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Abstract

Recommender systems personalize content by rec-
ommending items to users. Item recommendation
algorithms are evaluated by metrics that compare
the positions of truly relevant items among the rec-
ommended items. To speed up the computation of
metrics, recent work often uses sampled metrics
where only a smaller set of random items and the
relevant items are ranked. This paper investigates
such sampled metrics and shows that they are in-
consistent with their exact counterpart, in the sense
that they do not persist relative statements, e.g., rec-
ommender A is better than B, not even in expecta-
tion. We show that it is possible to improve the
quality of the sampled metrics by applying a cor-
rection. We conclude with an empirical evaluation
of the naive sampled metrics and their corrected
variants. Our work suggests that sampling should
be avoided for metric calculation, however if an
experimental study needs to sample, the proposed
corrections can improve the estimates.

1 Introduction

Item recommendation is, at its core, a retrieval task, where
given a context, a catalogue of items is ranked and the top
scoring ones are shown to the user. Ranking all items can
be costly for large catalogues. Recently, it has become com-
mon in research papers to speed up evaluation by only rank-
ing a small subset, consisting of the relevant items together
with a random sample of irrelevant ones [He et al., 2017;
Ebesu et al., 2018; Hu et al., 2018; Yang et al., 2018b;
Yang et al., 2018a; Krichene er al., 2019; Wang er al., 2019].
While sampled training is well-studied [Yu et al., 2017], to
the best of our knowledge, the implications of sampled eval-
uation have not been explored, and this work attempts to
shed light on the topic. In particular, we show that findings
from sampled metrics (even in expectation) can be inconsis-
tent with exact metrics. This means that if a recommender A
outperforms a recommender B on a sampled metric, this does
not imply that A has a better metric than B when the metric is
computed exactly. This problem occurs even in expectation;
i.e., with unlimited repetitions of the measurement. More-
over, the smaller the sample size, the less difference there is
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between different metrics, and in the small sample limit, all
metrics collapse to the area under the ROC curve (AUC). This
is particularly problematic because many ranking metrics are
designed to focus on the top positions, which is not the case
for AUC.

Our analysis suggests that if a study is really interested in
metrics that emphasize the top ranked items, sampling candi-
dates should be avoided for the purposes of evaluation, and if
the size of the problem is such that sampling is necessary, cor-
rected metrics can provide a more accurate evaluation. Lastly,
if sampling is used, readers should be aware that the reported
metric has different characteristics than its name implies.

2 Evaluating Item Recommendation

We briefly recap the evaluation scheme for item recommen-
dation that we investigate in this work. Let there be a pool
of n items to recommend from. For a given instance' x, a
recommendation algorithm, A, returns a ranked list of the n
items. In an evaluation, the position, r(A,x) € {1,...,n},
of the withheld relevant item within this ranking is computed
— r will also be referred to as the predicted rank®. For ex-
ample, 7(A,x) = 3 means for an instance x recommender
A ranked the relevant item at position 3. Then, a metric M
translates the predicted rank into a quality value. This process
is repeated for a set of instances, D, and an average metric is
reported: ﬁ > xep M(r(A,x)). For convenience, we will
omit the arguments A, x from (A4, x) whenever the particu-
lar recommender, A, or instance, x, is clear from context. We
now recap some popular examples for metrics M:
n—r

AUC(r), = "L (1)
Prec(r)ic = (r < h)7 @)
Recall(r), = 0(r < k), 3)
AP(r) = 0(r < F). @
NDCG(r)g = 6(r < k) ——— 5)

= Piogalr+ 1)

'E.g., a user, context, or query.

For simplicity, we focus on the case where there is only one
relevant item. See [Krichene and Rendle, 2020] for a more general
case.
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Figure 1: Visualization of metric vs. predicted rank for n = 10, 000. The left side shows the metrics over the whole set of 10, 000 items. The
right side zooms into the contributions of the top 100 ranks. All metrics besides AUC are top heavy and almost completely ignore the tail.
This is usually a desirable property for evaluating ranking because users are unlikely to explore items further down the result list.

