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Abstract

The Column Subset Selection Problem (CSSP) and
the Nyström method are among the leading tools
for constructing interpretable low-rank approxima-
tions of large datasets by selecting a small but rep-
resentative set of features or instances. A funda-
mental question in this area is: what is the cost of
this interpretability, i.e., how well can a data subset
of size k compete with the best rank k approxima-
tion? We develop techniques which exploit spectral
properties of the data matrix to obtain improved ap-
proximation guarantees which go beyond the stan-
dard worst-case analysis. Our approach leads to
significantly better bounds for datasets with known
rates of singular value decay, e.g., polynomial or
exponential decay. Our analysis also reveals an in-
triguing phenomenon: the cost of interpretability
as a function of k may exhibit multiple peaks and
valleys, which we call a multiple-descent curve. A
lower bound we establish shows that this behav-
ior is not an artifact of our analysis, but rather it
is an inherent property of the CSSP and Nyström
tasks. Finally, using the example of a radial basis
function (RBF) kernel, we show that both our im-
proved bounds and the multiple-descent curve can
be observed on real datasets simply by varying the
RBF parameter.

1 Introduction
We consider the task of selecting a small but representative
sample of column vectors from a large matrix. Known as
the Column Subset Selection Problem (CSSP), this is a well-
studied combinatorial optimization task with many applica-
tions in machine learning. In a commonly studied variant of
this task, we aim to minimize the squared error of projecting
all columns of the matrix onto the subspace spanned by the
chosen column subset.

*This is an abridged version invited to IJCAI 2021 of a longer
paper with the same title that appeared in NeurIPS 2020 and received
a Best Paper Award.

†Corresponding author.

Definition 1 (CSSP). Given an m × n matrix A, pick a set
S ⊆ {1, ..., n} of k column indices, to minimize

ErA(S) := ‖A−PSA‖2F ,

where ‖ · ‖F is the Frobenius norm, PS is the projection onto
span{ai : i ∈ S} and ai denotes the ith column of A.

Another variant of the CSSP emerges in the kernel setting
under the name Nyström method [Williams and Seeger, 2001;
Drineas and Mahoney, 2005; Gittens and Mahoney, 2016].
We also discuss this variant, showing how our analysis ap-
plies in this context. Both the CSSP and the Nyström method
are ways of constructing accurate low-rank approximations
by using submatrices of the target matrix. Therefore, it is nat-
ural to ask how close we can get to the best possible rank k
approximation error:

OPTk := min
B: rank(B)=k

‖A−B‖2F ≤ min
S: |S|=k

ErA(S).

While the best possible rank k approximation has the low-
est approximation error, the approximated matrix B is not
input-sparse. As such, it is not interpretable since a practi-
tioner is unable to attribute the quality of approximation to
specific physical quantities represented by the columns of the
matrix A [Mahoney and Drineas, 2009]. Such interpretable
dimensionality reduction is desirable in many machine learn-
ing applications. Our goal is to find a subset S of size k
for which the cost of interpretability is small, as measured
by what we call the approximation factor: the ratio between
ErA(S) and OPTk. Furthermore, a brute force search re-
quires iterating over all

(
n
k

)
subsets, which is prohibitively ex-

pensive, so we would like to find our subset more efficiently.
In terms of worst-case analysis, [Deshpande et al., 2006]

gave a randomized method which returns a set S of size k
such that:

E[ErA(S)]

OPTk
≤ k + 1. (1)

While the original algorithm was slow, efficient imple-
mentations have been provided since then [Deshpande and
Rademacher, 2010; Dereziński, 2019]. The method be-
longs to the family of cardinality constrained Determinan-
tal Point Processes (DPPs), and will be denoted as S ∼
k-DPP(A>A); for an overview of DPPs, see Section 2 and
[Dereziński and Mahoney, 2021]. The approximation factor
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Figure 1: Empirical study of the expected approximation factor
E[ErA(S)]/OPTk for a k-DPP with different subset sizes |S| = k,
compared to our theory. We use a data matrix A whose spectrum ex-
hibits two sharp drops, demonstrating multiple-descent. The lower
bounds are based on Theorem 3, whereas, as our upper bound,
we plot the minimum over all Φs(k) from Theorem 1. Note that
multiple-descent vanishes under smooth spectral decay, resulting in
improved guarantees (see Theorem 2).

