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Abstract
Domain Invariant Representations (IR) has im-
proved drastically the transferability of represen-
tations from a labelled source domain to a new
and unlabelled target domain. Unsupervised Do-
main Adaptation (UDA) in presence of label shift
remains an open problem. To this purpose, we
present a bound of the target risk which incorpo-
rates both weights and invariant representations.
Our theoretical analysis highlights the role of in-
ductive bias in aligning distributions across do-
mains. We illustrate it on standard benchmarks
by proposing a new learning procedure for UDA.
We observed empirically that weak inductive bias
makes adaptation robust to label shift. The elabo-
ration of stronger inductive bias is a promising di-
rection for new UDA algorithms.

1 Introduction
Deploying machine learning models in the real world often
requires the ability to generalize to unseen samples i.e. sam-
ples significantly different from those seen during learning.
Domain Adaptation (DA) [Quionero-Candela et al., 2009;
Pan and Yang, 2009] is a well-studied approach to bridge the
gap between a source and a target distributions, respectively
noted pS(x, y) and pT (x, y) where x are inputs and y are la-
bels. Unsupervised Domain Adaptation (UDA) assumes that
only unlabelled data from the target domain is available dur-
ing training. In this context, a natural assumption, named
Covariate shift [Shimodaira, 2000; Huang et al., 2007], con-
sists in assuming that the mapping from the inputs to the la-
bels is conserved across domains, i.e. pT (y|x) = pS(y|x).
In this context, Importance Sampling (IS) performs adapta-
tion by weighting the contribution of sample x in the loss by
w(x) = pT (x)/pS(x) [Quionero-Candela et al., 2009]. Al-
though IS seems natural when unlabelled data from the target
domain is available, the covariate shift assumption is not suf-
ficient to guarantee successful adaptation [Ben-David et al.,
2007]. Moreover, for high dimensional data [D’Amour et al.,
2017] such as texts or images, the shift between pS(x) and
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pT (x) results from non-overlapping supports leading to un-
bounded weights [Johansson et al., 2019].

In this particular context, representations can help to rec-
oncile non-overlapping supports [Ben-David et al., 2007] by
learning a so-called Domain Invariant Representation [Ganin
and Lempitsky, 2015];

pS(z) ≈ pT (z) (1)

where z := ϕ(x) for a given non-linear representation ϕ.
These assume that the transferability of representations, de-
fined as the combined error of an ideal classifier, remains low
during learning. Unfortunately, this quantity involves tar-
get labels and is thus intractable. More importantly, look-
ing for strict invariant representations (pS(z) = pT (z)) hurts
the transferability of representations [Johansson et al., 2019;
Liu et al., 2019; Wu et al., 2019; Zhao et al., 2019]. In par-
ticular, there is a fundamental trade-off between learning in-
variant representations and preserving transferability in pres-
ence of label shift (pT (y) 6= pS(y)) [Zhao et al., 2019]. To
mitigate this trade-off, some recent works suggest to relax
domain invariance by weighting samples [Cao et al., 2018a;
Wu et al., 2019; You et al., 2019; Cao et al., 2018b]. This
strategy aligns a weighted source distribution with the target
distribution

w(z)pS(z) ≈ pT (z), (2)
for some weights w(z). We now have two tools, w and ϕ,
which need to be calibrated to obtain distribution alignment.
Which one should be promoted? How weights preserve good
transferability of representations?

In this paper, we show that weights allow to design an in-
terpretable generalization bound where transferability and in-
variance errors are uncoupled. In addition, we discuss the
role of inductive design for both the classifier and the weights
in addressing the lack of labelled data in the target domain.
From these theoretical insights, we derive a new learning pro-
cedure for UDA that minimizes the transferability error while
controlling representation invariance with weights. We pro-
vide an empirical illustration of our framework on two DA
benchmarks (Digits and Office31 datasets). We stress-test
our learning scheme by modifying strongly the label distribu-
tion in the source domain. While methods based on invariant
representations deteriorate considerably in this context, our
procedure remains robust.
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2 Preliminaries
For two random variables (X,Y ) on a given space X ×Y , we
introduce two distributions: the source distribution pS(x, y)
and the target distribution pT (x, y). Here, labels are one-hot
encoded i.e. y ∈ [0, 1]C such that