For metrics such as Average Precision and NDCG, it makes
sense to also define their untruncated counterpart, i.e., for
k = n: AP(r) = 1 and NDCG(r) = foas Ty~ Figure 1
visualizes how the different ranking metrics trade-off the po-
sition vs. quality score. Average precision has the sharpest
score decay, e.g., rank 1 is twice as valuable as rank 2,
whereas for NDCG, rank 1 is 1.58 more valuable than rank 2.
The least position-aware metric is AUC, which places a linear
decay on the rank; e.g., improving the ranking of a relevant
item from position 101 to 100 is as valuable as an improve-
ment from position 2 to 1. Table 1 shows a toy example for
an evaluation.

3 Sampled Metrics

Ranking all items is expensive when the number of items, n,
is large. Recently, it has become common to rank only a small
set, consisting of the relevant item together with a random
sample of m irrelevant ones. Let 7 be the rank of the relevant
item within this random set — note that 7 is a random variable.
The metric, M, is then computed on 7 instead of . Examples
of work that use this sampling protocol include [He et al.,
2017; Ebesu et al., 2018; Hu et al., 2018; Yang et al., 2018b;
Yang et al., 2018a; Krichene et al., 2019; Wang et al., 2019].

3.1 Inconsistency of Sampled Metrics

A central goal of evaluation metrics is to make compar-
isons between recommenders, such as, recommender A has
a higher value than B on metric M. When comparing rec-
ommenders among sampled metrics, we would hope that at
least the relative order is preserved in expectation. This prop-
erty can be formalized as follows.

Definition 1. Let the evaluation data D be fixed. A metric M
is consistent under sampling if the relative order of any two

recommenders A and B is preserved in expectation. That is,
forall A, B,

1 1
157 2 M) > 157 3 MO(B.)
1 _ 1 _
~— E 0] ng(r(A,x)) >E 3] );)M(T(B,x))

(6)
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If a metric is inconsistent, then measuring M on a subsam-
ple is not a good indicator of the true performance of M.

We illustrate this on our toy example. Table 2 shows the
sampled metrics for the example from Table 1. An evaluation
with a sampled metric is a random process, so for a better
understanding of its outcome, we repeat the evaluation 1000
times and report the average and standard deviation. Com-
pared to the exact metrics in Table 1, the relative ordering of
metrics changed. On the exact metrics, C is clearly the best
with a 10x higher average precision than B and A. But it has
the lowest average precision when sampled measurements are
used. A and B perform the same on the exact metrics, but
A has a 2x better average precision on the sampled metrics.
Sampled average precision does not give any indication of the
true ordering among the methods. Similarly, sampled NDCG
and sampled Recall at 10 do not agree with the exact metrics.
Only AUC is consistent between sampled and exact compu-
tation. The other metrics are inconsistent.

Figure 2 shows the same study as in the previous table, as
we vary the number of samples, m. The relative ordering of
recommenders changes with an increasing sample size. For
example, for average precision, depending on the number of
samples, any conclusion could be drawn: A better than C bet-
ter than B (for sample size < 50), A better than B better than
C (for sample size ~ 200), C better than A better than B (for
sample size ~ 500), and finally C better than A equal B (for
large sample sizes). This example shows that the bias of sam-
pled average precision is recommender dependent and sample
size dependent. This is why the relative ordering of recom-
menders changes as we change the sample size. Only AUC is
consistent for all m, and the expected metric is independent
of sample size.

3.2 Rank Distribution Under Sampling

This section derives the distribution of the sampled rank 7

and discusses expected metrics. When an irrelevant item is

sampled uniformly, it can either rank higher or lower than

the relevant item. If the number of all items is n, then the
probability that the sampled item j is ranked above r is:

r—1

| < 7)) = ——. 7

pij<r)=—— (7

For example, if r is at position 1, the likelihood of a random

irrelevant being ranked higher is 0. If » = n, then the like-
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Predicted Ranks AUC AP | NDCG | Recall@10
A | 100, 100, 100, 100, 100 0.990 | 0.010 0.150 0.000
B | 40, 40, 8437, 9266, 4482 | 0.555 | 0.010 0.122 0.000
C | 212, 2,743, 5342, 1548 0.843 | 0.101 0.208 0.200

Table 1: Toy example of evaluating three recommenders A, B and C on five instances and n = 10, 000 items. A predicted rank is the position
where a relevant item was ranked by a recommender. Recommender C that has one highly ranked relevant item performs the best on the top
heavy metrics AP, NDCG and Recall@10, while recommender A where relevant items score neither high nor low performs best on AUC.

