Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Sister Conferences Best Papers Track

On Learning Sets of Symmetric Elements (Extended Abstract)*

Haggai Maron'’, Or Litany', Gal Chechik'?> and Ethan Fetaya®

INVIDIA
2Bar-Ilan University

Abstract

Learning from unordered sets is a fundamental
learning setup, recently attracting increasing atten-
tion. Research in this area has focused on the case
where elements of the set are represented by fea-
ture vectors, and far less emphasis has been given
to the common case where set elements themselves
adhere to their own symmetries. That case is rele-
vant to numerous applications, from deblurring im-
age bursts to multi-view 3D shape recognition and
reconstruction. In this paper, we present a princi-
pled approach to learning sets of general symmet-
ric elements. We first characterize the space of
linear layers that are equivariant both to element
reordering and to the inherent symmetries of ele-
ments, like translation in the case of images. We
further show that networks that are composed of
these layers, called Deep Sets for Symmetric ele-
ments layers (DSS), are universal approximators of
both invariant and equivariant functions, and that
these networks are strictly more expressive than
Siamese networks. DSS layers are also straight-
forward to implement. Finally, we show that they
improve over existing set-learning architectures in
a series of experiments with images, graphs, and
point clouds.

1 Introduction

Learning with data that consists of unordered sets of ele-
ments is an important problem with numerous applications,
from classification and segmentation of 3D data [Zaheer et
al., 2017; Qi et al., 2017; Su et al., 2015; Kalogerakis et al.,
2017] to image deblurring [Aittala and Durand, 2018]. In this
setting, each data point consists of a set of elements, and the
task is independent of element order. This independence in-
duces symmetry structure, which can be used to design deep
models with improved efficiency and generalization. Indeed,
models that respect set symmetries, e.g. [Zaheer er al., 2017;
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tional Conference on Machine Learning (ICML), 2020.
TContact Author

4794

Qi et al., 20171, have become the leading approach for solv-
ing such tasks.

Importantly, the elements of the set themselves often ad-
here to certain symmetries, as happens when learning with
sets of images, sets of point clouds, and sets of graphs. It is
still unknown what is the best way to utilize these additional
symmetries.

A common approach to handle per-element symmetries is
based on processing elements individually. First, one pro-
cesses each set-element independently into a feature vector
using a Siamese architecture [Bromley et al., 1994], and only
then fuses information across all feature vectors. When fol-
lowing this process, the interaction between the elements of
the set only occurs after each element has already been pro-
cessed, possibly omitting low-level details. Indeed, it has
been recently shown that for certain visual tasks [Aittala and
Durand, 2018; Sridhar er al., 2019; Liu er al., 2019], sig-
nificant gain can be achieved with intermediate information-
sharing layers.

Here, we present a principled approach to learning sets
of symmetric elements. First, we describe the symmetry
group of these sets, and then fully characterize the space
of linear layers that are equivariant to this group. No-
tably, this characterization implies that information between
set elements should be shared in all layers. For example,
Figure 1 illustrates a DSS layer for sets of images. DSS
layers provide a unified framework that generalizes several
previously-described architectures for a variety of data types.
In particular, it directly generalizes DeepSets [Zaheer et al.,
2017]. Moreover, other recent works can also be viewed
as special cases of our approach [Hartford er al., 2018;
Aittala and Durand, 2018; Sridhar et al., 2019].

A potential concern with equivariant architectures is that
restricting layers to be equivariant to some group of symme-
tries may reduce the expressive power of the model [Maron
et al., 2019; Morris et al., 2018; Xu et al., 2019]. We ad-
dress this concern by proving two universal-approximation
theorems for invariant and equivariant DSS networks. Sim-
ply put, these theorems state that if invariant (equivariant)
networks for the elements of interest are universal, then the
corresponding invariant (equivariant) DSS networks on sets
of such elements are also universal. One important corollary
of these results is that DSS networks are strictly more expres-
sive than Siamese networks.
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Figure 1: (a) A DSS layer for a set of images is composed of Siamese
layer (blue) and an aggregation module (orange). The Siamese part
is a convolutional layer (L) that is applied to each element indepen-
dently. In the aggregation module, the sum of all images is processed
by a different convolutional layer (L2) and is added to the output of
the Siamese part. (b) A simple DSS-based invariant network.

2 Preliminaries

2.1 Notation and Definitions

Let z € R’ represent an input that adheres to a group of
symmetries G < Sy, the symmetric group on £ elements. G
captures those transformations that our task-of-interest is in-
variant (or equivariant) to. The action of G on R is defined
by (9 x)i = x4-1(;). For example, when inputs are images
of size h x w, we have £ = hw and G can be a group that
applies cyclic translations, or left-right reflections to an im-
age. A function is called G-equivariant if f(g-z) =g - f(x)
for all ¢ € G. Similarly, a function f is called G-invariant if
flg-xz) = f(x)forall g € G.