k+1 is optimal in the worst-case, since for any 0 < k < n ≤
m and 0 < δ < 1, an m× n matrix A can be constructed for
which ErA(S)

OPTk
≥ (1−δ)(k+1) for all subsets S of size k. Yet

it is known that, in practice, CSSP algorithms perform better
than worst-case, so the question we consider is: how can we
go beyond the usual worst-case analysis to accurately reflect
what is possible in the CSSP?

Contributions. We provide improved guarantees for the
CSSP approximation factor, which go beyond the worst-case
analysis and which lead to surprising conclusions.

1. New upper bounds: We develop a family of upper
bounds on the CSSP approximation factor (Theorem 1),
which we call the Master Theorem as they can be used
to derive a number of new guarantees. In particular,
we show that when the data matrix A exhibits a known
spectral decay, then (1) can often be drastically im-
proved (Theorem 2).

2. New lower bound: Even though the worst-case upper
bound in (1) can often be loose, there are cases when
it cannot be improved. We give a new lower bound con-
struction (Theorem 3) showing that there are matrices A
for which multiple different subset sizes exhibit worst-
case behavior.

3. Multiple-descent curve: Our upper and lower bounds re-
veal that for some matrices the CSSP approximation fac-
tor can exhibit peaks and valleys as a function of the sub-
set size k (see Figure 1). We show that this phenomenon
is an inherent property of the CSSP (Corollary 1).

2 Determinantal Point Processes
Since our main results rely on randomized subset selection
via determinantal point processes (DPPs), we provide a brief
overview of the relevant aspects of this class of distributions.
First introduced by [Macchi, 1975], a determinantal point
process is a probability distribution over subsets S ⊆ [n],

where we use [n] to denote the set {1, ..., n}. The relative
probability of a subset being drawn is governed by a posi-
tive semidefinite (p.s.d.) matrix K ∈ Rn×n, as stated in the
definition below, where we use KS,S to denote the |S| × |S|
submatrix of K with rows and columns indexed by S.
Definition 2. For an n × n p.s.d. matrix K, define S ∼
DPP(K) as a distribution over all subsets S ⊆ [n] so that

Pr(S) =
det(KS,S)

det(I + K)
.

A restriction to subsets of size k is denoted as k-DPP(K).
DPPs can be used to introduce diversity in the selected

set or to model the preference for selecting dissimilar items,
where the similarity is stated by the kernel matrix K. DPPs
are commonly used in many machine learning applications
where these properties are desired, e.g., recommender sys-
tems [Warlop et al., 2019], model interpretation [Kim et al.,
2016], text and video summarization [Gong et al., 2014], and
others [Kulesza and Taskar, 2012]. For a recent survey, see
[Dereziński and Mahoney, 2021].

Given a p.s.d. matrix K ∈ Rn×n with eigenvalues
λ1, ... λn, the size of the set S ∼ DPP(K) is distributed as
a Poisson binomial random variable, namely, the number of
successes in n Bernoulli random trials where the probability
of success in the ith trial is given by λi

λi+1 . This leads to a
simple expression for the expected subset size:

E[|S|] =
∑
i

λi
λi + 1

= tr(K(I + K)−1). (2)

Note that if S ∼ DPP( 1
αK), where α > 0, then Pr(S) is

proportional to α−|S| det(KS,S), so rescaling the kernel by a
scalar only affects the distribution of the subset sizes, giving
us a way to set the expected size to a desired value (larger α
means smaller expected size). Nevertheless, it is still often
preferrable to restrict the size of S to a fixed k, obtaining a
k-DPP(K) [Kulesza and Taskar, 2011].

