute a
(any) optimal solution to I. To simplify notation, we will as-
sume that every soft clause C ∈ FS is a unit negative literal,
i.e. C = (¬b) for a variable b. The assumption can be made
w.l.o.g.; for any soft clause D ∈ FS we can take a new vari-
able b and transform D into the hard clause (D ∨ b) and soft
clause (¬b) with wt((¬b)) = wt(C). We say that a variable
b for which (¬b) ∈ FS is a blocking variable (b-variable) of
I and denote the set of all b-variables of I by FB .

The implicit hitting set based algorithm for computing an
optimal solution to a MaxSAT instance I = (FH ,FS ,wt)
makes extensive use of (unsatisfiable) cores and hitting sets.
A set κ ⊂ FS is a core if FH ∧ κ is unsatisfiable. For our
work it is convenient to view cores as clauses over (or sets
of) positive b-variables that are entailed by FH . Since ev-
ery clause C ∈ κ is a unit clause containing the negation
of a b-variable b ∈ FB and assigning b = 1 corresponds
to falsifying C, it follows from FH ∧ κ being unsatisfiable
that every model of FH (i.e. solution of I) also satisfies the
clause {b | (¬b) ∈ κ}. Given a collection C of cores, rep-
resented as sets of b-variables, a hitting set hs ⊂ FB over C
is a set of b-variables s.t. hs ∩ κ 6= ∅ for every κ ∈ C. The
cost of a hitting set, cost(hs) =

∑
b∈hs wt((¬b)), is the sum

of weights of the soft clauses corresponding to the blocking
variables in hs . hs is minimum-cost if cost(hs) ≤ cost(hs∗)
holds for every hitting set hs∗ over C. As every core in C is
satisfied by any solution to I, it is fairly easy to show that
cost(hs) ≤ cost(I), i.e. that minimum-cost hitting sets over
C provide lower bounds on the optimal cost of I. In fact,
if C contains all cores of I, then a minimum-cost hitting set
hs over C has cost(I) = cost(hs) = cost(τ) for a solution
τ that sets τ(b) = 1 for every b ∈ hs (falsifying (¬b)) and
τ(b) = 0 (satisfying (¬b) ∈ FS) for every other b ∈ FB \hs .

Example 1 Consider the instance F n,r with FH
n,r =

CNF(
∑n

i=1 bi ≥ r) and FS
n,r = {(¬bi) | 1 ≤ i ≤ n}, where

CNF(
∑n

i=1 bi ≥ r) is a CNF encoding of the cardinality con-
straint stating that at least r soft clauses must be falsified. The

Algorithm 1: The IHS approach to MaxSat solving
1 IHS I = (FH ,FS , ,wt)

Input: A MaxSat instance I = (FH ,FS ,wt)
Output: An optimal solution τ

2 LB ← 0; UB ←∞;
3 τbest ← ∅; C ← ∅ ;
4 while (TRUE) do
5 hs ← Min-Hs(FB , C);
6 LB = cost(hs);
7 if (LB = UB) break;
8 (K, τ)← ex-cores (FH ,FB , hs);
9 if (UB > cost(τ)) τbest ← τ ; UB ← cost(τ);

10 if (LB = UB) break;
11 C ← C ∪K
12 return τbest

cost of every optimal solution is thus r; the maximum number
of soft clauses that can be satisfied is n− r; and every subset
containing n− r + 1 soft clauses is a core.

3 Implicit Hitting Sets for MaxSAT
Algorithm 1 details IHS, the implicit hitting set approach to
computing an optimal solution to a MaxSAT instance I. Dur-
ing search, the algorithm maintains a lower bound LB (ini-
tialized to 0), and an upper bound UB (initialized to ∞) on
cost(I). The lower bound is iteratively refined by computing
minimum-cost hitting sets over a set C of cores of I (initial-
ized to ∅). The upper bound and set of cores are refined by
using a SAT solver to extract cores and solutions of I. IHS
also maintains a witness for the upper bound in the form of an
assignment τbest for which cost(τbest) = UB . The algorithm
terminates when UB = LB and returns τbest .