∑
c yc = 1 where C is

the number of classes. We use the index notation S and T to
differentiate source and target terms. We define the hypothe-
sis classH as a subset of functions from X to Y which is the
composition of a representation class Φ and a classifier class
G, i.e. H = G ◦ Φ. For the ease of reading, given a classifier
g ∈ G and a representation ϕ ∈ Φ, we note gϕ := g ◦ϕ. Fur-
thermore, in the definition z := ϕ(x), we refer indifferently
to z, ϕ, Z := ϕ(X) as the representation. For two given h
and h′ ∈ H and ` the L2 loss `(y, y′) = ||y − y′||2, the risk
in domain D ∈ {S, T} is noted:

εD(h) := ED[`(h(X), Y )] (3)

and εD(h, h′) := ED[`(h(X), h′(X))]. In the seminal works
[Ben-David et al., 2007; Mansour et al., 2009], a theoretical
limit of the target risk when using a representation ϕ has been
derived:

Bound 1 (Ben David et al.) For ϕ ∈ Φ and g ∈ G

εT (gϕ) ≤ εS(gϕ) + dG(ϕ) + λG(ϕ) (4)

where dG(ϕ) = supg,g′∈G |εS(gϕ, g′ϕ) − εT (gϕ, g′ϕ)| and
λG(ϕ) = infg∈G{εS(gϕ) + εT (gϕ)}.

This generalization bound ensures that the target risk
εT (gϕ) is bounded by the sum of the source risk εS(gϕ),
the disagreement risk between two classifiers from represen-
tations dG(ϕ), and a third term, λG(ϕ), which quantifies the
ability to perform well in both domains from representations.
The latter is referred to as the adaptability error of representa-
tions. It is intractable in practice since it involves labels from
the target distribution. Promoting distribution invariance of
representations, i.e. pS(z) close to pT (z), results on a low
dG(ϕ). However, it induces an unexpected trade-off when
learning domain invariant representations [Johansson et al.,
2019; Zhao et al., 2019]:

Proposition 1 (Invariance hurts adaptability) Let ψ be a
representation which is a richer feature extractor than ϕ:
G ◦ ϕ ⊂ G ◦ ψ. Then,

dG(ϕ) ≤ dG(ψ) while λG(ψ) ≤ λG(ϕ) (5)

As a result of proposition 1, the benefit of representation in-
variance must be higher than the loss of adaptability, which is
impossible to guarantee in practice.

3 Theory
To overcome the limitation raised in proposition 1, we expose
a new bound of the target risk which embeds a new trade-
off between invariance and transferability. We show this new
bound remains inconsistent with the presence of label shift
and we expose the role of weights to address this problem.

3.1 A New Trade-Off Between Invariance and
Transferability

We introduce here two important tools that will guide our
analysis. They are built upon F and FC ; two suitable1

classes of critics functions i.e., subset of applications from
Z → [−1, 1] and Z → [−1, 1]C .

• INV(ϕ), named invariance error, that aims at capturing
the difference between source and target distribution of
representations, corresponding to:

INV(ϕ) := sup
f∈F
{ET [f(Z)]− ES [f(Z)]} (6)

• TSF(ϕ), named transferability error, that is dedicated
to control if aligned representations have the same labels
across domains. For that, we use our class of functions
FC and we compute the IPM of Y · f(Z) (f ∈ FC and
Y · f(Z) is the scalar product) between the source and
the target domains:

TSF(ϕ) := sup
f∈FC

{ET [Y · f(Z)]− ES [Y · f(Z)]} (7)

Using INV(ϕ) and TSF(ϕ), we can provide a new bound
of the target risk:
Bound 2 For ϕ ∈ Φ and g ∈ G
εT (gϕ) ≤ εS(gϕ)+6·INV(ϕ)+2·TSF(ϕ)+εT (fTϕ) (8)

In contrast with bound 1 (Eq. 5), here two IPMs are involved
to compare representations (INV(ϕ) and TSF(ϕ)). A new
term, εT (fTϕ), reflects the level of noise when fitting labels
from representations. Bounding the target risk using IPMs
has two advantages. First, it allows to better control the in-
variance / transferability trade-off since εT (fTϕ) ≤ λG(ϕ).
This is paid at the cost of 4 · INV(ϕ) ≥ dG(ϕ). Second,
εT (fTϕ) is source free and indicates whether there is enough
information in representations for learning the task in the tar-
get domain at first.

