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Abstract
Top-k maximum inner product search (MIPS) is a
central task in many machine learning applications.
This work extends top-k MIPS with a budgeted set-
ting, that asks for the best approximate top-k MIPS
given a limited budget of computational operations.
We study recent advanced sampling methods, in-
cluding wedge and diamond sampling, to solve bud-
geted top-k MIPS. First, we theoretically show that
diamond sampling is essentially a combination of
wedge sampling and basic sampling for top-k MIPS.
Second, we propose dWedge, a simple deterministic
variant of wedge sampling for budgeted top-k MIPS.
Empirically, dWedge provides significantly higher
accuracy than other budgeted top-k MIPS solvers
while maintaining a similar speedup.

1 Introduction
Maximum inner product search (MIPS) is the task of, given a
point set X ⊂ Rd of size n and a query point q ∈ Rd, finding
the point p ∈ X such that,

p = argmax
x∈X

x>q .

MIPS and its variant top-k MIPS, which finds the top-
k largest inner product points with a query, are central
tasks in the retrieval phase of standard collaborative filter-
ing based recommender systems [Cremonesi et al., 2010;
Koren et al., 2009]. They are also algorithmic ingredients
in a variety of machine learning tasks, for instance, prediction
tasks on multi-class learning [Dean et al., 2013; Russakovsky
et al., 2015] and neural network [Covington et al., 2016;
Spring and Shrivastava, 2017].

Modern real-world online recommender systems often deal
with very large-scale data sets and a limited amount of re-
sponse time. Such collaborative filtering based systems of-
ten present users and items as low-dimensional vectors. A
large inner product between these vectors indicates that the

∗This is an extended abstract of work published as [Lorenzen
and Pham, 2020], that won the best data mining paper award at the
2020 European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases.

items are relevant to the user preferences. The recommenda-
tion is often performed in the online manner since the user
vector is updated online with ad-hoc contextual information
only available during the interaction [Bachrach et al., 2014;
Koenigstein et al., 2011]. A personalized recommender needs
to infer user preferences based on the online user behav-
ior, e.g. recent search queries and browsing history, as im-
plicit feedback to return relevant results [Hu et al., 2008;
Rendle et al., 2009]. Since the retrieval of recommended
items is only performed online, the result of this task might
not be “perfect” given a small amount of waiting time but its
accuracy should be improved given more waiting time. Hence,
it is challenging to not only speed up the MIPS process, but to
trade the search efficiency for the search quality.

Motivated by the computational bottleneck in the retrieval
phase of modern recommendation systems, we study the bud-
geted MIPS problem, a natural extension of MIPS with an
explicit computational limit for the search efficiency and qual-
ity trade-off. Our budgeted MIPS addresses the following
question:

Given a data structure built in Õ (dn) time 1 and budgeted
computational operations, can we have an algorithm to return
the best approximate top-k MIPS?

To measure the accuracy of approximate top-k MIPS, we
use the search recall, i.e. the empirical probability of retrieving
the true top-k MIPS. In our budgeted setting, we limit the
time complexity of building a data structure to Õ (dn) since
when a context is used in a recommender system, the learning
phase cannot be done entirely offline [Bachrach et al., 2014;
Koenigstein et al., 2011]. In other words, the item vectors are
also computed online and hence a high cost of constructing
the data structure will significantly degrade the performance.

It is worth noting that the budgeted MIPS has been recently
studied in [Yu et al., 2017] given a budget of B = ηn in-
ner product computation where η is a small constant, e.g.
5%. Furthermore, such budget constraints on the number of
computational operations or on accessing a limited number
of data points are widely studied not only on search prob-
lems [Ram et al., 2012] but also on clustering [Mai et al., 2013;
Shamir and Tishby, 2011] and other tasks [Fetaya et al., 2015;