2.2 (G-invariant and G-equivariant Networks

G-equivariant networks are a popular way to model G-
equivariant functions. These networks are composed of sev-
eral linear G-equivariant layers, interleaved with activation
functions like ReLU, and have the following form:

f=ILyoooLyi--o00oLly, (1)

where L; : R*% — R¢*i+1 are linear G-equivariant layers,
d; are their feature dimensions and o is a point-wise activa-
tion function. It is straightforward to show that this archi-
tecture results in a G-equivariant function. G-invariant net-
works are defined by adding an invariant layer on top of a
G-equivariant function followed by a multilayer Perceptron.

2.3 Characterizing Equivariant Layers

The main building block of G-invariant/equivariant networks
are linear G-invariant/equivariant layers. To implement these
networks, one has to characterize the space of linear G-
invariant/equivariant layers. For example, it is well known
that for images with the group G of circular 2D translations,
the space of linear G-equivariant layers is simply the space
of all 2D convolutions operators [Puschel and Moura, 2008].
Unfortunately, such elegant characterizations are not avail-
able for most permutation groups. See [Wood and Shawe-
Taylor, 1996; Ravanbakhsh er al., 2017] for further details.
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Figure 2: The input to a DSS layer is an n X d matrix, in which
each row holds a d-dimensional element. G = S,, X H acts on it by
applying a permutation to the columns and an element h € H to the
rows.

2.4 Deep Sets

The current paper generalizes DeepSets [Zaheer et al., 2017]
and we summarize their main results for completeness. Let
{x1,...7,} C R? be a set, which we represent in arbitrary
order as a matrix X € R"*4, [Zaheer et al., 2017] character-
ized all S,,-equivariant linear layers for this case, which take
the form:

L(X); = L1(x;) + Lo Zl’j , ()
i

where L1, Lo : R? — R? are general linear functions and
the subscript represents the i-th row of the output. [Zaheer er
al., 2017; Qi et al., 2017] established the universality of in-
variant networks that are composed of DeepSets Layers and
[Segol and Lipman, 2019] extended this result to the equiv-
ariant case.

3 DSS Layers

Our main goal is to design deep models for sets of elements
with non-trivial per-element symmetries. In this section, we
first formulate the symmetry group G of such sets. The deep
models we advocate are composed of linear G-equivariant
layers (DSS layers); therefore, our next step is to find a simple
and practical characterization of the space of these layers.

3.1 Sets with Symmetric Elements

Let {x1,...7,} C R be a set of elements with symmetry
group H < S;. We wish to characterize the space of linear
maps L : R"*¢ — R™*4 that are equivariant to both the nat-
ural symmetries of the elements, represented by the elements
of the group H, as well as to the order of the n elements,
represented by S,.

In our setup, H operates on all elements x; in the same
way. More formally, the symmetry group is defined by
G = S, x H, where S, is the symmetric group on n
elements. This group operates on X € R™*? by apply-
ing the permutation ¢ € S, to the first dimension and the
same element h € H to the second dimension, namely
((q,h) - X);; = Xg-1(i)n—1(;)- Figure 2 illustrates this setup.
Notably, this setup generalizes several popular learning se-
tups: (1) DeepSets, where H = {I;} is the trivial group. (2)
Tabular data [Hartford et al., 20181, where H = S;. (3) Sets
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of images, where H is the group of cyclic translations [Aittala
and Durand, 2018].

Considering the symmetry in the form of a direct prod-
uct suggests implicitly that the elements {z;} are aligned, as
they are in many popular tasks like image deblurring [Ait-
tala and Durand, 2018] (also see figure 1). For other datasets
and tasks, this assumption might not hold. In that case, it is
natural to consider another setup, where the members of H
applied to each element may differ!. Unfortunately, as we
show in the full paper [Maron et al., 20201, the correspond-
ing equivariant layers are essentially Siamese layers. See also
[Wang et al., 2020].

3.2 Characterization of Equivariant Layers

This subsection provides a practical characterization of lin-
ear G-equivariant layers for G = S,, x H. Our result gen-
eralizes DeepSets (equation 2) whose layers are tailored for
H = {1}, by replacing the linear operators Ly, Lo with lin-
ear H-equivariant operators. This result is summarized in the
following theorem:

Theorem 1. Any linear G—equivariant layer L : R"*? —
R™*4 is of the form

L(X); = LF (x;) + LY

ij ;

J#i
where L LY are linear H-equivariant functions

Note that this is equivalent to the following formula-
tions L(X); = Li'(z;) + LH(ZJ 1 T5) = Li(z;) +
> L4 (x;) due to linearity. Figure 1 illustrates Theorem 1
for sets of images. In this case, applying a DSS layer amounts
to: (i) Applying the same convolutional layer L; to all images
in the set (blue); (ii) Applying another convolutional layer Lo
to the sum of all images (orange); and (iii) summing the out-
puts of these two layers.