An interesting property of the bound, named tightness, is
the case when INV(ϕ) = 0 and TSF(ϕ) = 0 simultane-
ously. The condition of tightness of the bound provides rich
information on the properties of representations.
Proposition 2 pS(y, z) = pT (y, z) if and only if INV(ϕ) =
TSF(ϕ) = 0.

3.2 Reconciling Weights and Invariant
Representations

We propose to adapt the bound by incorporating weights.
More precisely, we study the effect of modifying the
source distribution pS(z) to a weighted source distribution
w(z)pS(z) where w is a positive function which verifies
ES [w(Z)] = 1. By replacing pS(z) by w(z)pS(z) (distri-
bution referred as w · S) in bound 2, we obtain a new bound
of the target risk:
Bound 3 For ϕ ∈ Φ, g ∈ G and w : Z → R+ such that
ES [w(z)] = 1:

εT (gϕ) ≤ εw·S(gϕ) + 6 · INV(w,ϕ) +

2 · TSF(w,ϕ) + εT (fTϕ) (9)

1See the paper for details about assumptions on critics.
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where INV(w,ϕ) := sup
f∈F
{ET [f(Z)]− ES [w(Z)f(Z)]}

and TSF(w,ϕ) := sup
f∈FC

{ET [Y ·f(Z)]−ES [w(Z)Y ·f(Z)]}.

As for the previous bound 2, the property of tightness, i.e.
when invariance and transferability are null simultaneously,
leads to interesting observations:

Proposition 3 INV(w,ϕ) = TSF(w,ϕ) = 0 if and only if
w(z) = pT (z)

pS(z) and ET [Y |Z = z] = ES [Y |Z = z].

This proposition means that the nullity of invariance error
implies distribution alignment: w(z)pS(z) = pT (z). This
is of strong interest since both representations and weights
are involved for achieving domain invariance. The nullity
of the transferability error implies that labelling functions
are conserved across domains. Furthermore, the equality
ET [Y |Z] = ES [Y |Z] interestingly resonates with a promis-
ing line of work [Arjovsky et al., 2019]. Incorporating
weights in the bound thus brings two benefits:

1. It raises the inconsistency issue of invariant representa-
tions in presence of label shift, as mentioned in section
2. Indeed, tightness is not conflicting with label shift.

2. TSF(w,ϕ) and INV(w,ϕ) have two disctinct roles: the
former promotes domain invariance of representations
while the latter controls whether aligned representations
share the same labels across domains.

4 The Role of Inductive Bias
Inductive Bias refers to the set of assumptions which im-
proves generalization, such as a specific neural network ar-
chitecture or a well-suited regularization. First, we provide a
theoretical analysis of the role of inductive bias for address-
ing the lack of labelling data in the target domain, which is the
most challenging part of Unsupervised Domain Adaptation.
Second, we describe the effect of weights to induce invari-
ance property on representations.

4.1 Inductive Design of a Classifier
General Formulation.
Our strategy consists in approximating target labels error
through a classifier g̃ ∈ G. We refer to the latter as the
inductive design of the classifier. Our proposition follows
the intuitive idea which states that the best source classifier,
gS := arg ming∈G εS(gϕ), is not necessarily the best target
classifier i.e. gS 6= arg ming∈G εT (gϕ). For instance, a well-
suited regularization in the target domain, noted ΩT (g) may
improve performance, i.e. setting g̃ := arg ming∈G εS(gϕ)+
λ ·ΩT (g) may lead to εT (g̃ϕ) ≤ εT (gSϕ). We formalize this
idea through the following definition:

Definition 1 (Inductive design of a classifier) We say that
there is an inductive design of a classifier at level 0 <
β ≤ 1 if for any representations ϕ, noting gS =
arg ming∈G εS(gϕ), we can determine g̃ such that:

εT (g̃ϕ) ≤ βεT (gSϕ) (10)

We say the inductive design is β−strong when β < 1 and
weak when β = 1.