1Polylogarithmic factors, e.g. log d log n is absorbed in the Õ-
notation.
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Zilberstein, 1996] when dealing with large-scale data sets.
Our work studies sampling methods for solving the bud-

geted MIPS since they naturally fit to the class of budgeted
problems. Sampling schemes provide not only the trade-off
between search quality and search efficiency but also a flexible
mechanism to control this trade-off via the number of sam-
ples S and the number of inner product computations B. Our
contributions are as follows:
• We revise popular sampling methods for solving MIPS,

including basic sampling, wedge sampling [Cohen and
Lewis, 1999], and diamond sampling [Ballard et al.,
2015]. We show that diamond sampling is essentially
a combination of basic sampling and wedge sampling.
• We propose dWedge, a simple but efficient determin-

istic variant of wedge sampling, with a flexible mech-
anism to govern the trade-off between search quality
and efficiency for the budgeted top-k MIPS. Empirically,
dWedge outperforms other competitive budgeted MIPS
solvers [Neyshabur and Srebro, 2015; Yan et al., 2018;
Yu et al., 2017] on popular real-world data sets.

2 Sampling Methods for Top-k MIPS
For notation, we present the point set X as a matrix X ⊂ Rn×d
where each point xi corresponds to the ith row, and the query
point q as a column vector q = (q1, . . . , qd)

>. We use i ∈ [n]
to index row vectors of X, i.e. xi = (xi1, . . . , xid) ∈ Rd.
Since we will describe sampling methods using the column-
wise matrix-vector multiplication Xq, we use j ∈ [d] to index
column vectors of X, i.e. yj = (x1j , . . . , xnj)

> ∈ Rn. For
each column j, we pre-compute its 1-norm cj = ‖yj‖1.

We briefly review sampling approaches for estimating inner
products zi = x>i q. For simplicity, we assume that X and q
are non-negative. The extension of these approaches to handle
negative inputs can be found in the original paper [Lorenzen
and Pham, 2020]. We consider the column-wise matrix-vector
multiplication Xq as follows.

Xq =

x11...
xn1

 q1 +
x12...
xn2

 q2 + . . .+

x1d...
xnd

 qd
= y1q1 + y2q2 + . . .+ ydqd

(1)

2.1 Basic Sampling
Basic sampling is a very straightforward method to estimate
the inner product x>i q for the point xi. For any row i, we
sample a column j with probability qj/‖q‖1 and return xij .
Define a random variable Zi = xij , we have

E [Zi] =
d∑
j=1

xij
qj
‖q‖1

=
x>i q

‖q‖1
.

The basic sampling suffers large variance when most of the
contribution of x>i q are from a few coordinates. In particular,
the variance will be significantly large when the main contribu-
tions of x>i q are from a few coordinates xijqj and qj are very
small. Note that this basic sampling approach has been used
in [Drineas et al., 2006] as an efficient sampling technique for
approximating matrix-matrix multiplication.

2.2 Wedge Sampling
[Cohen and Lewis, 1999] proposed an efficient sampling ap-
proach, called wedge sampling, to approximate matrix multi-
plication and to isolate the largest inner products as a byprod-
uct. Wedge sampling needs to pre-compute some statistics,
including the sum of all inner products z =

∑
i zi where

zi = x>i q and 1-norm of column vectors cj = ‖yj‖1.
Since we can pre-compute cj before querying, computing
z =

∑
j qjcj clearly takes O (d) query time. We can think of

qjcj/z as the contribution ratio of the column j to the sum of
inner product values z.

The basic idea of wedge sampling is to randomly sample a
row index i corresponding to xi with probability zi/z. Hence,
the larger the inner product zi = x>i q, the larger the number
of occurrences of i in the sample set. Consider Equation (1),
wedge sampling first samples a column j corresponding to
yj with probability qjcj/z, and then samples a row i corre-
sponding to xi from yj with probability xij/cj . By Bayes’s
theorem, we have

Pr [Sampling i]

=

d∑
j=1

Pr [Sampling i|Sampling j] · Pr [Sampling j]

=
d∑
j=1

xij
cj
· qjcj
z

=

∑d
j=1 xijqj

z
=
zi
z
.

