
Successor-Invariant First-Order Logic on Classes of Bounded Degree
(Extended Abstract)

Julien Grange
Université de Rennes 1
julien.grange@inria.fr

Abstract
We study the expressive power of successor-
invariant first-order logic, which is an extension of
first-order logic where the usage of a successor re-
lation on the vertices of the graph is allowed, as
long as the validity of formulas is independent on
the choice of a particular successor.
We show that when the degree is bounded,
successor-invariant first-order logic is no more ex-
pressive than first-order logic.

1 Introduction
1.1 The Notion of Invariance
The notion of order-invariance is a very natural one. For in-
stance, when writing down a set by extension (i.e. as a list of
all its elements), one has to choose a particular order in which
those elements are to appear. The sole purpose of this order,
however, is to comply to the linear constraint of writing on a
piece of paper; one can write the same elements in a different
order without affecting the nature of the represented set. In
this sense, one sees that the definition by extension of a set is
independent of the order.

To see how this remark applies to computation theory, let
us consider a Turing machineM deciding a graph problem.
Of course, M doesn’t directly work on abstract graphs, but
rather on their representations, e.g. their adjacency matrices.
A single graph can have many distinct representations, how-
everM decides a graph problem; hence it must either accept
all of these representations, or reject all of them.

The translation of this idea to logic yields the notion of in-
variant logics. Starting from some logic (let’s say first-order
logic, FO) on the vocabulary of graphs, consisting of a sin-
gle binary predicate, we allow sentences to use (through the
addition of another binary predicate <) a linear order on the
vertices of the graphs, provided that given a finite graph, such
a sentence is either always true no matter what order we are
given on its vertices, or always false. This indeed corresponds
to the previous idea that, while we would like our sentences
to make the most out of the way a graph is represented, i.e.
not only as an abstract structure (as it is usually though of in
logic) but as one of its adjacency matrices, we still want to
express properties of graphs, which must be independent of

any particular representation. Order-invariant FO,< -inv FO,
is precisely the set of sentences that use the additional order
in an invariant fashion.

One might want to restrict the power of the additional re-
lation. A way to do this is not to grant a complete access to
a linear order on the vertices, but only to the successor re-
lation associated to such an order. This yields Succ-inv FO,
successor-invariant first-order logic.

1.2 Motivations
To illustrate the relevance of these invariant logics in com-
puter science, let’s see how they appear in database theory
and in descriptive complexity.

In database theory, one studies the set of queries which
are expressible in a given language (i.e. a logic, if we look
at databases as relational structures). Given that a real-world
database is stored on disk, one can infer an order on the ele-
ments of the database from the specifics of the disk. If one is
to use this order in their queries, one should be cautious: this
order is orthogonal to the semantics, thus it would be unde-
sirable if the queries were to depend upon it. This would in
particular entail that upon a copy of the database (which has
no reason to preserve the order on disk), the same query may
yield different results on two instances of the same database.
The queries that are harmless in this regard are precisely the
order- or successor-invariant ones.

Descriptive complexity aims at establishing correspon-
dences between complexity classes, defined as classes of
problems that can be solved with some limitations on the
space/time resources available to a Turing machine, and log-
ics in which these problems can be defined. It turns out in-
variance is central in this matter, as one may already sus-
pect when looking at our introductory example, where invari-
ance captures the notion of independence wrt. the representa-
tion of objects on a Turing machine’s tape. For instance, the
Immerman-Vardi Theorem [Immerman, 1986] states that the
problems in PTIME are exactly those which can be described
in Succ-inv LFP, where LFP is defined from FO by the addi-
tion of a least-fixed-point operator. Note that this correspon-
dence doesn’t yield a logic for PTIME, as the successor- and
order-invariant expansions of LFP (and FO) don’t have a re-
cursive syntax. In this context, sharpening our intuition of in-
variant expansions (and finding recursive formalisms having

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4775

the same expressive power) could have direct implications on
our understanding of classical complexity classes.

1.3 The Expressive Power of Invariance
Now that we have seen several motivations to these defini-
tions, let us take a look at the expressive power of our two
formalisms, < -inv FO and Succ-inv FO.

Given that the order (resp. successor) at hand must be used
only in an invariant way, it is not obvious whether these ex-
pansions grant any additional expressive power to plain FO.
Perhaps surprisingly, it turns out that some properties beyond
the scope of FO are now definable; see Section 5.2 of [Libkin,
2004] for an example due to Gurevich separating FO from
< -inv FO, and [Rossman, 2007] for the strengthened result
that on finite structures, Succ-inv FO is strictly more expres-
sive than FO.

It is interesting to note that the two examples above, as
well as the few other known separating examples, are based
on dense classes of structures. Two natural questions arise at
this point:

1. does the addition of an invariant order or successor
still bring expressive power to FO on sparse classes of
graphs (e.g. on classes of bounded degree, bounded
treewidth, etc.)?