In this definition, β does not depend of ϕ, which is a strong
assumption, and embodies the strength of the inductive de-
sign. The closer to 1 is β, the less improvement we can expect
using the inductive classifier g̃. We now study the impact of
the inductive design of a classifier in our previous bound 3.
Thus, we introduce the approximated transferability error:

T̂SF(w,ϕ, g̃) = sup
f∈FC

{ET [g̃(Z)·f(Z)]−ES [w(Z)Y ·f(Z)]}

(11)
leading to a bound of the target risk where transferability is
target labels free:
Bound 4 (Inductive Bias and Guarantee) Let ϕ ∈ Φ and
w : Z → R+ such that ES [w(z)] = 1 and a β−strong induc-
tive classifier g̃ and ρ := β

1−β then:

εT (g̃ϕ) ≤ ρ{εw·S(gw·Sϕ) + 6 · INV(w,ϕ) +

2 · T̂SF(w,ϕ, g̃) + εT (fTϕ)} (12)
Here, the target labels are only involved in εT (fTϕ) which
reflects the level of noise when fitting labels from represen-
tations. Therefore, transferability is now free of target labels.
This is an important result since the difficulty of UDA lies in
the lack of labelled data in the target domain. It is also inter-
esting to note that the weaker the inductive bias (β → 1), the
higher the bound and vice versa.

Predicted labels play an important role in UDA. In light of
the inductive classifier, this means that g̃ is simply set as gw·S .
This is a weak inductive design (β = 1), thus, theoretical
guarantee from bound 4 is not applicable. However, there
is empirical evidence that showed that predicted labels help
in UDA [Grandvalet and Bengio, 2005; Long et al., 2018].
A better understanding of this phenomenon is left for future
work. See the paper connections between T̂SF(w,ϕ, g̃) and
popular approaches of the literature.

4.2 Inductive Design of Weights
While the bounds introduced in the present work involve
weights in the representation space, there is an abundant liter-
ature that builds weights in order to relax the domain invari-
ance of representations [Cao et al., 2018a; Wu et al., 2019;
You et al., 2019; Cao et al., 2018b]. In the rest of the paper
we focus on weights

w(z) =
pT (z)

pS(z)
. (13)

It is worth noting that it controls the invariance error
(INV(w,ϕ) = 0). One can quantify the effect of a feature
transformation ψ when designing weights;
Proposition 4 (Inductive design of w and invariance) Let
ψ : Z → Z ′ such that F ◦ ψ ⊂ F and FC ◦ ψ ⊂ FC .
Let w : Z ′ → R+ such that ES [w(Z ′)] = 1 and we note
Z ′ := ψ(Z). Then, INV(w,ϕ) = TSF(w,ϕ) = 0 if and
only if:

w(z′) =
pT (z′)

pS(z′)
and pS(z|z′) = pT (z|z′) (14)

while both fϕS = fϕT and fψS = fψT .
Since we do not leverage any transformation ψ, we frame it
as a weak inductive design.
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Method Office 31 Digits
DANN 67.8 63.2
CDAN 81.6 73.2
IWAN 75.0 81.6

CDANw 81.8 83.2
RUDA (ours) 83.8 86.5

Table 1: Summary of results of adaptation in context of label shift.
RUDA outperforms baselines. See the paper for more details.

5 Towards Robust Domain Adaptation
5.1 Algorithm
We expose a new learning procedure which relies on weak
inductive design of both weights and the classifier. This pro-
cedure focuses on the transferability error since the inductive
design of weights naturally controls the invariance error. Our
learning procedure is then a bi-level optimization problem,
named RUDA (Robust UDA): ϕ? = arg min

ϕ∈Φ
εw(ϕ)·S(gw·Sϕ) + λ · T̂SF(w,ϕ, gw·S)

such that w(ϕ) = arg min
w

INV(w,ϕ)

where λ > 0 is a trade-off parameter. T̂SF(w,ϕ, gw·S) and
INV(w,ϕ) are computed in an adversarial manner involving
two discriminators. See the paper for more details.