More specifically, after initialisation (on Lines 2-3) IHS
starts its main search loop (Lines 4-11). During each iteration
of the loop, a minimum-cost hitting set hs over the current
set of cores C is computed by an ILP optimizer Min-Hs. The
hitting set is used to refine the lower bound LB on cost(I)
on Line 6. Afterwards, the procedure ex-cores uses a SAT
solver to extract a disjoint set K of previously unseen cores
of I, i.e. cores for which κi ⊂ FB \ hs and κi ∩ κj = ∅ for
any κi, κj ∈ K. ex-cores terminates when no more such
cores can be found and returns the setK and a solution τ to I
that satisfies (at least) all soft clauses that are not in hs nor in
any of the computed cores. The current upper bound UB is
then compared with cost(τ) and updated if needed (Line 9).

A detailed description of IHS and its sub-procedures, in-
cluding a detailed proof of correctness, can be found in [Bac-
chus et al., 2017]. Our implementation of the base algorithm
is extended in a variety of previously proposed ways to allow
extracting large numbers (hundreds) of cores from each op-
timizer solution [Davies and Bacchus, 2013b; Davies, 2013;
Saikko, 2015].

4 Abstract Cores
While IHS has been shown to be an effective approach for
solving MaxSat instances from real-world applications, the
following example demonstrates that there are some draw-
backs with it.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4746

Example 2 Consider F n,r from Example 1 and let C be the
collection of subsets of FB

n,r that contain exactly n− r + 1
variables. All such sets are cores of F n,r. From the re-
sults of [Davies, 2013] we have that if the optimizer Min-Hs
is given all cores in C it would compute a solution hs with
cost(hs) = r; furthermore, if even one core of C is missing,
the optimizer solutions hs would have cost(hs) < r. This
means that IHS will have to extract

(
n

n−r+1

)
cores for the op-

timizer before it can reach the cost of F n,r and terminate.
When r is close to n/2 the number of cores required for ter-
mination is thus exponential in n.

Example 2 shows that a significant bottleneck for the IHS
approach on some instances is the large number of cores that
have to be given to the optimizer. The results of the 2019
MaxSat Evaluation [Bacchus et al., 2019a; Bacchus et al.,
2019b] witness this drawback in practice. The drmx-atmostk
set of instances in the evaluation contain 11 instances with
the same underlying structure as Example 1. Out of these,
the IHS solver MaxHS [Davies and Bacchus, 2013a; Davies
and Bacchus, 2011], failed to solve 8 out of 11 when given
an hour for each instance, while the best performing solvers
were able to solve all 11 instances in under 10s.

A natural question to ask is whether or not there exists a
more compact representation of a large number of cores that
can still be efficiently reasoned with by the IHS algorithm. In
this section we propose abstract cores as one such represen-
tation. As we will demonstrate, each abstract core compactly
represents a large number of regular cores. By extracting ab-
stract cores in the ex-cores procedure, we can communi-
cate constraints to the optimizer that could otherwise have
required an exponential number of ordinary cores.

The structure of the F n,r instance from Example 1 pro-
vides intuition for abstract cores. In these instances the iden-
tity of the variables does not matter, all that matters is how
many are set to TRUE and how many are set to FALSE. For
example, in any core κ of F n,r we can exchange any soft
clause C ∈ κ for any other soft clause C ′ 6∈ κ and the re-
sult will still be a core of F n,r. In other words, every soft
clause is exchangeable with every other soft clause in these
instances. The concept of an abstraction set allows abstract-
ing away form the specific identities of soft clauses and rea-
son only over the number of them set to TRUE.