Both DPPs and k-DPPs can be sampled efficiently, with
some of the first algorithms provided by [Hough et al., 2006],
[Deshpande and Rademacher, 2010], [Kulesza and Taskar,
2011] and others. These approaches rely on an eigendecom-
position of the kernel K, at the cost of O(n3). When K =
A>A, as in the CSSP, and the dimensions satisfy m � n,
then this can be improved to O(nm2). More recently, al-
gorithms that avoid computing the eigendecomposition have
been proposed [Dereziński, 2019; Dereziński et al., 2019;
Calandriello et al., 2020; Anari et al., 2016], resulting in run-
ning times of Õ(n) when given matrix K and Õ(nm) for
matrix A, assuming small desired subset size. See [Gautier
et al., 2019] for an efficient Python implementation of DPP
sampling.

The key property of DPPs that enables our analysis is a for-
mula for the expected value of the random matrix that is the
orthogonal projection onto the subspace spanned by vectors
selected by DPP(A>A). In the special case when A is a
square full rank matrix, the following result can be derived
as a corollary of Theorem 1 by [Mutny et al., 2020], and a
variant for DPPs over continuous domains can be found as
Lemma 8 of [Dereziński et al., 2020].
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Lemma 1. For any A and S ⊆ [n], let PS be the projection
onto the span{ai : i ∈ S}. If S ∼ DPP(A>A), then

E[PS ] = A(I + A>A)−1A>.

Lemma 1 implies a simple closed form expression for the
expected error in the CSSP presented next. Here, we use a
rescaling parameter α > 0 for controlling the distribution
of the subset sizes. Note that it is crucial that we are using
a DPP with random subset size, because the corresponding
expression for the expected error of the fixed size k-DPP is
combinatorial, and therefore much harder to work with.

Lemma 2. For any α > 0, if S ∼ DPP( 1
αA
>A), then

E
[
ErA(S)

]
= tr

(
AA>(I + 1

αAA>)−1
)

= E[|S|] · α.

3 Main Results
Our upper bounds rely on the notion of effective dimension-
ality called stable rank [Alaoui and Mahoney, 2015]. Here,
we use an extended version of this concept, as defined by
[Bartlett et al., 2019].

Definition 3 (Stable rank). Let λ1 ≥ λ2 ≥ ... denote the
eigenvalues of the matrix A>A. For 0 ≤ s < rank(A), we
define the stable rank of order s as srs(A) = λ−1s+1

∑
i>s λi.

In the following result, we define a family of functions
Φs(k) which bound the approximation factor ErA(S)/OPTk
in the range of k between s and s + srs(A). We call this the
Master Theorem because we use it to derive a number of more
specific upper bounds.

Theorem 1 (Master Theorem). Given 0 ≤ s < rank(A), let
ts = s+ srs(A), and suppose that s+ 7

ε4 ln2 1
ε ≤ k ≤ ts−1,

where 0 < ε ≤ 1
2 . If S ∼ k-DPP(A>A), then

E[ErA(S)]

OPTk
≤ (1 + 2ε)2 Φs(k),

where Φs(k) =
(
1 + s

k−s
)√

1 + 2(k−s)
ts−k .

Note that we separated out the dependence on ε from the
function Φs(k), because the term (1 + 2ε)2 is an artifact of
a concentration of measure analysis that is unlikely to be of
practical significance. We conjecture that the dependence on
ε can be eliminated from the statement entirely.

We next examine the consequences of the Master Theorem,
starting with a sharp transition that occurs as k approaches the
stable rank of A.

Remark 1 (Sharp transition). For any k it is true that:

1. For all A, if k ≤ sr0(A)−1, then there is a subset S of
size k such that ErA(S)

OPTk
= O(

√
k ).

2. There is A such that sr0(A)−1 < k < sr0(A) and for
every size k subset S, ErA(S)

OPTk
≥ 0.9 k.