5.2 Experiments
Datasets. We investigate two digits datasets: MNIST and
USPS transfer tasks MNIST to USPS (M→U) and USPS to
MNIST (U→M). We used standard train / test split for train-
ing and evaluation. Office-31 is a dataset of images contain-
ing objects spread among 31 classes captured from different
domains: Amazon, DSLR camera and a Webcam camera.
DSLR and Webcam are very similar domains but images dif-
fer by their exposition and their quality. We stress-test our
approach by investigating more challenging settings where
the label distribution shifts strongly across domains. For the
Digits dataset, we explore a wide variety of shifts by keeping
only 5%, 10%, 15% and 20% of digits between 0 and 5 of the
original dataset (refered as % × [0 ∼ 5]). For the Office-31
dataset, we explore the shift where the object spread in classes
16 to 31 are duplicated 5 times (refered as 5× [16 ∼ 31]).
Comparison with the state-of-the-art. For all tasks, we
report results from DANN [Ganin and Lempitsky, 2015] and
CDAN [Long et al., 2018]. We report IWAN [Zhang et al.,
2018], a weighted DANN where weights are learned from a
second discriminator, and CDANw a weighted CDAN where
weights are added in the same setting than RUDAw. A sum-
mary of results is presented in Table 1.

6 Related Works
This paper makes several contributions, both in terms of the-
ory and algorithm. Concerning theory, our bound provides
a risk suitable for domain adversarial learning with weight-
ing strategies. Existing theories for non-overlapping supports
[Ben-David et al., 2007; Mansour et al., 2009] and impor-
tance sampling [Cortes et al., 2010; Quionero-Candela et al.,

2009] do not explore the role of representations neither the
aspect of adversarial learning. In [Ben-David et al., 2007],
analysis of representation is conducted and connections with
our work is discussed in the paper. The work [Johansson et
al., 2019] is close to ours and introduces a distance which
measures support overlap between source and target distribu-
tions under covariate shift. Our analysis does not rely on such
assumption, its range of application is broader.

Concerning algorithms, the covariate shift adaptation has
been well-studied in the literature [Huang et al., 2007;
Gretton et al., 2009; Sugiyama et al., 2007]. Importance
sampling to address label shift has also been investigated
[Storkey, 2009], notably with kernel mean matching [Zhang
et al., 2013]. Recently, a scheme for estimating labels dis-
tribution ratio with consistency guarantee has been proposed
[Lipton et al., 2018]. Learning domain invariant represen-
tations has also been investigated in the fold of [Ganin and
Lempitsky, 2015; Long et al., 2015] and mainly differs by the
metric chosen for comparing distribution of representations.

Using both weights and representations is also an active
topic [Cao et al., 2018b; You et al., 2019]. Our work shares
strong connections with [Combes et al., 2020] which uses
consistent estimation of true labels distribution from [Lipton
et al., 2018]. We suggest a very similar empirical evalua-
tion and we also investigate the effect of weights on CDAN
loss [Long et al., 2018] with a different weighting scheme
since our approach computes weights in the representation
space. All these works rely on an assumption at some level,
e.g. Generalized Label Shift in [Combes et al., 2020], when
designing weighting strategies. Our discussion on the role
of inductive design of weights may provide a new theoretical
support for these approaches.

7 Conclusion
The present work introduces a new bound of the target risk
which unifies weights and representations in UDA. We con-
duct a theoretical analysis of the role of inductive bias when
designing both weights and the classifier. In light of this anal-
ysis, we propose a new learning procedure which leverages
two weak inductive biases, respectively on weights and the
classifier. To the best of our knowledge, this procedure is
original while being close to straightforward hybridization
of existing methods. We illustrate its effectiveness on two
benchmarks. The empirical analysis shows that weak induc-
tive bias can make adaptation more robust even when stressed
by strong label shift between source and target domains. This
work leaves room for in-depth study of stronger inductive
bias by providing both theoretical and empirical foundations.
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