Consider an instance I = (FH ,FS ,wt). An abstraction
set of I is a subset ab ⊂ FB of b-variables that has been an-
notated by adding |ab| new variables ab.c[1], . . . , ab.c[|ab|],
called ab’s count variables, used to indicate the number of
true b-variables in ab (i.e. the number of corresponding fal-
sified soft clauses). Every count variable ab.c[k] has a cor-
responding definition ab.c[k] ⇐⇒

∑
b∈ab b ≥ k. Note

that these definitions can be encoded into CNF using vari-
ous known encodings for cardinality constraints [Sinz, 2005;
Ası́n et al., 2009] or expressed as the linear constraints∑

b∈ab b − k · ab.c[k] ≥ 0 and
∑

b∈ab b − |ab| · ab.c[k] <
k. The first constraint ensures that any assignment setting
ab.c[k] = 1 also sets at least k of the variables in ab to 1.
The second constraint ensures that an assignment setting at
least k of the variables in ab to 1, also sets ab.c[k] to 1.

An abstract core of I is a clause containing either positive

b-variables or positive count variables that is entailed by the
hard clauses FH together with the definitions required to give
meaning to the count variables.

Example 3 Consider the instance F n,r defined in Exam-
ple 1. Say we form an single abstraction set, ab, from the
full set of blocking variables FB

n,r. Then F n,r will have
among its abstract cores the unit clause (ab.c[r]) asserting
that

∑
b∈FB

n,r b ≥ r. This single abstract core is equivalent
to the conjunction of

(
n

n−r+1

)
non-abstract cores. In partic-

ular, with n b-variables, asserting that at least r must be true
entails that every set of n− r+1 b-variables must contain at
least one true b-variable. That is, (ab.c[r]) entails

(
n

n−r+1

)
different clauses each of which is equivalent to a non-abstract
core. It is not difficult to show that entailment in the other di-
rection also holds giving equivalence.

This example demonstrates the expressive power of ab-
stract cores. Let C be an abstract core containing the count
literals {ab1 .c[c1], . . . , abk .c[ck]}. Then, each abi .c[ci] is
equivalent to the conjunction of

(|abi|
|abi|−ci+1

)
clauses. Hence,

C is equivalent to the conjunction of
∏k

i=1

(|abi|
|abi|−ci+1

)
non-

abstract cores. In other words, abstract cores achieve the
desideratum of providing a compact representation of a large
number of cores. Next we address the second aim of extend-
ing the IHS algorithm with abstract core reasoning.

5 Abstract Cores in IHS MaxSAT Solving
As the second main contribution of our work, we demon-
strate how to efficiently reason with abstract cores in the IHS
algorithm. When solving an instance I = (FH ,FS ,wt),
Abstract-IHS, our extension of IHS with abstract cores dif-
fers, from Algorithm 1 in three ways: (1) the optimisation
problem that is solved by the optimizer (Min-Hs) is slightly
different, (2) the ex-cores subroutine uses abstraction sets
when extracting new constraints for the optimizer and (3) a
collection of abstraction sets AB is maintained and dynami-
cally updated during search. We briefly overview these dif-
ferences, more details can be found in [Berg et al., 2020].

New optimisation problem. In Abstract-IHS, the opti-
mizer is given a set C containing both abstract and regular
cores as well as the definitions of count variables. The proce-
dure computes a hitting set hs of b-variables s.t. for every (ab-
stract) core κ ∈ C the set hs either: (i) contains a b-variable
b ∈ κ or (ii) contains at least k b-variables from ab for a count
variable ab.c[k] ∈ κ. In practice, this is achieved by adding
the definitions of the count variables as linear constraints into
the integer program that is solved by Min-Hs.