Applying wedge sampling on Xq, we obtain a sample set
where each index i corresponding to xi is sampled according
to an independent Bernoulli distribution with parameter pi =
zi/z. To answer top-k MIPS, we execute wedge sampling and
find the points with the largest counters. Given S samples
and a constant cost for each sample, wedge sampling runs in
O (S +min(S, n) log k) time to answer approximate top-k
MIPS. If we have an additional budget ofB > k inner product
computation, we can compute the inner product values of the
top-B points with the largest counter values for ranking. Such
ranking (or post-processing) phase with an additional O (dB)
cost will provide higher accuracy for top-k MIPS.

We note that since wedge sampling uses the contribution
ratio qjcj/z to sample the column j, it can alleviate the effect
of skewness of x>i q where large contributions are from a few
coordinates. Hence wedge sampling achieves lower variance
than the basic sampling in practice.

2.3 Diamond Sampling
[Ballard et al., 2015] proposed diamond sampling to find the
largest magnitude elements from a matrix-matrix multiplica-
tion XQ without computing the final matrix directly. The
method considers XQ as a weighted tripartite graph, and
samples a diamond, i.e. four cycles from this graph with prob-
ability proportional to the value (XQ)2ij , in order to amplify
the focus on the largest magnitude elements.

Consider a vector q as a one-column matrix Q, it is clear
that diamond sampling can be applied to solve MIPS. Indeed,
we will show that diamond sampling is essentially a combi-
nation of wedge sampling and basic sampling when approxi-
mating Xq. In particular, diamond sampling first makes use
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of wedge sampling to return a random row i corresponding
to xi with probability zi/z. Given such row i, it then applies
basic sampling to sample a random column j′ with probability
qj′/‖q‖1 and return xij′ as a scaled estimate of

(
x>i q

)2
. De-

fine a random variable Zi = xij′ corresponding to xi, using
the properties of wedge sampling and basic sampling we have

E [Zi] =
d∑

j′=1

xij′
qj′

‖q‖1
· zi
z

=
(x>i q)

2

z‖q‖1
.

Since diamond sampling builds on basic sampling, it suffers
from the same drawback as basic sampling. To answer top-k
MIPS, diamond follows the same procedure as wedge hence
shares the same asymptotic running time.

3 Wedge Sampling for Budgeted Top-k MIPS
We first show a concentration bound of wedge sampling, which
shows that wedge requires fewer samples than diamond for
approximating top-k MIPS. Then we present a drawback of
wedge sampling for the budgeted MIPS and propose dWedge, a
simple deterministic variant to handle this drawback. dWedge
can govern the trade-off between search quality and efficiency
with two parameters: the number of samples S and the number
of inner product computations B.

3.1 A New Analysis of Wedge Sampling
This subsection presents the analysis of wedge sampling on
non-negative inputs. Consider a counting histogram of n coun-
ters corresponding to n point indexes, the following theorem
states the number of samples required to distinguish between
two inner product values τ1 and τ2.
Theorem 1. Fix two thresholds τ1 > τ2 > 0 and suppose
S ≥ 3z lnn

(
√
τ1−
√
τ2)2

where z =
∑
i x
>
i q. With probability at

least 1 − 1
n , the following holds for all pairs i1, i2 ∈ [n]: if

x>i1q ≥ τ1 and x>i2q ≤ τ2, then counter[i1] > counter[i2].