2. on a given class of graphs, can we find a logic that
has the same expressive power as < -inv FO and
Succ-inv FO?

As we have discussed previously, these questions have im-
portant counterparts both in complexity and database theory.

Some progress has been made toward answering these
questions. In particular, it has been shown that < -inv FO
(hence Succ-inv FO too) collapses to FO on trees [Benedikt
and Segoufin, 2009] and on hollow trees [Grange and
Segoufin, 2020]. On classes of bounded degree and in the set-
ting of decomposable structures (which includes the case of
classes of bounded treewidth), it is known that Succ-inv FO
and < -inv FO are included (in the sense of their expressive
power) in MSO [Benedikt and Segoufin, 2009; Elberfeld et
al., 2016].

In the present paper, we take a step towards these goals by
proving that when the degree is bounded, Succ-inv FO has
the same expressive power as FO.

2 The Collapse and (an Overview of) its Proof
Let us now dive into the specifics of our result. We state
the main theorem in Section 2.1 after introducing formally
Succ-inv FO. In the subsequent sections, we give an overview
of the successive steps of the proof.

In this extended abstract, we will only consider finite
graphs (seen as structures over the binary predicate E); the
results presented here can obviously be extended without dif-
ficulty to the general case of finite relational structures.

2.1 Definition of Succ-inv FO
A binary relation on a finite set X is a successor relation
on X if it is the graph of a circular permutation of X , i.e.
a bijective function from X to X with a single orbit. This

differs from the standard notion of successor in that there is
neither minimal nor maximal element; this is convenient, as
these are two irregularities with which we won’t have to deal.
Note that this choice doesn’t have any impact on the expres-
sive power of Succ-inv FO, as both notions of successors are
interdefinable in FO.

We use the standard definition of first-order logic FO(Σ),
the vocabulary Σ being either {E} or {E,S}, where the bi-
nary predicate E is the edge predicate, and the binary pred-
icate S is our successor predicate. Following the tradition
in logic, we denote our structures (i.e. our graphs) by cal-
ligraphic upper-case letters, while their universes (i.e. their
vertex set) are denoted by the corresponding standard upper-
case letters; for instance, G is the vertex set of the graph G. A
graph G with a successor relation S on its vertices, seen as an
{E,S}-structure, will be denoted as (G, S). For convenience,
we sometimes identify a predicate and its interpretation in a
structure.
Definition 1 (Succ-inv FO). A sentence ϕ ∈ FO({E,S}) is
said to be successor-invariant if for every finite graph G, and
every successor relations S1 and S2 on G, (G, S1) |= ϕ iff
(G, S2) |= ϕ. We can then omit the interpretation for the
predicate S, and if (G, S) |= ϕ for any (every) successor S,
we write G |= ϕ.

The set of successor-invariant sentences is denoted
Succ-inv FO.

In what follows, we only consider finite graphs: if we re-
quire a sentence to be successor-invariant on every finite and
infinite graph, the Interpolation theorem ensures that this sen-
tence is equivalent to a sentence which doesn’t use the succes-
sor relation, and the notion of successor-invariance becomes
meaningless.

For a class C of finite graphs, we say that
Succ-inv FO = FO on C

if the properties of C definable in Succ-inv FO and in FO are
the same. In other words, if for every ϕ ∈ Succ-inv FO, there
exists some ϕ̄ ∈ FO such that

∀G ∈ C, G |= ϕ iff G |= ϕ̄ .

The reverse inclusion, i.e. FO ⊆ Succ-inv FO, always holds
and needs no verification.

We are now ready to state our main result:
Theorem 1. For every class C of finite graphs of bounded
degree,

Succ-inv FO = FO on C .
The remainder of this article is dedicated to an overview of

the proof of Theorem 1.

2.2 Overarching Strategy
Let’s consider a class C of finite graphs of degree at most d.

In order to prove that Succ-inv FO ⊆ FO on C, we adopt a
standard strategy. Let’s consider a property of C definable by
a formula ϕ in Succ-inv FO. To prove Theorem 1, we need
to show that FO is able to make a distinction between graphs
that satisfy ϕ and graphs that don’t. It is thus natural to rely
on the well-know notion of FO-similarity, which measures
the point to which two graphs look alike in the eyes of FO.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4776

Definition 2 (FO-similarity). Given two graphs G1 and G2,
we write G1 ≡FO

k G2, and say that that G1 and G2 are FO-
similar at depth k, if G1 and G2 satisfy the same FO-sentences
of quantifier rank at most k. We adopt the same vocabulary
and notation (namely, (G1, S1) ≡FO

k (G2, S2)) for graphs with
successors.