Extraction of abstract cores. In IHS, new cores are ex-
tracted using the assumption interface of a SAT solver [Eén
and Sörensson, 2003]. More specifically, the solver is in-
voked on the clauses in FH with a set A of assumptions con-
taining b-variables that are not in the current hitting hs . If
the result is unsatisfiable, the solver returns a subset κ ⊂ {b |
¬b ∈ A} of negated assumptions (i.e. positive b-variables)
that explain unsatisfiability. This set corresponds to a core of
I. Thus, in order to be able to extract abstract cores, the SAT

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4747

solver needs to be invoked on FH and the definitions of count
variables with a set of assumptions containing negations of
count variables and b-variables. Adding the definitions of
variables to the SAT solver is straightforward using any of
the existing CNF encodings [Bailleux and Boufkhad, 2003;
Sinz, 2005; Ası́n et al., 2009; Ogawa et al., 2013]. As for
the assumptions, given a hitting set hs we iterate over the
set AB. For each ab ∈ AB we remove the variables in ab
from hs and add the negation of the corresponding count vari-
able ab.c[|ab ∩ hs| + 1] instead. After doing this for every
ab ∈ AB, we obtain a set of assumptions that can be used in
order to extract abstract cores that are not satisfied by hs .

Refining the Abstraction Sets
When it comes to computing abstraction sets, there is an in-
herent trade-off between the overhead and potential bene-
fits from abstraction. In theory, we can show that for any
unweighted instance I, there exists a (large) abstraction set
ab that allows Abstract-IHS to terminate after extracting a
polynomial number of cores (recall Example 2 demonstrating
that IHS might need an exponential number of cores). How-
ever, in practice, too large sets can lead to large CNF encod-
ings of the count variable definitions, making core extraction
very inefficient. With too small sets, the algorithm instead
reverts back to non-abstract IHS.

In our implementation, we maintain a collectionAB of dis-
joint abstraction sets s.t. any two b-variables in the same ab-
straction set have the same weight. The abstraction sets are
computed by clustering a graph G that has the b-variables as
nodes and a weighted edge between two nodes correspond-
ing to b-variables b1 and b2 for which wt(b1) = wt(b2). The
weight of the edge is the number of times that a core contain-
ing both b1 and b2 has been extracted. Intuitively, this pro-
cedure aims to create abstraction sets containing b-variables
that often appear in cores together, and are thus in some sense
related to each other. For clustering G we used the Louvain
algorithm [Blondel et al., 2008]. During solving, we monitor
the quality of the current abstraction sets. If the found cores
are unable to drive up the lower bound computed by the op-
timizer, we merge all nodes that currently belong to the same
cluster (abstraction set), and recluster G.

6 Experimental Evaluation
We have implemented two versions of our approach on top of
the version of the MaxHS solver [Davies and Bacchus, 2013a;
Davies, 2013] submitted to the MaxSat 2019 evaluation
(MSE 2019). The two new solvers are called maxhs-abs
and maxhs-abs-ex. maxhs-abs implements the abstraction
method described in Section 5, using the well known totalizer
encoding [Bailleux and Boufkhad, 2003] to encode the count
variable definitions into CNF. The maxhs-abs-ex solver addi-
tionally implements technique of core exhaustion [Ignatiev et
al., 2019] that uses SAT calls to potentially fix count variables
from each abstraction set to TRUE.

We compare the new solvers to the base maxhs (MSE
2019 version) as well as to two other solvers: rc2, the
MSE 2019 version of RC2 [Ignatiev et al., 2019] that was
the best performing solver in both the weighted and un-
weighted track and UWr, a new solver in MSE 2019 called

225 250 275 300 325 350 375 400 425 450
Instances Solved

0

1000

2000

3000

R
un

Ti
m

e
(s

ec
.)

MSE 2019 Unweighted Instances

maxhs-abs-ex
maxhs-abs
rc2
UWr
maxhs

240 260 280 300 320 340 360 380 400
Instances Solved

0

1000

2000

3000

R
un

Ti
m

e
(s

ec
.)

MSE 2019 Weighted Instances

maxhs-abs-ex
maxhs-abs
rc2
UWr
maxhs

Figure 1: Cactus plot of solver performance on the 599 unweighted
(top) and 586 weighted (bottom) instances of MSE 2019.