Predicted Ranks AUC AP NDCG | Recall@10
A | 100, 100, 100, 100, 100 0.990-+0.004 | 0.630+0.129 | 0.724+0.097 | 1.000+0.000
B | 40, 40, 8437, 9266, 4482 | 0.555+0.014 | 0.336+0.073 | 0.444+0.054 | 0.400+0.000
C | 212,2,743,5342, 1548 0.843+0.014 | 0.325+0.050 | 0.460+0.039 | 0.567+0.092

Table 2: Metrics for the sampled evaluation protocol for the recommenders from Table 1. m = 99 random irrelevant items are sampled, the
position 7 of the relevant item among this sampled subset is found, and then the metrics are computed for the rank 7 within the subsample.
As can be seen, on sampled metrics the relative ordering of recommenders A, B, C is not preserved, except for AUC.

lihood is 1. Note that the pool of all possible sampled items
excludes the truly relevant item and thus has size n — 1.
Repeating the sampling procedure m times with replace-
ment and counting how often an item is ranked higher, cor-
responds to a Binomial distribution. In other words, the
rank 7 obtained from the sampling process follows 7 ~

B (m, ;_ﬁ) + 1. If there are no successes in getting a higher

ranked item, the rank is 1, if all m samples are successful, the
rank is m + 1. The expected value of the metrics under this
distribution is

m—+1

EM@) = 3 pl = i) M(i). (®)

i=1
Note that this is implicitly a function of r, m and n, which
appear as parameters of the Binomial distribution. Figure 3
visualizes the expected metrics F'(M (7)) as we vary r. The
figure highlights the weight that the sampled metric assigns
to different ranks. Metrics like Average Precision or NDCG
are much less top heavy. Even sharp metrics such as recall
become smooth. Only AUC remains unchanged. In general,
all metrics converge to a linear function in the small sample
limit, similar to AUC behavior. The observations are sup-
ported by a formal analysis in [Krichene and Rendle, 2020].

4 Corrected Metrics

This section investigates whether we can design a sampled
metric M, a function from {1,...,m + 1} to R, such that
M (7) provides a good estimate of M ().

4.1 Unbiased Estimator of the Rank

Our first approach is motivated by a simple observation. The
sampled metrics that are commonly used are obtained by
applying the exact metric M to the observed rank 7, i.e.
M (7) = M (7). But 7 is a poor estimate of the true rank r, in
fact it always under-estimates it. Instead, one can measure the
metric not on the observed rank 7, but on an unbiased estima-

tor of r. Recall from Section 3.2 that 7|r ~ B (m r—1 ) +1.

' n—1
r—1

n—12

If we let p :=

then an unbiased estimator of p is given
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by % Thus an unbiased estimator of » = 1+ (n — 1)p
(n=1)(F=1)
m

is given by 7 := 1 +
following corrected metric:

]\Z/(f)zM(l—k(n_l)(f_l)). ©)

m

. This motivates using the

Since the rank estimate is a real number in [1, 7], and the
original metric M is only defined on natural numbers, we can
either round the rank estimate or extend M using e.g. linear
interpolation. In our experiments, we round using floor |- |.