The detailed proof can be found in [Lorenzen and Pham,
2020]. We will discuss some implications of Theorem 1.
Trade-off between search quality and efficiency. By
choosing S as in Theorem 1, we have

√
τ1 −

√
τ2 ≥√

3z(lnn)/S. Assume that the top-k value is τ1, it is clear
the more samples we use, the smaller gap between the top-k
MIPS values and the other values we can distinguish. We note
that we can compute and rank B inner products of the top-B
points with the largest counter values in the ranking phase.
Increasing B corresponds to increasing the gap τ1 − τ2. This
means that both B and S can be used to control such trade-off.
Comparison to diamond sampling. For a fair theoretical
comparison, we consider the same setting as in [Ballard et al.,
2015, Theorem 4] where we want to distinguish x>i1q ≥ τ and
x>i2q ≤ τ/4, and all entries in X and q are non-negative. 2 Ap-
plying Theorem 1, wedge sampling needs Sw ≥ 12z lnn/τ .
Diamond sampling needs Sd ≥ 12K‖q‖1z lnn/τ2 where all
entries in X are at most K. Since K‖q‖1 ≥ τ for any τ ,
wedge requires strictly less samples than diamond.

2The analysis of diamond sampling only works for non-negative
inputs.

Algorithm 1 dWedge Sampling

Require: For each dimension j, sort data in descending order
on xij and store them in the list Lj . Other pre-computed
statistics z, cj , and the query q.

Ensure: A counting histogram of sampled data points.
1: Compute the number of samples sj = Scjqj/z for each

list Lj .
2: for each sorted list Lj do
3: Select xi in the descending order of xij .
4: Increase the counter of xi in the histogram and the

current number of samples used of Lj by dsjxij/cje.
5: If the current number of samples is larger than sj , stop

iterating Lj .
6: end for

3.2 dWedge: A Simple Deterministic Variant for
Budgeted MIPS

This subsection presents a significant drawback of wedge
sampling for solving top-k MIPS with a o(n) budgeted com-
putation. We then introduce dWedge, a simple deterministic
variant to handle this drawback. For simplicity, we present our
approach on non-negative X and q.

Drawback. We observe that wedge sampling first samples
the column j and then samples the point xi for this column
j. In other words, given a fixed number of samples S, wedge
sampling allocates S samples to d columns. Each column j
receives sj samples and

∑
j sj = S. To ensure that wedge pro-

vides an accurate estimate, these sj samples must approximate
the discrete distribution yj/‖yj‖1 well. Given the budget of
S = o(n) samples, the number of samples sj of the column
j is roughly S/d � n in expectation. Since sj � n and
the data set is often dense, it is impossible to approximate
the discrete distribution yj/‖yj‖1 by sj samples. Hence the
performance of wedge (and hence diamond) sampling dramat-
ically degrades in the budgeted setting.

dWedge. Observing that wedge sampling carefully dis-
tributes S samples to each dimension. Dimension j receives
sj = Scjqj/z samples and hence the point xi for dimen-
sion j will receive sjxij/cj samples in expectation. Given
S = o(n), we have sj � n and therefore can only sample a
few points for dimension j. Due to this limit, we propose to
greedily sample xi with the largest xij values in column j. For
each selected xi, we sample dsjxij/cje times. Algorithm 1
presents our simple heuristic solution for non-negative X and
q. For negative inputs, dWedge executes on the absolute val-
ues of X and q. If selected, the counter for xi is increased by
sgn(xij)sgn(qj)dsjxij/cje.
Time complexity. It is clear that the pre-processing step
takesO (dn log n) time andO (dn) additional space. dWedge
sampling takes O (S) time. If S � n, we can use a hash
table to maintain the counting histogram. Otherwise, we use
a vector of size n. The running time of dWedge for answer-
ing top-k MIPS with a post-processing B inner products is
O (S +min(S, n) logB + dB).

Relation to Greedy-MIPS. Greedy-MIPS [Yu et al., 2017]
exploits the upper bound xi · q ≤ dmaxj{qjxij} to construct
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Figure 1: Comparison of accuracy and speedup between dWedge and Greedy when fixing S = 4, 500 and varying B on Yahoo (a, b); and
fixing B = 200 and varying S on Gist (c, d).
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Figure 2: Comparison of accuracy and speedup between wedge and
diamond schemes on Netflix when fixing B = 100 and varying S.