UWrMaxSat [Karpinski and Piotrów, 2019]. Both rc2 and
UWr implement the OLL algorithm [Morgado et al., 2014;
Andres et al., 2012] and differ mainly in how the cardinality
constraints are encoded into CNF. As benchmarks, we used
all 599 weighted and 586 unweighted instances from the com-
plete track of the 2019 MaxSat Evaluation, drawn from a va-
riety of different problem families. All experiments were run
on a cluster of 2.4 GHz Intel machines using a per-instance
time limit of 3600s and memory limit of 5GB.

Figures 1 shows a cactus plots comparing the solvers on the
unweighted and weighted instances, respectively. Comparing
maxhs and maxhs-abs we observe that abstract core reason-
ing is very effective, increasing the number of unweighted
instances solved from 397 to 433 and weighted instances
from 361 to 379 surpassing both rc2 and UWr in both cat-
egories. maxhs-abs-ex improves even further with 438 un-
weighted and 387 weighted instances solved surpassing all
other solvers. The potential of abstract cores is further de-
mosntrated by the results of the 2020 MSE where maxhs-
abs-ex was the best and second-best performing solver in the
unweighted and weighted category, respectively.

7 Conclusions
We proposed abstract cores for improving the IHS based
approach to complete MaxSat solving, addressing the large
worst-case number of cores that IHS solvers need to extract
before terminating. We show how to incorporate abstract core
reasoning into the IHS algorithm and report on an experimen-
tal evaluation comparing IHS with abstract cores to the best
performing solvers of the latest MaxSat Evaluation. The re-
sults indicate that abstract cores indeed improve the empirical
performance of the IHS algorithm, resulting in state-of-the-
art performance on the instances of the Evaluation.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4748

References
[Andres et al., 2012] Benjamin Andres, Benjamin

Kaufmann, Oliver Matheis, and Torsten Schaub.
Unsatisfiability-based optimization in clasp. In Agostino
Dovier and Vı́tor Santos Costa, editors, Technical Commu-
nications of ICLP, volume 17 of LIPIcs, pages 211–221.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

[Ansótegui et al., 2013] Carlos Ansótegui, Maria Luisa
Bonet, and Jordi Levy. SAT-based MaxSAT algorithms.
Artificial Intelligence, 196:77–105, 2013.

[Ası́n et al., 2009] Roberto Ası́n, Robert Nieuwenhuis, Al-
bert Oliveras, and Enric Rodrı́guez-Carbonell. Cardinal-
ity networks and their applications. In Oliver Kullmann,
editor, Proc SAT, volume 5584 of LNCS, pages 167–180.
Springer, 2009.

[Bacchus et al., 2017] Fahiem Bacchus, Antti Hyttinen,
Matti Järvisalo, and Paul Saikko. Reduced cost fixing in
maxsat. In Proc. CP, volume 10416 of LNCS, pages 641–
651. Springer, 2017.

[Bacchus et al., 2019a] Fahiem Bacchus, Matti Järvisalo,
and Ruben Martins. Maxsat evaluation 2018: New de-
velopments and detailed results. J. Satisf. Boolean Model.
Comput., 11(1):99–131, 2019.

[Bacchus et al., 2019b] Fahiem Bacchus, Matti Järvisalo,
and Ruben Martins, editors. MaxSAT Evaluation 2019:
Solver and Benchmark Descriptions. Department of Com-
puter Science Report Series B. Department of Computer
Science, University of Helsinki, Finland, 2019.

[Bacchus et al., 2021] Fahiem Bacchus, Matti Järvisalo, and
Ruben Martins. Maximum Satisfiability, chapter 24, pages
929–991. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press BV, 2021.

[Bailleux and Boufkhad, 2003] Olivier Bailleux and Yacine
Boufkhad. Efficient CNF encoding of boolean cardinality
constraints. In Francesca Rossi, editor, Proc CP, volume
2833 of LNCS, pages 108–122. Springer, 2003.