Relation to previous work. In the case of a set of images
and translation equivariance, L are convolutions. In this
setting, [Aittala and Durand, 2018; Sridhar er al., 2019] have
previously proposed using similar set-aggregation layers after
convolutional blocks. This work provides a theoretical anal-
ysis of their setup and generalizes it all permutation groups.

4 A Universal Approximation Theorem

When restricting a network to be invariant (equivariant) to
some group action, one may worry that these restrictions
could reduce the network expressive power. We now show
that networks that are constructed from DSS layers do not
suffer from loss of expressivity. Specifically, we show that
for any group H that induces a universal H-invariant (equiv-
ariant) network, its corresponding G-invariant (equivariant)
network has high expressive power: we prove universal ap-
proximation for invariant and equivariant functions defined
on any compact set with zero intersection with a specific low-
dimensional set & C R™*<. The precise definition of & is
given in the supplementary of the full paper [Maron et al.,
2020]. The following theorem summarizes these results:

"Here, the symmetry group is the wreath product of S,, and H.
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Theorem 2. Let K C R™ ? be a compact domain such
that K = UgeqgK and K N E = 0. G-equivariant net-
works are universal approximators (in || - ||~ sense) of con-
tinuous R"*¢ — R™"*? G-equivariant functions on K if H-
equivariant networks are universal.

The invariant case is a direct corollary of Theorem 2.

S Experiments

This section investigates the effectiveness of DSS layers in
practice by comparing them to previously suggested archi-
tectures and different aggregation schemes. We use the ex-
periments to answer two basic questions: (1) Early or late
aggregation? Can early aggregation architectures like DSS
and its variants improve learning compared to Late aggrega-
tion architectures, which fuse the set information at the end
of the data processing pipeline? and (2) How to aggregate?
What is the preferred early aggregation scheme?

Tasks. In the full paper, [Maron et al., 2020], we evaluated
DSS in a series of six experiments spanning a wide range
of tasks: from classification (R"*¢ — R), through selection
(R™*4 — R™) and burst image deblurring (R"*¢ — R%) to
general equivariant tasks (R"*¢ — R™*%). The experiments
also demonstrate the applicability of DSS to a range of data
types, including point clouds, images and graphs.

Competing methods. We compare DSS to a narchi-
tecture with a Siamese network followed by DeepSets
(Siamese+DS). See full paper for more comparisons.
We also compare several variants of our DSS layers:
(1) DSS(sum): our basic DSS layer from Theorem 1
(2) DSS(max): DSS with max-aggregation instead of
sum-aggregation (3) DSS(Aittala): DSS with the aggre-
gation proposed in [Aittala and Durand, 2018], namely,
L(x); = [L™(x;), max}_, LY (x;)] where [] denotes fea-
ture concatenation and LH is a linear H-equivariant layer
(4) DSS(Sridhar): DSS layers with the aggregation pro-
posed in [Sridhar et al., 2019] ji.e., L(z); — L(z;) —
- ZT'L:1 LA (25)-

n J

Evaluation protocol. All models have roughly the same
number of parameters for each particular task. In all experi-
ments, we report the mean and standard deviation over five

random initializations. Experiments were conducted using
NVIDIA DGX with V100 GPUs.

5.1 Selection Tasks

In a selection task, we are given a set and wish to choose
one element from the set that obeys a predefined property.
Formally, each task is modeled as a G-equivariant function
f : R™©4 — R™ where the output vector represents the
probability of selecting each element. The architecture com-
prises three convolutional blocks employing Siamese or DSS
variants, followed by a DeepSets block. We note that the
Siamese+DS model was suggested for similar selection tasks
in [Zaheer et al., 2017].

Frame selection in images and shapes. The first selection
task is to find a particular frame within an unordered set of
frames extracted from a video/shape sequence. For videos,
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Dataset Data type Late Aggregation Early Aggregation Random choice
Siamese+DS DSS (sum) DSS (max) DSS (Sridhar) DSS (Aittala)

UCF101 Images 36.41% £ 1.43 76.6% + 1.51 76.39% + 1.01  60.15% £ 0.76  77.96% + 1.69 12.5%

Dynamic Faust | point clouds | 22.26% =+ 0.64 42.45% + 132 28.71% £ 0.64 54.26% £ 1.66 26.43% + 3.92 14.28%

Dynamic Faust | Graphs 26.53% + 1.99 44.24% + 1.28  30.54% + 1.27 53.16% + 1.47 26.66% =+ 4.25 14.28%

Table 1: Frame selection tasks for images, point clouds and graphs. Numbers represent average classification accuracy.