We can now rephrase our goal. Let k be the quantifier rank
of ϕ. We aim to show the existence of a large enough n ∈ N
(which depends on k) such that, given two graphs G1 and G2
of C that are FO-similar at depth n, we are able to construct a
successor relation S1 on G1 and S2 on G2 such that (G1, S1)
and (G2, S2) are FO-similar at depth k; hence, agree on ϕ.

In other words, the property defined by ϕ is also a union
of equivalence classes for ≡FO

n . Finite model theory ensures
that ≡FO

n has finite index and that each one of its classes is
FO-definable; thus the union of FO-sentences defining these
classes in an FO-sentence defining the same property as ϕ.
This concludes the proof that Succ-inv FO ⊆ FO on C.

What remains is to show how to choose n based on k, and
how to construct two successors S1 and S2 which maintain
FO-similarity between G1 and G2.

2.3 Locality
Remember that once we’ve constructed S1 and S2, it will re-
main to show that (G1, S1) and (G2, S2) are FO-similar at
depth k. Proving the similarity of two structures can easily
get out of hand; to ease the reasoning, we rely on the local
behavior of FO.

When the degree is bounded, the expressive power of FO
can be characterized in terms of neighborhoods; basically, FO
can exactly express that in a graph, there is a certain number
of occurrences (up to some threshold) of some subgraphs of
small diameter.

To make this characterization precise, we need to introduce
the notion of neighborhood.
Definition 3 (Neighborhood types). Let A be either a graph
G or a graph with a successor relation (G, S), seen as a Σ-
structure for the appropriate vocabulary Σ.

For r ∈ N and a ∈ A, the r-neighborhood N r
A(a) of a

is the Σ-substructure of A induced by the set of vertices at
(unoriented) distance at most r from a in A. In the case of a
graph with successor, the distance takes into account both E
and S.

The r-neighborhood type τ = tprA(a) of a is the isomor-
phism class of its r-neighborhood. We say that τ is a neigh-
borhood type over Σ, and that a is an occurrence of τ . We
denote by |A|τ the number of occurrences of τ in A, and we
write JAKr =t JBKr to mean that for every r-neighborhood
type τ , |A|τ and |B|τ are either equal, or both larger than t.

With these notions made precise, we can state the Hanf
threshold theorem: given the bound d on the degree and the
integer k, there exist two integers r and t such that

J(G1, S1)Kr =t J(G2, S2)Kr (1)

is enough for our needs; in other words, (1) entails

(G1, S1) ≡FO
k (G2, S2) .

Conversely, for any integer t′, we can set n so that our
hypothesis G1 ≡FO

n G2 entails JG1Kr =t′ JG2Kr.
We have reformulated our problem in the following way:

starting from G1 and G2 that have the same number of occur-
rences (up to a threshold t′) of every r-neighborhood type,
can we construct two successor relations S1 and S2 such that
(G1, S1) and (G2, S2) still have the same number of occur-
rences of each r-neighborhood type (which now take the suc-
cessor relation into account), albeit up to the lesser threshold
t?

The construction of such successor relations is the object
of the following section.

2.4 Fractal Types
We are now in a position to briefly describe how to construct
suitable successor relations S1 and S2.

First, we separate the neighborhood types occurring in G1
and G2 into two categories:

• on the one hand, the rare neighborhood types, which
have few occurrences in G1 and G2 (and thus, that have
the same number of occurrences in both structures, since
JG1Kr =t′ JG2Kr)

• on the other hand, the frequent neighborhood types,
which have many occurrences both in G1 and G2.

The idea is to construct S1 and S2 in the most regular
way possible. In an ideal world, one would be able to con-
struct those successor relations such that tpr(Gε,Sε)

(a), for
ε ∈ {1, 2}, is completely determined by tprGε

(a). This would
ensure, as desired, that J(G1, S1)Kr =t J(G2, S2)Kr.

Of course, there is no hope to find such regular Sε in gen-
eral, but the heart of the construction is to make sure that most
neighborhoods follow this behavior.

Let’s consider a frequent neighborhood type τ . By defini-
tion, it has enough occurrences in G1 and G2 so that we can
make sure that (almost everywhere) the Sε-successor and -
predecessor of an element of type τ in Gε also have type τ .
On top of that, we have enough occurrences of τ to make
sure that Sε only links vertices that are far enough from one
another in the graph.

This very regular neighborhood type is called the fractal
type of τ .

This is depicted in Figure 1. Note that we require that there
is no intersection between neighborhoods of Gε appearing in
the same fractal neighborhood in (Gε, Sε); this is what gives
to fractal neighborhoods their “layered” aspect.

We now know how to deal with most frequent neighbor-
hoods in a regular way. However, there still remain two kind
of singularities for us to deal with.