[Berg et al., 2020] Jeremias Berg, Fahiem Bacchus, and
Alex Poole. Abstract cores in implicit hitting set maxsat
solving. In SAT, volume 12178 of Lecture Notes in Com-
puter Science, pages 277–294. Springer, 2020.

[Blondel et al., 2008] Vincent D Blondel, Jean-Loup Guil-
laume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, Oct 2008.

[Davies and Bacchus, 2011] Jessica Davies and Fahiem Bac-
chus. Solving MAXSAT by solving a sequence of simpler
SAT instances. In Jimmy Ho-Man Lee, editor, Proc CP,
volume 6876 of LNCS, pages 225–239. Springer, 2011.

[Davies and Bacchus, 2013a] Jessica Davies and Fahiem
Bacchus. Exploiting the power of mip solvers in maxsat.
In Matti Järvisalo and Allen Van Gelder, editors, Proc SAT,
volume 7962 of LNCS, pages 166–181. Springer, 2013.

[Davies and Bacchus, 2013b] Jessica Davies and Fahiem
Bacchus. Postponing optimization to speed up MAXSAT
solving. In Christian Schulte, editor, Proc CP, volume
8124 of LNCS, pages 247–262. Springer, 2013.

[Davies, 2013] Jessica Davies. Solving MAXSAT by Decou-
pling Optimization and Satisfaction. PhD thesis, Univer-
sity of Toronto, 2013.

[Eén and Sörensson, 2003] Niklas Eén and Niklas
Sörensson. Temporal induction by incremental SAT
solving. Electron. Notes Theor. Comput. Sci., 89(4):543–
560, 2003.

[Ignatiev et al., 2019] Alexey Ignatiev, António Morgado,
and João Marques-Silva. RC2: an efficient maxsat solver.
J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019.

[Karpinski and Piotrów, 2019] Michal Karpinski and Marek
Piotrów. Encoding cardinality constraints using multiway
merge selection networks. Constraints, 24(3-4):234–251,
2019.

[Koshimura et al., 2012] Miyuki Koshimura, Tong Zhang,
Hiroshi Fujita, and Ryuzo Hasegawa. Qmaxsat: A par-
tial max-sat solver. J. Satisf. Boolean Model. Comput.,
8(1/2):95–100, 2012.

[Morgado et al., 2014] António Morgado, Carmine Dodaro,
and João Marques-Silva. Core-guided maxsat with soft
cardinality constraints. In Barry O’Sullivan, editor,
Proc CP, volume 8656 of LNCS, pages 564–573. Springer,
2014.

[Ogawa et al., 2013] Toru Ogawa, Yangyang Liu, Ryuzo
Hasegawa, Miyuki Koshimura, and Hiroshi Fujita. Mod-
ulo based CNF encoding of cardinality constraints and its
application to maxsat solvers. In Proc ICTAI, pages 9–17.
IEEE Computer Society, 2013.

[Saikko et al., 2016] Paul Saikko, Jeremias Berg, and Matti
Järvisalo. LMHS: A SAT-IP hybrid maxsat solver. In Na-
dia Creignou and Daniel Le Berre, editors, Proc SAT, vol-
ume 9710 of LNCS, pages 539–546. Springer, 2016.

[Saikko, 2015] Paul Saikko. Re-implementing and extend-
ing a hybrid SAT-IP approach to maximum satisfiability.
Master’s thesis, University of Helsinki, 2015.

[Sinz, 2005] Carsten Sinz. Towards an optimal CNF encod-
ing of boolean cardinality constraints. In Peter van Beek,
editor, Proc CP, volume 3709 of LNCS, pages 827–831.
Springer, 2005.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4749

	Introduction
	Maximum Satisfiability
	Implicit Hitting Sets for MaxSAT
	Abstract Cores
	Abstract Cores in IHS MaxSAT Solving
	Experimental Evaluation
	Conclusions