Noise type and strength | Late Aggregation Early Aggregation Random choice
Siamese+DS DSS (sum) DSS (max) DSS (Sridahr) DSS (Aittala)
Gaussian o = 10 77.2% £ 0.37 78.48% £+ 0.48 77.99% £ 1.1 76.8% £ 0.25 78.34% £ 0.49 5%
Gaussian o = 30 65.89% £ 0.66 68.35% + 0.55 67.85% +£0.40 61.52% 4 0.54 66.89% £ 0.58 5%
Gaussian o = 50 59.24% £ 0.51 62.6% + 0.45 61.59% +1.00 55.25% =+ 0.40 62.02% + 1.03 5%
Occlusion 10% 82.15% £ 0.45 83.13%+ 1.00  83.27 £0.51 83.21% £ 0.338  83.19% £ 0.67 5%
Occlusion 30% 77.47% £+ 0.37 78% £ 0.89 78.69% + 032  78.71% £ 0.26  78.27% £ 0.67 5%
Occlusion 50% 76.2% £ 0.82 77.29% + 040 76.64% £ 0.45 77.04% £ 0.75 77.03% £ 0.58 5%

we used the UCF101 dataset [Soomro et al., 2012]. Each

Table 2: Highest-quality image selection. Values indicate the mean accuracy.

Highest quality image selection.

Given a set of n = 20

set contains n = 8 frames generated by randomly drawing a
video, a starting position, and frame order. The task is to se-
lect the first” frame, namely, the one that appeared earliest in
the video. Table 1 details the accuracy of all compared meth-
ods in this task, showing that DSS(sum) and DSS(Aittala) out-
perform Siamese+DS and DSS(Sridhar) by a large margin.
In a second frame selection task, we demonstrate that DSS
can handle multiple data types. Specifically, we showcase
how DSS operates on point clouds and graphs. Given a short
sequence of 3D human shapes performing various activities,
the task is to identify which frame was the center frame in the
original non-shuffled sequence. These human shapes are rep-
resented as point clouds in the first experiment and as graphs
(point clouds + connectivity) in the second experiment.

Q) @ @) Q) @ ™

Point clouds Graphs

Figure 3: Shape-selection task on human shape sequences. Shapes
are represented as graphs or as point clouds. The task is to select the
central frame (red). Numbers indicate frame order.

To generate the data, we cropped 7-frame-long sequences
from the Dynamic Faust dataset [Bogo et al., 2017] in which
the shapes are given as triangular meshes. In [Bogo et al.,
2017] the points of each mesh are ordered consistently, pro-
viding point-to-point correspondence across frames. When
this correspondence is not available, a shape matching algo-
rithm like [Litany et al., 2017; Maron and Lipman, 2018] can
be used as preprocessing. See Figure 3 for an illustration of
this task. Results are summarized in Table 1, comparing DSS
variants to a late-aggregation baseline (Siamese +DS) and to
random choice.
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degraded images of the same scene, the task is to select the
highest-quality image. We generate data for this task from
the Places dataset [Zhou er al., 2017], by adding noise and
Gaussian blur to each image. The target image is defined to
be the image that is the most similar in L; norm sense to
the original image. Notably, DSS consistently improves over
Siamese+DS with a margin of 1% to 3%. See Table 2.

5.2 Summary of Experiments

The above experiments demonstrate that applying early ag-
gregation using DSS layers improves learning in various
tasks and data types, compared with earlier architectures
like Siamese+DS. This improvement can be attributed to the
provably higher expressive power of DSS networks. More
specifically, the basic DSS layer, DSS(sum), performs well
on all tasks, and DSS(Aittala) has also yielded strong results.
DSS(Sridhar) performs well on some tasks but fails on others.
See the full paper for additional experiments: signal classifi-
cation, image deblurring, and multi-view reconstruction.

6 Conclusion

In this short paper, we have summarized the main results of
[Maron et al., 2020]. Specifically, we presented a principled
approach for designing deep networks for sets of elements
with symmetries. We characterized the space of equivari-
ant maps for such sets, analyzed its expressive power, ex-
emplified its benefits over standard set learning approaches
over various tasks and data types, and shown that our ap-
proach generalizes several successful previous works. Using
our framework as it is, one implicitly assumes that the set el-
ements are aligned. A worthwhile direction for future work
is to suggest approaches to circumvent this limitation.
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