4.2 Bias-Variance Trade-off

Another criterion one may seek to optimize is the average bias
of M(7), that is, 3, (E[M(7)|r] — M(r))2. One potential
issue with the minimal bias estimator is that it could have
high variance, which we observe numerically in Section 5. In
order to alleviate this problem, we can introduce a variance
term. Since M is a function from {1,...,m + 1} to R, M
can equivalently be viewed as a vector in R™*1, Thus we
seek to find a vector M that minimizes the following bias-
variance trade-off

argmin Z ((E[]\Zfﬂr] — M(r))* + 'yVar[M;h’]) , (10)

MeR™+1 . _q
where « is a positive constant that controls the trade-off.
Eq. (10) is a regularized least squares problem with a closed
form solution, see [Krichene and Rendle, 2020] for additional
discussion.

S Experiments

In [Krichene and Rendle, 2020], an experimental study is per-
formed on instances of real recommender algorithms and a
real dataset. We summarize some of the findings here and re-
fer to the full paper for details. The study uses the sampled
item recommendation evaluation protocol from [He ef al.,
2017]. The data comes from the movie recommender Movie-
lens [Harper and Konstan, 2015] where users rate movies.
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Figure 2: Expected sampled metrics for the running example (Tables 1 and 2) while increasing the sample size. For Average Precision, NDCG
and Recall, even the relative order of recommender performance changes with the number of samples. That means, conclusions drawn from
a subsample are not consistent with the true performance of the recommender.
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Figure 3: Characteristics (compare to Fig 1) of sampled metrics with a varying number of samples, m. Sampled Average Precision, NDCG
and Recall change their characteristics substantially compared to exact computation of the metric. Even large sample sizes (m = 1000
samples of n = 10000 items) show large bias. Note this plot zooms into the top 1000 ranks out of n = 10000 items.

Rank distribution. We find that real algorithms may result
in different rank distributions, for example in the experiment,
one of the recommenders is best in the top 10 but has poorer
performance at higher ranks, while another recommender is
more balanced and puts only few items at poor ranks.

Sampled Metrics. The experiment confirms that sampled
metrics can become inconsistent with their exact counterpart.
We find that uncorrected sampled metrics have low standard
deviation, so the issue is not that of variance, but is due to
the bias in the sampled metrics. In particular, for the rec-
ommender instances in the experiments, if the study would
compare the recommenders only on the sampled metrics, it
would draw the wrong conclusion for top-heavy metrics such
as Recall, NDCG and AP, even with unlimited repetitions of
the experiment. The worst recommender would be found to
be the best one.

Corrected Metrics. Finally, the study shows that correc-
tion strategies proposed in Section 4 improve the metric es-
timates. Even though they often have an increased variance,
corrected metrics are better at identifying the true order of
algorithms. We repeat measurements and report the propor-
tion of times the correct order is identified by each method
and for each pairwise comparison, and find that despite the
higher variance, corrected metrics have a higher success rate.
In particular, the simple rank estimate (eq. 9), while trivial to
implement (i.e., upscaling the rank before applying the met-
ric), already gives a notable improvement. Other corrections
such as bias-variance (eq. 10) yield better results, but can
be more difficult to implement and apply because the bias-
variance trade-off v needs to be configured carefully.

6 Concluding Remarks

This work seeks to bring attention to some issues with sam-
pling of evaluation metrics for item recommendation. It has
shown that most metrics are inconsistent under sampling and
can lead to false discoveries. Moreover, metrics are usually
motivated by applications, e.g., does the top 10 list contain a
relevant item? Sampled metrics do not measure the intended
quantities — not even in expectation. This is mostly due to the
large bias introduced by sampling.

For this reason, sampling should be avoided as much as
possible during evaluation. If an experimental study needs to
sample, we propose correction methods that give a better esti-
mate of the true metric, however at the cost of increased vari-
ance. In this case it is important to rerun the experiment with
different samples (e.g., different random seeds). Common
practices already have several sources of variance (e.g. due
to dataset splits, random initialization), and corrected met-
rics will introduce another source of variance. This means
that it may be harder to find “statistically significant” differ-
ences between two recommenders. While corrected metrics
are preferable to uncorrected ones, it is important to keep in
mind that they are still prone to either not identifying differ-
ences (due to variance) or drawing false conclusions because
of the bias. This bias can only be eliminated by avoiding
sampling altogether.
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