B candidates. In principle, it greedily selects B points xi with
the largest qjxij values for each dimension j, then merges
them to find top-B candidates with maxj{qjxij}. While
dWedge shares the same pre-processing step and greedy spirit,
there is a significant difference between dWedge and Greedy.
dWedge greedily estimates and differentiates the largest el-
ements on each dimension j using sj samples. The more
samples used, the more largest elements considered. This
leads to a higher quality of top-B candidates and top-k MIPS.

4 Experiment
Since diamond exploits wedge, applying dWedge to diamond
derives a new variant, called dDiamond. 3 Our implemented al-
gorithms 4 include: (1) The traditional wedge (Wedge) and dia-
mond (Diamond) sampling and the proposed solutions dWedge
and dDiamond; (2) The Greedy-MIPS approach (Greedy) [Yu
et al., 2017]; and (3) Brute-force algorithm with the Eigen-
3.3.4 library for the fast C++ matrix-vector multiplication.

We conduct experiments on standard real-world data sets, 5

including Netflix (n = 17, 770; d = 300) and Yahoo (n =
624, 961; d = 300) from [Cremonesi et al., 2010], and Gist
(n = 1, 000, 000; d = 960). For Netflix and Yahoo, the item
matrices are used as the data points. We randomly pick 1000
users from the user matrices to form the query sets. All ran-
domized results are the average of 5 runs of the algorithms.
Wedge vs. Diamond. Figure 2 reveals that the proposed
deterministic generator gives higher accuracy than the ran-
domized one. dWedge and dDiamond outperform Wedge and

3This variant is not deterministic due to the randomness from the
basic sampling.

4https://github.com/NinhPham/MIPS/tree/dWedge PKDD2020
5https://drive.google.com/drive/

Diamond, respectively, over a wide range of S. In term of
speedup, dWedge runs significantly faster than dDiamond, es-
pecially at least twice faster when S = n. Wedge variants run
faster than diamond variants since diamond builds on basic
sampling that requires expensive cost for random accesses.

dWedge vs. Greedy-MIPS. Note that dWedge’s cost is
about 2S/d+B inner product computations. Since we want to
show that dWedge always runs as fast as Greedy but achieves
higher accuracy, we use 2S/d+B inner product computations
for Greedy. Given this setting, Figure 1 shows that dWedge
runs faster and provides dramatically higher accuracy than
Greedy on Yahoo and Gist. On Yahoo, since the screening
phase of Greedy incurs remarkable cost, dWedge yields sub-
stantially higher accuracy and speedup. In order to show the
benefit of the sampling phase of dWedge, we measure its
performance on Gist while fixing B = 200 and varying S.
Since we add additional inner product computation into the
post-processing phase, dWedge and Greedy achieve similar
speedup, as shown in Figure 1 (c). Figure 1 (d) shows that
Greedy suffers from very small accuracy, achieving at most
40%, while dWedge achieves nearly perfect recall, i.e. 99%
when S = 2n. In general, dWedge with two parameters, i.e.
number of samples S and number of inner products B, gov-
erns the trade-off between search efficiency and quality more
efficiently than Greedy.

dWedge vs. Locality-sensitive Hashing. Detailed compar-
isons between dWedge and recent advanced locality-sensitive
hashing methods for budgeted top-k MIPS [Neyshabur and
Srebro, 2015; Yan et al., 2018] can be found in [Lorenzen and
Pham, 2020].

5 Conclusion
This paper studies top-k MIPS given a limited budget of com-
putational operations and investigates recent advanced sam-
pling algorithms, including wedge and diamond sampling,
for solving it. We theoretically and empirically show that
wedge sampling is competitive (often superior) to diamond
sampling for approximating top-k MIPS regarding both ef-
ficiency and accuracy. We propose dWedge, a simple deter-
ministic wedge-based variant for the budgeted top-k MIPS.
Empirically, dWedge runs significantly faster than other com-
petitive budgeted MIPS solvers on real-world benchmark data
sets while maintaining a very competitive accuracy.
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