First, we have to deal with occurrences of rare neighbor-
hood types. By definition, there are only a small number of
such occurrences. Hence we can “hide” them among occur-
rences of a given frequent neighborhood type, of which there
are many more. This will allow us to give the same treatment
to occurrences of rare neighborhood types in G1 and in G2, so
that their extended type in (G1, S1) and (G2, S2) are the same.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4777

a•

•

•

b•

••

•

•

τ

τ|r−1

τ|r−1

χ|r−s

χ|r−s−1

s

Figure 1: Partial representation of the fractal type of the frequent
r-neighborhood τ around a vertex a. The vertical arrows represent
Sε, while horizontal planes are neighborhoods in Gε.

Then, we also have to take care of the junctions between
the frequent types: if there exist at least two frequent types,
then at some point, an occurrence of some frequent type will
have for successor an occurrence of another frequent type. If
handled with a bit of care (in particular, by always respecting
the layering), this does not cause any issue, as we can make
sure that those junctions are treated similarly in G1 as in G2.

We illustrate this process by considering a situation where
there are three frequent neighborhood types τ0, τ1 and τ2, and
one rare neighborhood type χ with two occurrences in G1 and
G2. At the end of the construction, Sε will (mostly) look like
in Figure 2, where the relations of Gε have been omitted and
the arrows represent Sε, which is indeed a circular successor.

Note that all the elements of neighborhood type τ1 form
a segment wrt. Sε, as well as all the elements of neighbor-
hood type τ2. The first frequent neighborhood type, τ0, has
a special role in that it is used to embed all the elements of
rare neighborhood type (here, χ). Furthermore, and this is
not apparent in the figure, two successive elements for Sε are
always distant in Gε.

In the end, we have constructed S1 and S2 in such a way
that r-neighborhood types created in (G1, S1) and (G2, S2)
are the same, and occur the same number of times (up to the
threshold t).

As we have seen in Sections 2.2 and 2.3, this is enough
to ensure that G1 and G2 agree on ϕ, and in turn that
Succ-inv FO ⊆ FO on C, thus concluding the proof of Theo-
rem 1.

3 Conclusion
We have shown that, when the degree is bounded,
Succ-inv FO has the same expressive power as plain FO.

There are two main directions in which one could look to
extend the present result. One possibility would be to keep
looking at classes of bounded degree while climbing up in
the ladder of expressive power, and ask whether < -inv FO
collapses to FO as well on these classes of graphs. New tech-
niques would be needed, as contrary to what was the case

τ0

τ0

τ0

χ

χ

τ1

τ2

•

•

•

•
•

•
•

•••••
•

•
•

•

•

•

•

•

•

•
•
•
•
• • • • •

•
•
•
•

•

•

}

}

}

}
}

}

Figure 2: Illustration of Sε when there are three frequent neighbor-
hood types (τ0, τ1, τ3) and one rare neighborhood type (χ) in Gε.
The elements of rare neighborhood type are surrounded by occur-
rences of the first frequent neighborhood type, τ0. Junction elements
are circled.

with a successor relation, the addition of an order doesn’t
preserve the bounded degree property. Furthermore, even if
< -inv FO = FO in this setting, it is not clear whether such
orders can be directly constructed. It may be necessary to
construct, as in [Benedikt and Segoufin, 2009], a chain of in-
termediate graphs and orders.

Alternatively, we could change the setting, and study the
expressive power of Succ-inv FO on other sparse classes of
graphs, e.g. on classes of bounded treewidth. Note that the
task of constructing appropriate successor relations without
any bound on the degree seems much harder; this property
was what guaranteed that we could find elements of a given
frequent neighborhood type far from each other.

We leave these questions for further research.

References
[Benedikt and Segoufin, 2009] Michael Benedikt and Luc

Segoufin. Towards a characterization of order-invariant
queries over tame graphs. J. Symb. Log., 2009.

[Elberfeld et al., 2016] Michael Elberfeld, Marlin Fricken-
schmidt, and Martin Grohe. Order invariance on decom-
posable structures. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science,
LICS, 2016.

[Grange and Segoufin, 2020] Julien Grange and Luc
Segoufin. Order-Invariant First-Order Logic over Hollow
Trees. In 28th EACSL Annual Conference on Computer
Science Logic (CSL 2020). Schloss Dagstuhl, 2020.

[Immerman, 1986] Neil Immerman. Relational queries com-
putable in polynomial time. Inf. Control., 1986.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4778

[Libkin, 2004] Leonid Libkin. Elements of Finite Model
Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

[Rossman, 2007] Benjamin Rossman. Successor-invariant
first-order logic on finite structures. J. Symb. Log., 2007.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

4779

	Introduction
	The Notion of Invariance
	Motivations
	The Expressive Power of Invariance

	The Collapse and (an Overview of) its Proof
	Definition of Succ-inv FO
	Overarching Strategy
	Locality
	Fractal types

	Conclusion