Part 1 of Remark 1 follows from the Master Theorem by
setting s = 0, whereas part 2 follows from the lower bound
of [Guruswami and Sinop, 2012]. Observe how the worst-
case approximation factor jumps from O(

√
k ) to Ω(k), as k

approaches sr0(A). An example of this sharp transition is
shown in Figure 1, where the stable rank of A is around 20.

While certain matrices directly exhibit the sharp transition
from Remark 1, many do not. In particular, for matrices with
a known rate of spectral decay, the Master Theorem can be
used to provide improved guarantees on the CSSP approxi-
mation factor over all subset sizes.

To illustrate this, we give novel bounds for the two most
commonly studied decay rates: polynomial and exponential.
Theorem 2 (Examples without sharp transition). Let λ1 ≥
λ2 ≥ ... be the eigenvalues of A>A. There is an absolute
constant c such that for any 0<c1≤c2, with γ = c2/c1, if:

1. (polynomial spectral decay) c1i−p ≤ λi ≤ c2i−p for all i,
with p > 1, then S ∼ k-DPP(A>A) satisfies

E[ErA(S)]

OPTk
≤ cγp.

2. (exponential spectral decay) c1(1−δ)i ≤ λi ≤ c2(1−δ)i
for all i, with δ ∈ (0, 1), then S ∼ k-DPP(A>A) satisfies

E[ErA(S)]

OPTk
≤ cγ(1 + δk).

Note that for polynomial decay, unlike in (1), the approxi-
mation factor is constant, i.e., it does not depend on k. For ex-
ponential decay, our bound provides an improvement over (1)
when δ = o(1). To illustrate how these types of bounds can
be obtained from the Master Theorem, consider the function
Φs(k) for some s > 0. The first term in the function, 1+ s

k−s ,
decreases with k, whereas the second term (the square root)
increases, albeit at a slower rate. This creates a U-shaped
curve which, if sufficiently wide, has a valley where the ap-
proximation factor can get arbitrarily close to 1. This will
occur when srs(A) is large, i.e., when the spectrum of A>A
has a relatively flat region after the sth eigenvalue (Figure
1 for k between 20 and 40). Note that a peak value of some
function Φs1 may coincide with a valley of some Φs2 , so only
taking a minimum over all functions reveals the true approx-
imation landscape predicted by the Master Theorem.

The peaks and valleys of the CSSP approximation factor
suggested by Theorem 1 are in fact an inherent property of the
problem, rather than an artifact of our analysis or the result of
using a particular algorithm. We prove this by constructing a
family of matrices A for which the best possible approxima-
tion factor is large, i.e., close to the worst-case upper bound
of [Deshpande et al., 2006], not just for one size k, but for a
sequence of increasing sizes.
Theorem 3 (Lower bound). For any δ ∈ (0, 1) and 0=k0<
k1<...<kt<n ≤ m, there is a matrix A ∈ Rm×n such that
for any subset S of size ki, where i ∈ {1, ..., t},

ErA(S)

OPTki
≥ (1− δ)(ki − ki−1).

Combining the Master Theorem with the lower bound of
Theorem 3 we can easily provide an example matrix for
which the optimal solution to the CSSP problem exhibits mul-
tiple peaks and valleys. We refer to this phenomenon as the
multiple-descent curve.
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Corollary 1 (Multiple-descent curve). For t ∈ N and δ ∈
(0, 1), there is a sequence 0 < kl1 < ku1 < kl2 < ku2 < ... <
klt < kut and A ∈ Rm×n such that for any i ∈ {1, ..., t}:

min
S:|S|=kli

ErA(S)

OPTkli
≤ 1 + δ, and

min
S:|S|=kui

ErA(S)

OPTkui
≥ (1− δ)(kui + 1).

The Nyström method. We briefly discuss how our results
translate to guarantees for the Nyström mehod, a variant of
the CSSP in the kernel setting which has gained considerable
interest in the machine learning literature [Drineas and Ma-
honey, 2005; Gittens and Mahoney, 2016]. In this context,
rather than being given the column vectors explicitly, we con-
sider the n×n matrix K whose entry (i, j) is the dot product
between the ith and jth vector in the kernel space, 〈ai,aj〉K.
A Nyström approximation of K based on subset S is defined
as K̂(S) = CB†C>, where B is the |S| × |S| submatrix of
K indexed by S, whereas C is the n × |S| submatrix with
columns indexed by S.
Remark 2. If K = A>A and ‖ · ‖∗ is the trace norm, then∥∥K − K̂(S)

∥∥
∗ = ErA(S) for all S ⊆ {1, ..., n}. Moreover,

the trace norm error of the best rank k approximation of K,
is equal to the squared Frobenius norm error of the best rank
k approximation of A, i.e.,

min
K̂: rank(K)=k

‖K− K̂‖∗ = OPTk.

4 Empirical Evaluation
In this section, we provide an empirical evaluation designed
to demonstrate how our improved guarantees for the CSSP
and Nyström method, as well as the multiple-descent phe-
nomenon, can be easily observed on real datasets. We use
a standard experimental setup for data subset selection using
the Nyström method [Gittens and Mahoney, 2016], where an
n×n kernel matrix K for a dataset of size n is defined so that
the entry (i, j) is computed using the Gaussian Radial Basis
Function (RBF) kernel: 〈ai,aj〉K = exp(−‖ai−aj‖2/σ2),
where σ is a free parameter. We are particularly interested
in the effect of varying σ. Nyström subset selection is per-
formed using S ∼ k-DPP(K) (Definition 2), and we plot
the expected approximation factor E[‖K − K̂(S)‖∗]/OPTk
(averaged over 1000 runs), where K̂(S) is the Nyström ap-
proximation of K based on the subset S, ‖ · ‖∗ is the trace
norm, and OPTk is the trace norm error of the best rank k ap-
proximation. This task is equivalent to the CSSP task defined
on the matrix A such that K = A>A.

The aim of our empirical evaluation is to verify the follow-
ing two claims motivated by our theory (and to illustrate that
doing so is as easy as varying the RBF parameter σ):

1. When the spectral decay is sufficiently slow/smooth, the
approximation factor for CSSP/Nyström is much better
than suggested by previous worst-case bounds.

2. A drop in spectrum around the kth eigenvalue results in
a peak in the approximation factor near subset size k.
Several drops result in the multiple-descent curve.
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Figure 2: Top plot shows the Nyström approximation factor E[‖K−
K̂(S)‖∗]/OPTk, where S ∼ k-DPP(K) for the eunite2001 Lib-
svm dataset (σ is the RBF parameter). Error bars show three times
the standard error of the mean over 1000 trials. Bottom plot shows
the spectral decay for the top 40 eigenvalues of the kernel K. Note
that the peaks in the approximation factor align with the drops in the
spectrum.

In Figure 2 (top), we plot the approximation factor against the
subset size k (in the range of 1 to 40) for a benchmark regres-
sion dataset eunite2001 from the Libsvm repository [Chang
and Lin, 2011]. In Figure 2 (bottom), we also show the top
40 eigenvalues of the RBF kernel K in decreasing order, for
three different values of the parameter σ.

The dataset eunite2001 (Figure 2) exhibits a full multiple-
descent curve with up to three peaks for large values of σ (see
top plot), and the peaks are once again aligned with the spec-
trum drops (see bottom plot). Decreasing σ gradually elimi-
nates the peaks, resulting in a uniformly small approximation
factor. Thus, both of our theoretical claims can easily be ver-
ified on this dataset simply by adjusting the RBF parameter.

While the right choice of the parameter σ ultimately de-
pends on the downstream machine learning task, it has been
observed that varying σ has a pronounced effect on the spec-
tral properties of the kernel matrix, [Gittens and Mahoney,
2016]. The main takeaway from our results here is that, de-
pending on the structure of the problem, we may end up in
the regime where the Nyström approximation factor exhibits
a multiple-descent curve (e.g., due to a hierarchical nature of
the data) or in the regime where it is relatively flat.
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